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THE HEIGHT OF THE LEECH LATTICE

KOK SENG CHUA

We derive explicit formulae for the height of the Leech lattice and give evidence
supporting the conjecture that the Leech lattice has minimum height and minimum
values of the Epstein zeta function among all 24 dimensional lattices of determinant
one.

1. INTRODUCTION AND RESULTS

Let (M, a) be a compact Riemannian manifold with a smooth metric and let
0 = Ao < Ai < A2 ^ . . . be the eigenvalues of the Laplacian. The height of M
is an isospectral invariant defined by h(M,a) = Z'(0) where the right hand side is
defined via the analytic continuation of the zeta function Z(s) = ]T) AJS. In Osgood-

Phillips-Sarnak [5], it was shown that when M is the two dimensional torus, the height
attains a minimum when and only when the metric is the flat metric corresponding
to the hexagonal lattice which is the lattice with the highest sphere packing density.
For 2 dimensional flat tori the height is given explicitly by Kronecker's limit formula in
terms of the Dedekind eta function, see [5]. In [1], Chiu studied the heights of higher
dimensional flat tori and proved the existence of a minimum in the moduli space. He
also stated the following conjecture, attributed to Sarnak :

CONJECTURE 1. The height on the moduli space of n-dimensional Bat tori of
volume 1 has a global minimum at tie torus corresponding to the lattice with the
longest minimal vector (or equivalently the lattice giving the densest sphere packing).

Besides the two dimensional case, Conjecture 1 is further supported by the fact
that the densest lattice in three dimensions, the face-centered cubic lattice is a local
minimum for the height function and that its height is also strictly less than that of
10303 points uniformly distributed in the moduli space, see [1].

In this note, we shall give further evidence for Conjecture 1 in some higher dimen-
sions. Most of our results can be proven in other dimensions but we shall concentrate
on dimension 24 where there is a remarkable and very dense lattice (most likely the
densest) discovered by Leech, and where our results are most explicit. Our main result
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will suggest that the Leech lattice is very likely the lattice with minimum height in

dimension 24. We shall follow the notations and results in [1]. For a lattice specified

by a positive definite quadratic form Q[x], we associate an Epstein zeta-function :

(1) ZQ(X)= Yl 2N"4. Res > n/2.

This has a meromorphic continuation to the whole plane with a pole at n/2 with

residue \Q\~1/2nn/2T{n/2)~1. It was shown in [1, Theorem 2.3] that the height is given

by h(Q) = Ankn(Q) + Bn where An, Bn are absolute constants with An positive and

the Kronecker limit of Q, kn(Q) is defined by

(2) kn(Q)=
— n/2 J

\ Q ( )
s-m/2 ^ S

Obviously instead of height we can work with kn(Q). We note incidentally that

(3) kn(tQ) = ^{kn{Q)-\^

so that we may compare height on any constant determinant surface. Our main result

is the following:

THEOREM 1. Let A be the Leech lattice and Q be a 24 dimensional lattice of
determinant 1. Then we have kn(A) < kn(Q) in each of the following cases :

(A) Q is a 24 dimensional integral unimodular lattice.

(B) Q has a representation as a quadratic form which is diagonal.

(C) Q has minimum norm ran = Min Q\x] bounded above by 1.6 or
*ez24\{o}

m s _ i ^0 .38 .

We note that there are 297 unimodular lattices in dimension 24, and of these, 24

of them including the Leech lattice are even or type II, see [2]. The condition (A) is

reassuring because in an extremal problem, there is a tendency for the extremal solution

to be highly symmetric as the constraints that are applied then at various parts are

equal. The unimodular lattices and in particular the Leech lattice are well known to

have large automorphism groups.

As stated in Theorem 1, (B) is clearly implied by (C) but our method of proof of
(A) and (B) actually proves more. In [1], Chiu stated a stronger conjecture attributed
to Rankin:

CONJECTURE 2 . Let Q be an n dimensional lattice of determinant 1 and let

Qo be one with the highest sphere packing density (assume unique). Then for s real

and s > 0, we have

(4)
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and equality holds for some s if and only if Q is isometric to Qo •

We note that Conjecture 1 is equivalent to Conjecture 2 at s = n/2 where (4)
remains meaningful because the poles cancel out. Conjecture 2 is known to hold in
dimension 2 and it is also known that (4) is true for sufficiently large s, see [6]. Mon-
gomery [4] has established Conjecture 2 in dimension 2 by proving a yet stronger in-
equality, namely that the theta series of Q dominates that of the hexagonal lattice
which trivially implies (4), see Lemmas 1 and 5 below. We shall prove in Section 2
that the theta series of a 24 dimensional Q dominates that of the Leech lattice under
conditions (A) and (B), which implies the following :

THEOREM 2 . Under the assumptions of Theorem 1, we have ZQ(S) - Z\(s) ~2 0
for all s > 0 if either (A) or (B) holds.

We note that (A) or (B) of Theorem 1 is an immediate consequence of Theorem
2. Our proof of (C) however, works only for the height. Since the height becomes
unbounded as Q tends to the boundary of the moduli space, that is, as TUQ tends to
zero, one obtains (C) easily if one can compute the height of the Leech lattice explicitly.
In fact, by using the well known correspondence between modular forms and Dirichlet
series, it is easy to compute the heights of all the 24 even unimodular 24 dimensional
lattices. Since there are five isospectral pairs among them, there are only 19 distinct
theta series, see [2, Table 16.1]. These are parametrised by their Coxeter number h
defined by 24h — number of vectors of norm 2, so that h = 0 corresponds to the Leech
Lattice. Our formula for the height is :

THEOREM 3 . Let T be an even unimodular 24 dimensional lattice with Coxeter

number h. Then we have

n)
, 1 2

where 7 is Euler's constant and r(n) is the Ramanujan function. In particular for the
Leech lattice, we have kn(A) = - 0 . 0 2 5 7 1 1 . . . .

In Section 3 we shall also derive an explicit formula for the height of an arbitrary
n dimensional lattice as a series of incomplete gamma functions. This gives in principle
a way to compute the height of any lattice to any accuracy as long as its theta series
(that is, the number of lattice vectors of each possible norms) is known. The formula
is stated only in the case when n is even since it is simpler and we only need it in this
case:

THEOREM 4 . Let Q be an n dimensional lattice of determinant one and assume
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n is even. Let G(m,a) = f£° e~attm(dt/t) for integral m and any positive a. Then

w+7 - £

where 7 = 0.577215665... is Euler's constant and the prime in the summation over a
means the zero vector is omitted.

2. T H E T A SERIES DOMINANCE

For a lattice F , its theta series is defined by

(7) er(z) = E 9<A> A>' w h e r e Q = <?"•

For two lattices Fi, F2 with the same determinant, we say that Brx, dominates <?r2
and write #n ^ #r2 if w e ha v e fo^iy) ^ ^r2(ij/) for all y > 0. The relevance of this
definition is given by the following lemma which is an observation of Montgomery in
[4]-

LEMMA 1. Let 9Tl ^ 6T2, then Zri(s) - Zr2(s) ^ 0 for all s > 0.

PROOF: By the old technique of Riemann, one can express Zr(s) as an integral
over the theta series. More exactly, see [7, Theorem 2], we have

(8) , - T ^

[o(*) i}t>

Also the Jacobi inversion formula 6r{i/t) = tn/2Or(it) implies that #n dominates 6p2

if and only if 0r-i dominates 0r-i so that the claim follows immediately from (8). D

Now let F be any unimodular 24 dimensional lattice. By a classical theorem of
Hecke see for example [3], 9r(z) is a modular form of weight 12 for the Hecke subgroup

G(2) generated by 5 = I I and T2 = | 1 with respect to the character

x(T2) = 1 and x(S) = i . Let 93{z) = 6z(z) = 52qm2 be the series of the integer

and let A8 = {6»f-6»E8}/l6 = q f] {(l - fl2™"1)^ - 94 m)}8, the cusp form of weight
m=l

4, E& here being the root lattice giving the densest packing in dimension 8. The
space of modular form of weight 12 for G(2) is of dimension 4 and is generated by

:3 = 0. 1, 2, 3}, see [2, p.87].
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LEMMA 2 . 0Es ^ 0f < 26ES.

P R O O F : Following notation in [2], we have 6B8 - { 0 f + ^ ! + ^4}/2 , so 26Bs - 0 f -
0§ + 9%. Also 0f - eB& = {0f - (0f + 0%)}/2 = e\e\, using the well known formula of
Jacobi that e\ + 6\ - e4. The result now follows from the fact that 64{iy) > 0 and
e\{iy) > 0, which is obvious from their infinite product expansion, see [2, p.105]. D

LEMMA 3 . 0f ^ 32A8 ^ 0 and hence /1 ^ 32/2 ) /1 ^ 1024/3.

P R O O F : The first assertion follows from Lemma 2 and the definition of A 8 . It
follows that / i ^ 6 A 8 ^ 320f A | = 32/ 2 . Similarly, A ^ 322/a- D

We note incidentally that /1 = £ ( - l ) n + 1 r ( n ) g n and / 2 = A = £ -r(n)g2n where
r(n) is the Ramanujan function. Both of these can be proven easily by looking at the
infinite product expansions. Now let A be the Leech lattice, then 0A - 0r is a cusp
form since both series have constant term one. We have in fact

LEMMA 4 . Suppose T has Xj vectors of norm j for j = 1,2, 3. Then

(9) eT = eh + Xih + (A2 - 24Ai)/a + (A3 - 252Ai)/3.

P R O O F : Since the Leech lattice has no vector of norm 1, 2 or 3, we must have
#r = #A + Xiq + A2g

2 + A3</3 + O(<74). Now the space of cusp form for G{2) has basis
{/ii f2, fz] with initial expansions:

h = <?36A8 - q + 24q2 + 252q3 + O(q4)

It follows that {gi, g2, 93} with gl = fx - 24/2 - 252/3, g2 - / 2 , 33 = h is another
basis with g, having j th Fourier coefficient = 5ij for 1 ^ i, j ^. 3 . It follows that
0r — #A = Aipi + A2^2 + A353 from which the result follows. 0

LEMMA 5 . eA ^ er •

P R O O F : We split fx = (3/4)/j + ( l /4 ) / i ^ (3/4)32/2 + (l /4)1024/3 by Lemma 3.
So by Lemma 4 we have 0p — #A ^ A2/2 + (A3 + 4Ai) / 3 . It follows from the infinite
product expansion of 63 and A8 that /2(ij/) > 0, /3(iy) > 0. The Lemma follows since
each Aj ^ 0. D

LEMMA 6 . (Montgomery [4, Theorem 2].) If Q is an n dimensional determinant
1 lattice with a representation by a diagonal matrix, then 0% ^ 0Q .

P R O O F OF T H E O R E M 2: (A) follows immediately from Lemma 5 and Lemma 1.
Since Z2A is unimodular, (A) and Lemma 6 imply 6\ ^ 0 | 4 < 0 C . So (B) holds by
Lemma 1. D
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3. EXPLICIT FORMULAE FOR HEIGHTS

We shall first derive explicit formulae for the heights of all the 24 even unimodular
Niereimer lattices. An old result of Hecke implies that the 6 series of such a lattice is
a modular form of weight 12 for SL2(Z), which is of dimension 2 and is spanned by

n = l

and the unique cusp form of weight 12,

n = l

LEMMA 7 . For the Leech lattice A,

n = l

PROOF: Since the Leech lattice has no vector of norm 2 and the cusp form is
o

one dimensional, its theta series must be BA = E\2 — Ai2A — 1 + Ai2 5 [
n=l

00

T(n)]q2n. It follows that ZA(s) = Ai2 £ (<ru(n) - r(n))/(2n)s and the result follows
7 1 = 1

immediately.
We can now compute the height of the Leech lattice exactly. D

LEMMA 8 .

(.0) M A )

PROOF: Since C(s) = l/(s - 1) + 7 + O(s - 1), we have

C(«)C(* - H) = C(12)/(* - 12) + [C'(12) + 7C(12)] + O(s - 12)2.

Also, 2~s = 2~12 - (ln(2)/212)(s - 12) + O(s - 12)2, so we must have

(Al2/2°K(sK(s - 11) = A l 2 ^ 2
1

)
2

2 + ^{C' (12) + 7<(12) - In
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The result follows from Lemma 7 since X ) T ( n ) / n S *s regular at s — 12. D

LEMMA 9 . If F is an even unimodular 24 dimensional lattice with Coxeter num-

ber h (that is, if F has 24/i vectors of norm 2), 9T=0\ + 24/iA.

P R O O F : The difference of the two theta series is a cusp form with leading term
24/ig2. D

P R O O F OF T H E O R E M 3: By Lemma 9, Zr = ZA + ( 2 4 / i / 2 s ) £ ( T ( n ) / n s ) . Since

the last term is regular at s = 12, the result follows from Lemma 8. D

REMARK. We note that the series J2 r(n)/n12 = 0.994544... is easily computed as
the series is absolutely convergent and we may estimate the error easily by Deligne's
famous estimate that | r (n) | ^ cro{n)nlll2.

We shall derive next an explicit formula for the height of an arbitrary lattice of
determinant 1 (Theorem 4). We define first the integral (incomplete Gamma function):
G(m,a) = Jj00 e~attm dt/t and note that for positive integral m , it can be evaluated
by integration by parts and solving a recurrence.

LEMMA 1 0 .

m - 1

We also note that there is a continued fraction expansion of G(m, a) which allows
fast computation for any m and a, see Terras [7].

PROOF OF THEOREM 4: From (8) we have ZQ(s) = (n8/F(s)){l/(s - n/2) +
R(s)} where R(s) is regular at n/2. Since

n/2 n/2 ( T' } ,

TTA + TTTASMW- F("/2) VS-n/2)+ ° ( s - n / 2 ) '
(n/2) 1 (n/2) ^ 1 J

T(s) T(n/2)

we have

n/2-l

Putting in (F'/r)(n/2) = JZ V J ~ 7 an<^ writing out the sum over the lattice vectors
gives (6). j=1 D

https://doi.org/10.1017/S0004972700018724 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018724


250 K.S. Chua [8]

REMARK. Theorems 3 and 4 give us two distinct ways to compute the height of the
Leech lattice and more generally its zeta function. By equating them we get a formula
expressing the Ramanujan L -series in terms of a series of incomplete Gamma functions
over lattice vectors which may be of some interest.

We are now ready to establish (C) of Theorem 1. The idea is very simple. We can
compute an explicit value of kn (A) by Theorem 3 while Theorem 4 allows us to bound
it from below.

P R O O F OF (C) OF THEOREM 1: Let TTIQ, m c - i be the minimum norm of Q and
Q " 1 respectively. By Theorems 3 and 4,

(11)

fc=i fc=i

where we have ignored all lattice vectors of Q and Q 1 except for the multiples of a
pair of shortest ones. Because G(l2,7rmgfc2) decreases exponentially in k, it does not
really help to include higher multiples of the shortest vector. The first assertion follows
simply from the fact that G(12,7rmg) is decreasing in TUQ and that

f C 12 1 1 °° r(n) 1
2G(12, 1.6TT) = 0.305123 . . . > I l n ( 2 7 r ) - ^ ( 1 2 ) - ^ ] -+77707 X ! iT f =0-27863. . . .

*• j = l ^ ^* ' n=l '

For the second assertion, setting r = TUQ-I , we see that we need

2 VG(0,7rrfc2) = 2 / Y]e-"rkt—>2 / e~nrtx dx— for any T > 0,
fe=i •'' fc=i f Ji Ji *

„ /"T /"°° -u2 <i« d* "̂ V1 ~ 1 / V ^ 5 ) A00 *a ,

^ 0.27863,

or equivalently

TTlo- l

-TUsing the very rough estimate (l - l/\/T\ f™ e-^dt ^ g(T) = (1-1/T)e

g((l+y/5)/2) = 0.075739... gives the required sufficient crude bound r < 0.381... . D
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REMARK 1. Since the Leech lattice has minimal norm 4 and the minimal norm func-
tional is continuous in moduli space, there ought to be lattices with norm arbitrary
close to 4 near the Leech lattice. The first assertion of (C) is thus still some way off
the truth. However, the proof of (C) shows that further progress may be possible from
better ways to estimate (6) from below by combining the estimate of Q and Q " 1 and
also possibly including the contributions of other lattice vectors which are not multiples
of the shortest ones.

REMARK 2. It is clear that some or most of our results can be proven in similar way
in other dimensions n in particular when n is divisible by 8. We only mention the
case n = 8 when the result is even simpler and E8 is known to be the densest lattice.
The analogue of Theorem 1 (A) and (B) and Theorem 2 holds. We also have 6E& =
EA-\ + 2 4 0 £ > 3 ( n ) g 2 n so that the zeta function ZE&{s) = (240/2")C(s)C(s - 3) and
kn(E8) = (7r4/r(4)){C7C(4) + 7 - In (2)}. A similar argument now shows that for an
8 dimensional lattice of determinant 1, kn(E8) ^ kn(Q) if THQ ^ 0.8 or m,Q-i ^ 0.49.
Note that the minimal norm of E8 is 2.
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