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Abstract

The covering relation in the lattice of subuniverses of a finite distributive lattice is characterized in terms
of how new elements in a covering sublattice fit with the sublattice covered. In general, although the
lattice of subuniverses of a finite distributive lattice will not be modular, nevertheless we are able to show
that certain instances of Dedekind's Transposition Principle still hold. Weakly independent maps play a
key role in our arguments.
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1. Introduction

For any lattice L the set Sub L of subuniverses of L is lattice-ordered by set-inclusion.
In general, properties of L are not likely to hold for Sub L and the structure of Sub L
may not be clear even if the structure of L itself is transparent. For example, if L is not
a chain, then Sub L is not even modular, as can be easily seen since N5 is embeddable
in Sub 2 x 2 . Even for the well-understood class of finite distributive lattices not much
seems to be known about the corresponding lattices of subuniverses.

Let K be a sublattice of L. We say x e L splits a covering of K provided there
are a, b e K so that b covers a in K but a < x < b in L. We say x e L completes
a square over K provided there are a, b, c G K with a < c < b so that x v c = b
and x A c = a. Further, we say x completes a covering square over K if, in addition,
a < c -< b in K. The length of the lattice K is the least upper bound on the length
of chains in K. The length of the trivial lattice with only one element is 0, while the
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length of the two-element lattice is 1. l(K) denotes the length of K. SgL X denotes
the subuniverse of L generated by the set X. The theorem below may be folklore.

THEOREM 1. Let L be a lattice of finite height. Suppose that K and K* are sublat-
tices ofL, such that K* covers K in SubL. Then one of the following cases happens:
(1) K* = KU{\K'}.
(2) K* = ATU{0K<}.
(3) There is an element of K* — K which splits a covering o/K.
(4) There is an element of K* — K which completes a square over K.
Moreover, ifh is modular, then in Case 4 we can insist that the element completes a
covering square over K.

PROOF. Suppose that neither Case 1 nor Case 2 holds. Then for every x e K* — K
there must be a, b e K so that a < x < b. Among all possible choices of x e K* — K
and a, b € K with a < x < b, make a choice so that the length of the interval from
a to b measured in K is as small as possible. If this interval has length 1 in K, then b
covers a in K and x splits a covering in K; that is, Case 3 holds. So consider the case
when the chosen interval has length greater than 1. Pick any c e K with a < c < b.
From the minimality of our choice, it follows that a = c A x and c v x = b. We
conclude that x completes a square over K. This gives Case 4. Moreover, since N5

cannot be a sublattice of L if L is modular, we conclude that b covers c covers a in K,
in that case. •

In general, the configurations described in Theorem 1 do not always lead to cover-
ings between the two sublattices. Moreover, the situations described in Cases 3 and
4 of that theorem can occur for the same covering pair K c K*. For each lattice in
Figure 1, let K be the sublattice with points indicated by •. In Lo, x splits a covering
in K, but K v { i ) does not cover K. In Li, x completes a square over K, but Kvj .v)
does not cover K. K is a maximal sublattice of L2, but x splits a covering in K while
y completes a square over K.

FIGURE 1. Three lattices witnessing the ambiguity of Theorem 1
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In the case of finite distributive lattices, we prove a converse of Theorem 1:

THEOREM 2. Let L be a finite distributive lattice, let K e Sub L, and let x e L — K
withK* = SgL(Aru{.v}).

(1) Ifx = 0K\ then K* covers K and l(K*) = 1 + i(K).
(2) Ifx = 1K', then K* covers K am/ £(K*) = 1 + £(K).
(3) //.v splits a covering in K, then K* covers K a/irf £(K*) = 1 + £(K).
(4) If x completes a square over K, then l(K*) = £(K). If x completes a covering

square over K, then K* covers K as we//.

The proof of this theorem occupies Section 3 below. Our primary tool in proving
this theorem is a representation theorem (Theorem 3) for lattices of the form SubL,
where Lisa finite distributive lattice. We also show in Theorem 4 that certain instances
of Dedekind's Transposition Principle hold in SubL, where L is a finite distributive
lattice. Theorem 4 can be viewed as an extension of Theorem 2. Theorems 1, 2,
and 3 are drawn from the first author's Ph.D. dissertation [13]. The direct proof of
Theorem 3 given there differs from the one presented below.

The investigation of covering relations in Sub L is, in essence, an investigation
of maximal sublattices. One of the earliest contributions to the study of maximal
sublattices of distributive lattices was made in 1952 by Hashimoto [11]. During the
1970's the work of Adams [2], Chen, Koh and Tan [8], and Rival [18, 19], carried
these investigations forward. In recent years, Abad and Adams [1], Adams, Dwinger
and Schmid [3], Ryter and Schmid [20], and Vogt [22] have added considerably to our
understanding of maximal sublattices of finite distributive lattices. In addition, the
recent paper of Adams, Freese, Nation and Schmid [4] examines maximal sublattices
of finite bounded lattices, a class which includes the finite distributive lattices. In a
different direction, Tuma [21 ] has characterized the covering relation in the ordered set
of distributive subsemilattices of a finite distributive semilattice. The connection here
is that finite distributive semilattices are those algebras that result from eliminating
the meet operation from a finite distributive lattice.

Underlying all these approaches is a characterization of the maximal sublattices of
a (finite) distributive lattice. In Section 5, we compare the characterization present
in Theorems 1 and 2 and the characterization arising in the sequence of papers cited
above.

The authors would like to thank the referee for suggesting the use of the lattice
of closure operators in the proof of Theorem 3 and for pointing out the connection
between weakly independent maps and topological closure operators in distributive
lattices. The proof of Theorem 3 offered in the first version of this paper, which also
differed from that given by the first author in [13], was more involved conceptually,
and relied on a Galois connection. We are also grateful that the referee brought Tuma's
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paper to our attention.

2. The representation

Let L be a finite lattice. Let 0L and 1L denote the least and the greatest elements
of L and let 70(L) denote the set of join irreducible elements of L, including 0L. We
define

yL = {K : K is a sublattice of L and I1 e K}.

Evidently, yL is a sublattice of the lattice Sub L of all subuniverses of L. In fact, an
understanding of the covering relation in yL leads directly to an understanding of the
covering relation in Sub L.

A map tp : 70(L) —* L is said to be weakly independent provided

<p(j) = /\[<p(k) : k € 70(L) and j < <p(k)}, for all j e J0(L).

In other words, (p(j) is the smallest member of the range of <p at least as large as j .
Hence,

• j < <p(j) for each j e Jo(L) and each weakly independent map </>;
• any two weakly independent maps with the same ranges are the same.

We denote the set of all weakly independent maps of L by WL. This set can be made
into a lattice by setting <p < i/f if and only if <p(j) < i/r(/') for all j e 70(L). Then
meets work out so that (cp A I / 0 0 ) = f(j) A <A0)- The map <p\ on yo(L) which is
constantly 1L is a weakly independent map, and it is the largest element of W^. Hence,
joins also exist in # L -

We show in this section that ._yL and #L are dually isomorphic, provided L is a
finite distributive lattice. This dual isomorphism involves another lattice: the lattice
J#t of all topological closure operators on L. Our representation involves two steps.
First, it is part of the early lore of lattice theory that =5*1 is dually isomorphic to -JfL-
Second, as we will show here, restriction to 7o(L) is an isomorphism from J££ onto

A unary operation y : L —> L is called a closure operator on L provided

(Cl) x < y(x), for all x € L,
(C2) y(y(x)) = y(x), for all x € L, and

(C3) if x < v, then y(x) < y(y), for all x,y e L.

A closure operator y is said to be topological if it further satisfies

(C4) y(x v >•) = y(x) v y(y), for all x, y e L.

Observe that condition (C4) is stronger than (C3).

https://doi.org/10.1017/S1446788700035928 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035928


[5] Subinverses of finite distributive lattices 337

An early treatment of closure operators (for lattices of sets ordered by inclusion)
can be found in Moore's 1910 treatise [15] on analysis. Condition (C4) is drawn
from Kuratowski's 1933 exposition [12] of general topology (it should be noted that
Kuratowski also insisted that y(0) = 0, a condition that is not adopted here). It was
Moore who established (in his context) the natural one-to-one correlation between the
collection of subsets of L which include 1 and are closed under arbitrary meets and
the collection of all closure operators. Moore's reasoning applies with no essential
changes to arbitrary complete lattices, see for example Birkhoff [7]. More recent
expositions can be found in Balbes and Dwinger [5] and in Davey and Priestley [10].
Ward [23] in 1942 proved that the closure operators on a complete lattice constituted
a lattice with respect to the coordinate-wise ordering. Other early related works by
Ore are [16, 17].

Here are the salient points from the lore of closure operators. For the time being,
let L be any complete lattice. By ^#L we denote the collection of all subsets X of L
such that 1L e X and X is closed under arbitrary (even infinite) meets. By ^ L we
denote the collection of all closure operators on L. By J££ we denote the collection
of all topological closure operators on L. Let 4/ : ^L —<• <̂ L be the function defined
so that

vj/x(a) = / \ { . v e X : a < .x) for all X e . # L and all a e L .

Let C : ffL —>• ^#L be the function defined by

Cy = {a G L : y(a) — a).

It is part of the lore (and also easily proven) that * and C are well-defined and that
they are inverses of each other. Now <JKL is lattice-ordered by set inclusion and the
order that ^ L inherits from LL is a lattice ordering of ^ L . The meets in these lattices
are the expected ones, and the joins, as usual, are defined via meets. The maps 4> and
C are dual isomorphisms between these lattices. Let *!>' denote the restriction of ^ to
yL and let C denote the restriction of C to J^,. It is not hard to see that J^L and J££
are lattices and that the maps 4>' and C" are inverse dual isomorphisms between these
two lattices.

THE EXTENSION LEMMA. Let L be a finite distributive lattice. Every weakly in-
dependent map of L extends to a unique topological closure operator on L. The
restriction of any closure operator (topological or not) of L to 7o(L) is a weakly
independent map ofh.

PROOF. First suppose that <p is weakly independent. We define y : L —> L via

= \J<p(j)
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where N is the set of all join irreducibles j such that j < x. This is the only possible
way to extend <p to a join-preserving map from L into L.

Now x < y(x), since j < (p(j) for each j e Jo(L).
To see that y preserves joins, let x, y e L with x = \J N and y = \J M, where N

and M are, respectively, the sets of join irreducibles below ,v and y. Now suppose j
is join irreducible and j < x v y. Since L is distributive j is join prime. So j < x or
j < y. This means that M L) N is the set of all join irreducibles j such that j < x v y.
So

Y(X V y) = \f (p(j) V \f (p(j) = y(x) V y(y).
i e A' / e A7

To complete the argument that y is a topological closure operator, we need to verify
that it is idempotent. Notice that

y(y(x)) =
J€<\

where .v = V /V and N is the set of join irreducibles below .v. Let M,• be the set of
join irreducibles below <p(j). Since (p is weakly independent, we have ip(k) < tp(j)
for each A: € M,. This entails that y((p(j)) = <p(j) since

)) = V
Consequently, y(y(A)) = y(.v) as desired. We conclude that y is a topological
closure operator.

Now suppose that y is any closure operator on L and let tp denote the restriction
of y to J0(L). Let j e y()(L) and let M = {<p{k) : k e J,,CL) and j < ip(k)). Since
j < y(j) = (p(j), we see that <p(j) € M. Suppose that <p(k) is an arbitrary element
of M (so that k € 70(L) and j < <p(k)). But then

<P(j) = Y(j) < Y(<P(k)) = Y(Y(k)) = y(k) = <p(k).

Therefore tp(j) is the least element of M. This means that <p is a weakly independent
map. •

With every subset X c. L, we can associate a weakly independent map <t>x defined
via

for all j € 7o(L). Further, we can construe <t> as a map from the power set of L into
# L which assigns to X c L the map Ox-
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In the reverse direction, for each weakly independent map cp we can associate a
sublattice Kv of L, namely the sublattice of L generated by the range of <p. Further,
we can regard A" as a map from #£ into SubL. Now notice that 1L = \J 7o(L) =
V Range(^). This means that A" is a map from WL into yL.

THEOREM 3. Let L be a finite distributive lattice. Then <J> and K are inverses of each
other, establishing dual isomorphisms between J^L and #£• Also JoiK^) = <p(Jo(L,)),
and consequently 1 + l(K^) = | Range(<p)| for all <p e #L. Moreover, 4>x = <t>><
whenever X and Y generate the same sublattice ofh.

PROOF. We summarize the information from the Extension Lemma and the lore of
closure operators in the following display:

where p denotes restriction to 7o(L) and £ denotes extension to L.
The maps po vy' and C o s are inverses of each other, and establish dual isomorphism

between yL and WL. Evidently, <t> = p o * ' . To see that K = C" o s, suppose that
<p € WL and that y is the extension of <p to a topological closure operator on L. We
need to demonstrate that [a e L : y(a) = a) is the subuniverse Kv of L generated
by the range of <p. Since y(<p(j)) = y(y(j)) = y(j) = <p(j), for all j € J0(L),
we see that the range of <p is included in {a e L : y{a) = a}. Since this latter set
is a subuniverse, we know that Kv c {a e L : y(a) = a}. The reverse inclusion
follows from the fact that y is a join-preserving map extending cp and the fact that
every member of L is a join of join irreducible elements. Consequently, O and K are
inverses of each other, and they establish a dual isomorphism between ^ L and W^.

Now, suppose (p e WL. To see that JO(KV) = <p(JQ(L)), we establish the two
inclusions.

First suppose k is a join irreducible member of Kv. Decompose it as a join of
elements join irreducible in L: k = V TV, where TV c J0(L). Now

y(k) = yi\Jj)=\/y(j).

Since y(j) e Kv for all j e N, and since k is ajoin irreducible element of Kv, it must
be that k = y(j) = cp(j) for some j e N. Therefore, k € <p(JQ(L)), establishing the
first inclusion.

For the reverse inclusion take j to be a join irreducible element of L. We wish to
prove that (p(j) is join irreducible in Kv. So let (f(j) = \J M where M c /O(KV).
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Since j < <p(j), we know that j < \J M. But j , being join irreducible, is join prime.
So pick m £ M such that j < m. But then ip(j) — y{j) < y(m) = m. By the choice
of M, we have m < <p(j)as well. So cp(j) = m e M c J{){KV). Consequently, the
second inclusion is established.

Finally, suppose that X and Y generate the same sublattice of L. We want to show
that <$>x = $>Y- To simplify notation, let <p = <t>x and V = 0>Y- Let y denote the
unique extension of (p to a topological closure operator. In view of the definition of
<t>x we see that <p(j) is in the sublattice generated by X U (1L), for all j e 7o(L).
Hence K^ is included in that sublattice as well. For the reverse inclusion, let x € X.
Let N c yo(L) so that x = \J N. Then

x < y(x) = \J

where the last inequality follows from the definition of <p. Consequently, x = y(x) for
all x e X. This entails that X c K^. Therefore, K^ is the sublattice of L generated by
XU{1L). Likewise, Kf is the sublattice of L generated by YU{\L}. Hence, K^ = KHl.
But A" is a one-to-one map. It follows that <&x = <p = yp = 4>t, as desired. D

A similar dual isomorphism appears in Rival [19]. Define =S(L) — {[u, v] : u <
v and u e ^o(L), v € M|(L)}, where M|(L) denotes the set of meet irreducible
elements of L, including 1L. If L is a finite distributive lattice, then the sublattices of
L are precisely the subsets of L having the form K = L — {j£/, where g/ c J2(L). In
fact, the dual isomorphism for Sub L arises from the Galois connection between L and
J2(L) induced by the relation ^, see also Vogt [22]. Although the dual isomorphisms
in Rival [19] and the one presented here have some elements in common, there does
not seem to be a trivial transition from one to the other.

3. The proof of Theorem 2: Coverings in Sub L

PROOF. Let L be a finite distributive lattice, let K e Sub L, and let x e L - K with
K* = SgL (K U {x}). There are four statements to prove:

(1) If* = 0K", then K* covers K and £(K*) = 1 +C(K).
(2) If x = 1K", then K* covers K and £(K*) = 1 + £(K).
(3) If x splits a covering in K, then K* covers K and £(K*) = 1 + £(K).
(4) If x completes a square over K, then £(K*) = £(K). If* completes a covering

square over K, then K* covers K as well.

If* = 0 K o r x = l K \ then K* covers K and £(K*) = 1 +£(K), since K* = KU{x]
in these cases. So (1) and (2) are clear.

To establish (3), let x split a covering in K. We want to prove that K* covers K and
that £(K*) = 1 + £(K).
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We assume without loss of generality that 1L e K. Now suppose b covers a in K
and that x splits this covering. By distributivity, there is a unique join irreducible p
of K so that p < b but p •£ a. Let <p be <$>K and define \jf : J0(L) —• L via

if <p(j) = p and j < x

p(j) otherwise

for ally e 70(L)-

LEMMA 2.1. V = $*••

PROOF. By Theorem 3, we know <PK. = <S>Kulx), since K* = SgL K U {x}. This
means O^.(y) = /\{d : j < d and d e K U {*}}. So if; ^ x, then **•(./) = AW :
j < d e K] = <t>K(j) = cp(j) = ir{j). So consider the case when j < x. In this case
<t>^.(;') = x A /\{d : j < d e K] = x A <p(j). Now if j < a then ip(y) < a since
a e K. Hence <p(j) ̂  p and so i^O) = ^0 ' ) = ^0 ' ) A x = O^-.O'). On the other
hand, if j ^ a, then (p(j) ^ a. But q>(j) < b, since j < x < b e K. By Theorem 3,
<?(./) G 70(K). This forces <p(j) = p. Therefore ^0") = cp(j) A X = <$>K,. D

LEMMA 2.2. Range(V') = Range(<p) L>{p AX}.

PROOF. TO see this, we only need to find a join irreducible j of L so that \j/ (j) = p.
Pick j a join irreducible of L so that j < b but j ^ x. Then <p(j) <b and <p(y) ^ a.
By Theorem 3, we know (p(j) is a join irreducible in K. Thus (p(j) = p. By the
definition of \j/, we obtain \j/(j) = <p(j) = p. And in the proof of Lemma 2.1, we
saw that p A X e Range(i/0- Q

From Theorem 3, <t>K. and <tv are distinct weakly independent maps. Since weakly
independent maps with the same ranges must be the same, we conclude that p A x £
Range(<p), in view of the Lemmas 2.1 and 2.2. That is | Range(i/0| = 1 + 1 Range(<p)|.
We also know that 1 + £(K*) = | Range(VO| and 1 + £(K) = | Range(<p)\. Therefore,
£(K*) = 1+£(K). In turn, this entails that b covers x in K*. Noting that/? = pvjc.we
conclude that p covers p A X, since [x, b] and [p A X, p] are isomorphic (transposed)
intervals.

Now let K c A" c K* where K' e SubL. Let r = <t>* . By Theorem 3,
i* S T S <P- According to the definition of \J/, if cp(j) ^ p or j •£ x, then
^(y) = T(j) — <P(j)- So consider any j , a join irreducible of L such that <p{j) = p
and j < x. For all such j , p A x = \js(j) < r(j) < <p(j) = p. So for each such
j , either r(y) = p A X or x(j) = p. It follows that Range(r) = Range(V0 or
Range(T) = Range(<p). Since all three of these maps are weakly independent, we
get r = \jj or T = (p. Consequently, by Theorem 3, either K' = K* or K' = K.
Therefore, K* covers K in Sub L.
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This concludes the proof of (3).
To establish (4), let x complete a square over K. We want to prove that £(K*) =

£(K). Moreover, if x completes a covering square over K, then we want to prove that
K* covers K as well.

We assume without loss of generality that 1L e K. Again let (p = <$>/<. Suppose
b > c > a and that x e K* — K completes the square with a, c, b over K. Set
B = {p e Jo(L) : p < b and p ^ c}. Define f : J0(L) —>• L so that

U ( i ) A x if <p(j)eB

\<p(j) otherwise

for all join irreducibles y of L. Lemma 2.3 below plays the same role in establishing
(4) that Lemma 2.1 played in establishing (3).

LEMMA 2.3. V = **••

PROOF. By Theorem 3, we know <!>*. = <&Ku{x), since K* = SgL K U {x}. This
means 0^.(7) = /\{d : j < d and d e K U {x}}. So if j $£ /?, then (p(j) ^ fe and
y £ JC. This means ^ ^ O ' ) = AW : 7 < d € K} = * ^ O ) = <p(j) = f{j). So
consider the case when j < b. In this case <S>K-(j) — x A /\{d : j < d e K) =
x A <p(j). Now consider the subcase when j < a. Then <p(j) < a = c A X, SO
<p(j) A x = <p(j). Therefore, <t>K'(j) = VKj)- Thus, from this point on, we assume
j < b and j ^ a. Now if j < c, then <p(j) < c (so ^(7) ^ B) and 7 ^ x, since
a = c A x. All this means that i^O) = <PO) = <&*•• 0 ° m e other hand, if y ^ c,
then j < x , since y < fc = c v x and j is join prime by distributivity. Under this
hypothesis we also have (p(j) ^ c while (p(j) < b. Thus (p(j) € B. Therefore,

=<P(J) A X = <t>*r-O')- •

From the definition of i/r it is evident that | Range(i/OI < I Range(«p)|. So elemen-
tary facts about weakly independent maps entail that £(K*) < £(K). On the other
hand, K c K* implies that£(K*) > £(K). Therefore, £(K*) = l(K).

Now assume, in addition that b covers c covers a in K so that x completes a
covering square with a, c, b over K. Then B has exactly one element. Call it p. Then
Range(i/0 = (Range(<p) — {p}) U j p A x}. By Theorem 3 we know that \j/ < <p in
3^L. Since these maps are weakly independent, they must have different ranges. In
particular, p A X ^ p. Thus, we know that p ^ x. Since the lengths of K and K* are
the same, we know that b covers x covers a. Therefore, p v x — b. This entails that
p covers p Ax since the transposed intervals [x, b] and [p /\ x, p] are isomorphic.

Finally, suppose K' e SubL with K c K' c K* and let r = d)^.. By Theorem 3,
we know that \// < r < <p in # i . Let y be a join irreducible element of L. If
cp(j) ^ p, then f(j) = r(y) = 9?(y). If cp(j) = p, then r(y) e {p AX, p\ since p
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covers p AX in K* and x(j) must lie in the interval in K* between \j/(j) = p Ax and
(p(j) = p. This means that either Range(r) = Range(i/r) or Range(r) = Range(ip)
or Range(r) = Ranged) U Range(<p). But the latter alternative is not possible, since
|Range(i/O| = |Range(r)| = |Range(<p)| because £(K*) = £(K') = £(K) and the
maps are weakly independent. So once again we can conclude that r = \jf or x = (p.
By Theorem 3, we conclude that K' = K* or K' = K. Consequently, K* covers K in
SubL. •

4. A transposition principle

While we know that Sub L fails to be a modular lattice whenever L is not a chain,
it is nevertheless true that some instances of Dedekind's Transposition Principle hold
in Sub L as long as L is a finite distributive lattice. This is the content of the next
theorem.

THEOREM 4. Let L be a finite distributive lattice, let Kbe a sublattice o/L, and let
a,b € Kwitha < b. Define Ko, Kt e SubLbyK0 = K A [a, b] and K{ = Kv[a,b],
where [a, b] denotes the interval in hfrom a to b. Then the maps T : [KQ, [a, b]] —>•
[K. Ki] and A:[K,K,]-* [Ko, [a, b]], defined so that

T(M) = Mv K A(N) = N A [a, b]

for all M € [KQ, [a, b]] and all N e [K, K\], are inverses of each other, establishing
an isomorphism between the transposed intervals [Ko, [a, b]\ and [K, A",] in SubL.

PROOF. Both T and A are order preserving maps between two finite lattices.
Therefore, the two lemmas below suffice to establish the theorem.

LEMMA 4.1. A(T(M)) = M for all M e SubL with K D[a,b] c M c [a,b].

PROOF. It is evident that M c A(T(M)). To prove the reverse inclusion, let
v G A(Y(Af)). Our goal is to show that y e M. Now T(M) is the subuniverse N of
L generated by M U K and A(/V) is Â  n [a, b]. By distributivity, it follows that there
is a natural number n and elements *,• e M and z, e K for all / < n such that

a < y = \J{x, AH) <b.

But now we can write

v = (y v a) A b = \f(((Xi v a) A b) A ((z, v a) A b)) = \J(xt A ((z,- v a) A b).
i<n i<n

Since (z,- v a) A b e Ko c M for each i < n, we conclude that y € M, as desired. •
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LEMMA 4.2. T maps [Ko, [a, b]\ onto [K, K{].

PROOF. Let N G SubL with K c N c £ , . First, we suppose that N covers K
in SubL. Since 0K = 0K| and 1K = 1K', we can invoke either part (3) or part (4) of
Theorem 1 to obtain an element y e N — K and elements u, v e K with u < y < v
in L so that N = SgL (K U [y}). From the length considerations in parts (3) and (4)
of Theorem 2, it follows that v covers y covers u in N.

Now let M = Ko V {(y v a) A b\. What we want is (y v a) A b e N — K, because
then Y = M v K = T(M), establishing that T maps onto [K, A',] (in the case that
N covers K).

Next, we eliminate the case when y v a = v v a. In this case, we would have
y v x = v v x for all x e [a, b]. Since y € Y c K v [t/. /?], using distributivity we
can decompose y as

= Z V \J(X, AZi)

where z e ^ , x, € [a, b], and z,- e K. With this decomposition we also have

X, A Zi < ( y V JC,-) A Z/ £ ( j V X i ) A ( y V Z i ) < V V ( x , A Z , ) < > \

This means we can rewrite our decomposition to get

y = z v V ( j c ' A Z;) = z v V ( ( ; y v * ' ) A Z;) = z v V ( ( u vXi) A Zi)

But y < v, therefore

y = y AV = I z V \ / ( ( u V *,-) A Z,) I A V
\ '<" I

= (Z A V) V \ / ( ( D V JC,-) A D A Z , ) = ( z A u ) V \ / ( l > A Z , ) .

i < n

However, this means that y € K, contradicting our choice of y and so eliminating the
case when v v a = v v a.

Consider the case when y v a < v v a. Since v covers y in N, it follows that
(y v a) A v = y; but also ( y V a ) v i ) = ) V i ) . Hence, the transposed intervals [v, v]
and [y v a, u v a] of N are isomorphic. Since i; € £ and y e N — K, we obtain
y V a e JV — K. It also follows that D v a covers _y V a in N. But now u v a € K
s o y v a / M v a. This entails that y v a covers u v a in N. So from u covers
y covers « in N we have concluded that v v a covers y v a covers u v a in N and
y v a € N — K. Now reasoning in a dual fashion (replacing a with b and v with A),
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we can further conclude that (v v a) A b covers (y v a) A b covers (u v a) A b in N
and (v v a) A b <= JV - K. Thus, we are finished in the case when N covers K.

Now assume that N e SubL with AT c N c A", and that AT belongs to the range
of T whenever N' e SubL with K c. N' and N' is a proper subset of N. Pick
N, € SubL with K c yV, so that A7 covers TV,. Pick M, € [AT0, [a, b]] such that
A" v M, = /V,. By the part of the argument for this lemma that we completed above,
there is M e Sub L with M, c M c [a, ft] so that T(M) = K v M = N*v M = N.
This means T is onto. •

Having established Lemmas 4.1 and 4.2, the proof of Theorem 4 is complete. •

5. A comparison of characterizations

As mentioned in the Introduction, a series of investigations begun by Hashimoto
[11] leads to a characterization of maximal sublattices of a finite distributive lattice
which differs from the one we gave in Theorems 1 and 2. In addition to Hashimoto's
paper, those of Chen, Koh and Tan [8], Rival [18], Tuma [21], and Adams, Dwinger
and Schmid [3] provide the clearest view of the characterization. In order to make
comparison with our approach easy, we state a version of this characterization next,
following the presentation in [3] closely.

Given a finite distributive lattice L and a maximal proper sublattice S there must be
a join irreducible element j of L which is omitted from S. Indeed, as a consequence
of distributivity, this element is easily seen to be unique. The characterizations in
the style of the work begun by Hashimoto describe which join irreducible elements
can be omitted and which maximal sublattices omit them. It is worth noting that the
omitted join irreducible j may not uniquely determine the omitting maximal sublattice
S. Examination of the maximal sublattices of the cube 23 reveals this. A pair (j, k)
of join irreducible elements of L is said to be critical (for example in [3]) provided
k •£ j and for every / € 70(L)

j < I => k < I and I < k => I < j .

For a critical pair (j, k) we define

Slk = {x e L : j < x => k < x).

Since every join irreducible element is also join prime, it follows that Sj,k € Sub L.
(It should be noted that while j £ Sj,k, it is true that x € Sj,k for all x > k. So while
j is omitted, k is not.) Finally, in case 1L is join irreducible, we let

5, = {x e L :x < 1L}.
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It is clear that if (0L, k) is critical, then k must be the unique member of L covering
0Land

So.* = [x € L : 0L < JC}.

Here is our reformulation of the characterization theorem underlying the line of
research cited above.

THEOREM 5. LetL, be a finite distributive lattice. The maximal proper subuniverses
ofh are exactly the subuniverses Sj_k where (j, k) is a critical pair of join irreducible
elements ofh and the subuniverse S\, in case 1L is join irreducible.

Proofs of this theorem (or one of its variants) can be found either explicitly or
implicitly in several of the papers cited in the Introduction. We devised this formulation
on the basis of Tuma's paper [21]. The proof implicit in Tuma's paper has two
steps. First, Tuma notes that the listed subuniverses constitute an antichain, and
then argues that any subuniverse extends to one of those listed. Tuma's arguments,
like Hashimoto's, are framed in the language of order ideals. These arguments can
all be converted, in the context of finite distributive lattices, more or less routinely
into arguments about join irreducible elements, in view of the duality observed by
Birkhoff [6] in 1933 between finite distributive lattices and the order ideals of their
join irreducible elements.

Our characterization, given in Theorems 1 and 2, concerns adding elements to
a sublattice S to obtain a sublattice S* which covers S. On the other hand, the
characterization given in Theorem 5 concerns omitting a join irreducible element
from a sublattice S to obtain a sublattice S» which is covered by S. These approaches
complement each other. Here we formulate Theorem 6. a more explicit version of
Theorem 5 revealing how the omitted join irreducible elements fit with the maximal
sublattices, and prove it on the basis of Theorems 1 and 2. (Alternatively, this theorem
follows easily from Theorems 1, 2, and 5.)

In a finite lattice, the nonzero join irreducibles are those elements that cover exactly
one other element. As a matter of notation, if j is a nonzero join irreducible element
we use 7* to denote the unique element covered by j .

THEOREM 6. Let h be a finite distributive lattice. Then

(1) If 1L is join irreducible in h, then S\ is maximal.
(2) IfOh is covered by a unique element k in h, then (0L, k) is critical and So.* is

maximal.

0) !f(j> k) '* critical and j < k, then k covers j t in Sj,k (and j splits this covering).
Hence S7* is maximal.
(4) If {j, k) is critical and j ft k, then j completes the covering square in Sj,k with

remaining members j t , 7* V k, and j v k. Hence S},k is maximal.
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Conversely, let S be a maximal proper subuniverse of L and let j be the unique join
irreducible ofh not in S. Then one of the following cases happens:

(1') 1L is join irreducible in L and S — S\.
(2') k is the unique element covering 0L in L and S = Sot-
(3') There is a join irreducible k > j such that (j, k) is critical, k covers j t in S

(and j splits this covering), and S = Sjk.
(4') There is a join irreducible k incomparable to j such that (j, k) is critical,

j t •< / , v k < j V k in S, and S = Sj,k.

PROOF. Items (1) and (2) are immediate.
Consider (3). Let (j, k) be a critical pair with j < k. To see that k covers y, in

Sj,k suppose to the contrary that we have 5 € Sj,k with /» < s < k. Then there must
be an element / join irreducible in L so that j'•* < j* v / < s < k. Because (j, k) is
critical we find / < j . In turn, this gives us / = j and j < s < k. But likewise, this
means there is m join irreducible in L so that j<jvm<s<k. Again, since (j, k)
is critical and m < &, we find that m < j , producing the absurdity j < j . Therefore
j splits the covering j t < k in S,.*. Now observe that every join irreducible element
of L other than j belongs to Sj,k. Consequently, SgL (Sj.k U {j}) = L. Hence SjM is
maximal by Theorem 2.

Now consider (4). Let (j, k) be a critical pair with j and k incomparable. Because
j and k are incomparable, we know that j A k < / , . This entails that the L-intervals
[jt, j] and [jt v k, j v k] are transposed, as are [_/„, y, v k] and [j, j v k]. Since we
already know that j covers j t , it suffices to show that j t v k covers _/'„ in L. Suppose
to the contrary that j t < A < j t v k. Then there must be / join irreducible in L so
that j , < / , v / < x < y» v k. Because (j, k) is critical, we know that / < j . Now
j = I < k is impossible and I < j* < j t v / is impossible, which is absurd. Hence j
completes a covering square in S7* (and as before L = SgL (Sj,k U {j})). Therefore,
Sj.k is maximal by Theorem 2.

For the converse, we suppose that 5 is a maximal subuniverse of L and that j is the
unique join irreducible of L which is not in S. We suppose that neither Case 1' nor
Case 2' holds. Thus 0L < y < 1L, and 0L, lL e S. Pick a,b e S so that S-interval
[a, b] is as short as possible subject to the condition that a < j < b. This means
that a = _/„, the unique element of L covered by j , since every join irreducible of L
properly smaller than j belongs to S. This also means that b is the meet of all elements
of S which are larger than j . As a consequence, if s e S and j < s, then b < s.

Now notice that since j < b there must be a join irreducible k of L such that k ^ j
and k < b. Let k be selected which is minimal in L subject to these constraints.

LEMMA 6.1. (j, k) is critical.
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PROOF. Let / be a join irreducible of L. First suppose k < 1. Then / € 5, and
consequently b < I. Next suppose / < k. By the minimality of k, we have I < j . •

LEMMA 6.2. 5 = SjJc.

PROOF. By the maximality of S it is enough to prove that S c Sj,k. So let s e S.
Suppose j < s. But then k < b < s. This means s € Syjl. Therefore, S c Sj^. •

CASE I: b covers a in S.

Since k ^ y, we see that a < a v k. Since & < b, we get a v & < b. Since /c e 5
and b covers a in S, we conclude that a \/ k = b. Hence j < a V k. But y is join
prime and a < j . Thus, j < k. This entails that b < k. Consequently, b — k and so
k = b covers j , = a in S. Therefore, Case 3' holds.
CASE II: The S-interval [a, b] has at least three elements.

Pick c e S so that c < b and c covers a in S. It does no harm to assume that k
satisfies the additional constraint that k < c. It follows that a v k = c (by reasoning
as in Case I). Now notice that every join irreducible of L which is properly below k
must also be below j and below j t = a. This entails that j ' A k — y, A k — a A k — kf.
Thus the intervals [y«, y* v ^ ] = [a, c] and [y'« A k, k] = [kf, k] are transposed. Since
k covers k* in L, we discover that c = y, v k covers a = y» in L. Again, invoking the
Transposition Principle, for [y'», y ] and [y* v k, j v it], we see that j v k covers y, v k
in L. (Also, y v it covers y since y, v k covers y»). So Case 4' will be established once
we prove that y v k = b, since b e S.

Now if y'v£ e S, then we know that y vk = b. So suppose that y vk £ S. Since 5 is
a maximal subuniverse, this means that j can be written as a join of meets of members
of S U {y v k}. Since y is join irreducible it must actually be a meet of members of
S U {y v k}. Since S is closed under forming meets, it follows that y must have one of
the following forms: j v it, s, or s A (y v k) where s e S. It follows that j = s A (y v it)
for some s e S. As j < fr, we can further suppose that s < b. But because j < s
implies b < s, we conclude that j = b A (y v k) = (b A J') v (b A &) = y v it which
is impossible. This completes the demonstration of Case 4'. •

We conclude this section with a proof of a variant of Theorem 2 based on Theorem 5.

THEOREM 7. Let K e SubL, and let x <= L - K with L = SgL (K U {*}).

(1) //JC = 0L, r/ien L covers K am/ ^(L) = 1 + €(K).
(2) //JC = 1L, r/KTi L covers K am/ i(L) = 1 + £(K).
(3) Ifx splits a covering in K, then L covers K and (.(L) = 1 + £(K).
(4) Ifx completes a covering square over K, then L covers K ana" £(L) =

PROOF. Statements (1) and (2) are immediate.
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Since SgL (K U {x}) = L and since L is distributive, every element of L can be
expressed as a join of meets finite subsets of K U \x}. In particular, a join irreducible
element / of L must be of one of these three forms: / = x or / e K or / = x A d for
some d e K with d < b. As a special case, if / is a join irreducible of L and x < I,
then/ e K.

Now. statements (3) and (4) concern an interval [a, b] where a,b e K. In statement
(3) we have that b covers a in K, while in statement (4) we have a third element c e K
so that x completes a covering square over K with the other three points being a, c,
and b. Fix these elements of K.

LEMMA 7.1. If a < e < b and e G K, then either x A e = x or x A e = a.

PROOF. In case b covers a \n K, we have e = b or e = a. So the lemma follows.
So suppose a < c < b in K and .v completes the square. So [a. x] and [c, b] are

transposed intervals. Now (v A e) € [a, x]. By the Transposition Principle, x A e =
((x Ae) vc) AX. But then.v Ae = (xvc) A(e vc) Ax = b A(e vc) AX = (eve) Ax.
Now e v c is an element of K between c and b. Because b covers c in K, we have that

I b Ax = x if e v c = 4»

C A .V = fl if C V C = C.

•
CASE I: ,v is a join irreducible of L.

Select a join irreducible k of L minimal with respect to the constraints that k ^ x
and k < b (and for statement (4) k < c).

LEMMA 7.2. Every join irreducible o/L, o//zer r/?«« .v, belongs to K.

PROOF. Suppose that / is a join irreducible of L. We know that / = x or / e K or
/ = x A d for some d e K with d < b. We only need the examine the last case. For
this, observe a v / = a v (.v A d) = JC A (a V J ) . Since a < a\/ d < b, Lemma 7.1
applies with e = a\/ d. So either a V / = x or a v / = a. Under the first alternative,
we conclude that / = JC, because x is join irreducible and a < x. Under the second
alternative, we have l<ciAd<xAd = l. As a consequence, / = a Ad € K. •

LEMMA 7.3. x v k — b.

PROOF. Since A: is a join irreducible other than x, we know that k e K. Also
a < a v k < b. In case b covers a, we get that a v k = b, and hence x v k = b.
In case a -< c < b in K and x completes the square, we have a < a v k < c. So,
a v k = c. Since [a, c] and [x, b] are transposed intervals, x v k = b. •
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LEMMA 7.4. (x. k) is critical.

PROOF. Let / be a join irreducible of L. First suppose / < k. Then / < x, by the
minimality of k. Now suppose x < /. We know that / e K and that x < I A b. In
case b covers a in K, we conclude that / A b = b, and hence k < b < I. In case x
completes the covering square, we know that the only element of [x, b] which belongs
to K is b, since this interval transposes down to [a, c] and c covers a in K. So again,
k <b = l Ab <1. •

LEMMA 7.5. S,,A c K.

PROOF. Suppose s e 5vj t . Then either x ^ s or k < s. If x ^ s, then x is not
among the join irreducibles of L which are less than or equal to 5. This means all those
join irreducibles belong to K. Since s is just the join of all those join irreducibles, we
conclude that s e K. So suppose that x < s. Then k < s as well. Sox vk < s. Since
x v k = b e K, this means that in any representation of s as a join of join irreducibles.
any occurrence of x can be replaced by b, resulting in a representation of s as a join
of elements of A". Hence s e K. Consequently, Sv < c ^ . •

Now Theorem 5 tells us that Sx ^ is a maximal subuniverse of L. Hence Sf k = K,
and A' is a maximal subuniverse of L. To conclude the proof in Case I, we have to
establish the statements about length. For this purpose it is enough to count the join
irreducible elements of K. Of course, every element of K which is a join irreducible
of L is also a join irreducible of K.

LEMMA 7.6. If I is a join irreducible ofK, then I is a join irreducible ofh or I = b;
moreover, b is a join irreducible ofK.

PROOF. Suppose that / is a join irreducible of K that is not a join irreducible of L.
Now / can be expressed as a join of elements which are join irreducibles on L. The
element .v must be among those join irreducibles, since the remaining join irreducibles
of L all belong to K. Indeed, I = xVe where e € K since it is the join of the other join
irreducibles. Hence, x < I. This means b < I and consequently, / = b v e. It follows
that/ = b, since/ is a join irreducible ofK. Were b join reducible in K, then every join
irreducible ofK would be a join irreducible of L and b could be expressed as a join of
elements, each a join irreducible of L different from x. However, since b = x v k is
already an irredundant join of elements join irreducible in L, the uniqueness of such
decompositions would entail x e K, which is impossible. •

Now in the case that b covers a in K, we saw (in the proof of Lemma 7.3) that
x < b = a v k. Since x is join prime but a < x, we deduce x < k. This means
that k = a v k = b. Consequently, b is a join irreducible of L. This implies that
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£(L) = t(K) + 1. In the case that a < c < b in K and x completes this square, we
see that while b is join irreducible in K, it is join reducible as b — x v c in L. This
implies that £(L) = l(K).
CASE II: .v is not a join irreducible of L.

Pick a j a join irreducible of L so that a < a v j < x. We can also pick d e K
with d < b so that j = x A d.

LEMMA 7.7. 77?e interx-als [a A d, d) and [a, b] are transposed.

PROOF. We need only show that b = a v d. We know that either x A (a v d) = x
or .v A (a v d) = a. Since the latter alternative leads to a v j = a we must reject it.
Hence .v = x A(a v d) < a J d < b. In case b covers a, we conclude that a v d = b.
In case x completes the covering square, we know once more that a v d = b, since
[x. b] transposes down to [a. c] and c covers a in K. •

LEMMA 7 . 8 . K U {j} generates L .

PROOF. Since [a A d, d] and [a, b] are transposed intervals, the perspectivity maps
ensure that j = x Ad andx = j va. Since K U {x} generates L. we have that KU{j]
also generates L (and conversely). •

These last two lemmas mean that Case II reduces to Case I. This finishes our proof
of Theorem 7. •

6. Remarks

The concept of a weakly independent map was motivated by the work of Czedli.
Huhn and Schmidt [9]. They call a set H of elements of a lattice L weakly inde-
pendent provided h < h{) v • • • v /?„_! implies that h < h, for some / < n, for all
h. hn /j,,_, e H. In [9] Czedli, Huhn and Schmidt prove that if H is a maximal
weakly independent subset of a finite distributive lattice L, then \H\ = |y(1(L)|. To
establish this theorem, they defined q>H : 70(L) —*• L by (PH(J) = /\{h € H : j < h},
and showed that <pH is a one-to-one mapping onto H. We note that in a distributive
lattice, the range of each weakly independent map is a weakly independent set in the
sense of Czedli, Huhn and Schmidt.

There are simple examples showing that Theorem 3 fails for modular lattices. How-
ever, we still have the conclusion from the early lore of lattice theory that -Y^ and J(^
are dually isomorphic for any finite lattice L. In the absence of distributivity, the join
irreducibles seem to exhibit a more complicated behavior with respect to topological
closure operators. We do not know how far any of the results in Theorem 2 and
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Theorem 4 extend to finite modular lattices. The examples displayed in Figure 1 show
that the hypothesis of distributivity in Theorem 2 cannot be completely abandoned.
However, none of these examples is modular. The only negative fact for modular lat-
tices we have is that the statement concerning the lengths of sublattices in Theorem 2
(3) fails: the length must increase by at least 2 if K is M;,.

Finite distributive lattices are bounded in the sense of McKenzie [14]; they are, in
some sense, the lattices encountered at the earliest stage in the recursive construction
of the finite bounded lattices. Theorem 7 of [4] provides a useful condition necessary
for any maximal sublattice of a finite bounded lattice. It is an intriguing problem to
find sufficient conditions, and, indeed, to characterize the maximal sublattices of finite
bounded lattices.
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