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Structure of the Set of Norm-attaining
Functionals on Strictly Convex Spaces

Ondřej Kurka

Abstract. Let X be a separable non-reflexive Banach space. We show that there is no Borel class which

contains the set of norm-attaining functionals for every strictly convex renorming of X.

R. Kaufman proved in [3] that every non-reflexive Banach space admits an equiv-

alent norm such that the set of norm-attaining functionals is not Borel. He also

observed that the set of norm-attaining functionals is Borel in the case that the space

is separable and strictly convex. G. Debs, G. Godefroy, and J. Saint Raymond asked

in [1] whether there exist strictly convex norms with the set of norm-attaining func-

tionals of arbitrarily high Borel class. We answer this question affirmatively in Theo-

rem 1.

Let (X, ‖ · ‖) be a real normed linear space. We denote by BX and by SX the

closed unit ball and the unit sphere of X and we recall that the set of norm-attaining

functionals with respect to the norm ‖ · ‖ is

NA(‖ · ‖) = { f ∈ X∗ : ∃x ∈ BX( f (x) = ‖ f ‖)}.

The main result follows. Its proof is given at the end of the paper.

Theorem 1 Let X be a separable non-reflexive Banach space and α < ω1. Then there

exists an equivalent strictly convex norm ||| · ||| on X such that NA(||| · |||) is not of the

additive Borel class α.

Of course, it is not essential whether we consider additive or multiplicative class.

One of the ingredients of our construction of the new unit ball is the following

result of R. Kaufman. By the Baire space we mean the countable topological product

N
N of natural numbers endowed with the discrete topology.

Proposition 2 ([3], [4]) Let Y be a closed linear subspace of a Banach space X. If Y is

not reflexive, then there exists a continuous mapping ψ : N
N → BY such that

(i) if (λm)m∈N is a sequence of probability measures on N
N such that the integrals

∫

NN ψ dλm, m ∈ N, belong to a compact subset of Y , then the sequence (λm)m∈N

is uniformly tight, i.e., for every ε > 0, there is a compact set K ⊂ N
N such that

λm(K) > 1 − ε for all m,
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(ii) if F ⊂ N
N is closed, ̺ : F → X is a continuous mapping with ̺(F) relatively

compact and θ denotes ψ|F + ̺, then, for every x ∈ coθ(F), there is a probability

measure λx on F such that

x =

∫

F

θ dλx.

In fact, (ii) is a consequence of (i). Since the mappings are continuous and N
N is

separable, it is not essential whether the integrals are understood in the Pettis or in

the Bochner sense. We do not distinguish the Baire space and the Polish space of all

infinite sets of natural numbers (denoted by J in [3] and by Σ in [4]), because they

are homeomorphic (the topology on the space of all infinite sets of natural numbers

is induced by the topology on 2N).

The proof of the following proposition is given in the form of a series of claims.

There are some connections between it and the main result from [4] (more details

are discussed in Remark 8).

By an analytic set we mean a continuous image of a Polish space F (i.e., separable

completely metrizable topological space). By [5, Theorem 7.9], we can consider F to

be a closed subset of N
N.

Proposition 3 Let X be a non-reflexive Banach space and ϕ, φ ∈ X∗ be linearly

independent. Let M ⊂ [0, π/2] be analytic and dense in [0, π/2]. Then there is an

absolutely convex closed bounded set R ⊂ X such that, for every t ∈ [0, π/2], (cos t)ϕ+

(sin t)φ has the supremum 1 on R, and it is attained if and only if t ∈ M.

Since M is analytic, there are a closed subset F of N
N and a continuous mapping

p : F → [0, π/2] such that p(F) = M.

Notation 4 We denote

Y = Ker ϕ ∩ Ker φ.

The space X can be viewed as

X = Y ⊕ R
2,

where

ϕ(0; 1, 0) = 1, ϕ(0; 0, 1) = 0,

φ(0; 1, 0) = 0, φ(0; 0, 1) = 1

(for y ∈ Y , r, s ∈ R, we use (y; r, s) instead of
(

y, (r, s)
)

). We put

ut = (cos t)ϕ + (sin t)φ for t ∈ [0, 2π).

Since X is not reflexive, Y is not reflexive, too. Let ψ : N
N → BY be as in Proposition 2.

We define

θ(η) =
(

ψ(η); cos p(η), sin p(η)
)

for η ∈ F,

P = θ(F), R = co
(

P ∪ (−P)
)

.

Further on, we consider the Euclidean norm on R
n(n = 2, 3) and we denote it by | · |.
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Claim 5 Let R ′ be such that P ⊂ R ′ ⊂ Y × BR2 . If t ∈ [0, π/2], then ut has the

supremum 1 on R ′, and it is attained if t ∈ M.

Proof For x = (y; r cos α, r sin α) ∈ Y × BR2 , we have ut (x) = r(cos α cos t +

sin α sin t) = r cos(α − t) ≤ 1. Since R ′ ⊂ Y × BR2 , the inequality sup ut (R ′) ≤ 1

holds. On the other hand, for η ∈ F, we have θ(η) ∈ P ⊂ R ′ and ut

(

θ(η)
)

=

ut

(

ψ(η); cos p(η), sin p(η)
)

= cos p(η) cos t + sin p(η) sin t = cos
(

p(η) − t
)

. The

inequality sup ut (R ′) ≥ 1 follows from the fact that M = p(F) is dense in [0, π/2].

Now, let t ∈ M = p(F). For η ∈ p−1(t), we have θ(η) ∈ P ⊂ R ′ and ut

(

θ(η)
)

=

ut

(

ψ(η); cos p(η), sin p(η)
)

= cos2 t + sin2 t = 1 = sup ut (R ′).

Claim 6 Let t ∈ [0, 2π).

(a) If x ∈ coP satisfies ut (x) ≥ 1, then x ∈ coθ
(

p−1(t)
)

.

(b) If t /∈ M, then ut (x) < 1 for every x ∈ coP.

Proof (a) Clearly, the image of the mapping ̺ : η ∈ F 7→
(

0; cos p(η), sin p(η)
)

is

relatively compact. By the choice of ψ and P, there is a probability measure λx on F

such that x =
∫

F
θ dλx. We obtain

1 ≤ ut (x) =

∫

F

ut

(

θ(η)
)

dλx

=

∫

F

(

cos p(η) cos t + sin p(η) sin t
)

dλx

=

∫

F

cos
(

p(η) − t
)

dλx,

and thus λx

(

{η ∈ F : cos(p(η) − t) = 1}
)

= 1. Since p(η) − t ∈ (−2π, π/2]

for η ∈ F, cos
(

p(η) − t
)

= 1 is the same as p(η) = t , i.e., η ∈ p−1(t). We get

x =
∫

F
θ dλx =

∫

p−1(t)
θ dλx ∈ coθ

(

p−1(t)
)

.

(b) If t /∈ M = p(F), then coθ
(

p−1(t)
)

is empty. Considering (a), we see that

ut (x) < 1 for every x ∈ coP.

Claim 7 (a) R ∩ (Y × SR2 ) =
(

coP ∪ (−coP)
)

∩ (Y × SR2 ).

(b) If t ∈ [0, π/2] \ M, then ut (x) < 1 for every x ∈ R.

Proof For t ∈ [0, π), we prove the implication

(1) x ∈ R & ut (x) ≥ 1 ⇒ x ∈ coP.

Let t ∈ [0, π), x ∈ R and ut (x) ≥ 1. We denote m = min{0, cos t} > −1 and

M = supz∈co P ‖z‖ < ∞. Let ε > 0 be arbitrary. There are a, b ∈ co P and λ ∈

[0, 1] such that ‖x − (1 − λ)a − λ(−b)‖ < ε. For η ∈ F, we have ut

(

θ(η)
)

=

ut

(

ψ(η); cos p(η), sin p(η)
)

= cos p(η) cos t + sin p(η) sin t = cos
(

p(η) − t
)

, and

thus m ≤ ut

(

θ(η)
)

≤ 1, because p(η)−t ∈ [−t, π/2]. It follows that m ≤ ut (a) ≤ 1

and m ≤ ut (b) ≤ 1. We compute 1 ≤ ut (x) < ut

(

(1 − λ)a + λ(−b)
)

+ ‖ut‖ε ≤
(1 − λ) − λm + ‖ut‖ε. So λ < ‖ut‖ε/(1 + m) and dist(x, co P) ≤ ‖x − a‖ <
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ε + ‖a − (1 − λ)a − λ(−b)‖ <
(

1 + 2‖ut‖M/(1 + m)
)

ε. Since ε > 0 was arbitrary,

we obtain x ∈ coP, and (1) is proved.

(a) It is enough to prove the inclusion R ∩ (Y × SR2 ) ⊂ coP ∪ (−coP). Let

x ∈ R ∩ (Y × SR2 ). For some y ∈ Y and t ∈ [0, 2π), we have x = (y; cos t, sin t).

We have ut (x) = cos2 t + sin2 t = 1. If t ∈ [0, π), then (1) says that x ∈ coP. If

t ∈ [π, 2π), then (1) says that x ∈ −coP because ut−π(−x) = −ut (−x) = ut (x) = 1.

(b) Let t ∈ [0, π/2] \ M and x ∈ R be such that ut (x) ≥ 1. Then (1) says that

x ∈ coP, which is a contradiction with Claim 6(b).

Now, Proposition 3 follows from Claim 5 and Claim 7(b).

Remark 8. (a) If ε > 0 is small enough, then co(R ∪ εBX) has the same property as

R. Taking ||| · ||| as the norm which has co(R ∪ εBX) for its unit ball, we get a norm

such that, for every t ∈ [0, π/2], (cos t)ϕ + (sin t)φ ∈ NA(||| · |||) if and only if t ∈ M.

Considering M ⊂ [0, π/2] to be dense, analytic and non-Borel, we obtain the result

from [3].

(b) Proposition 3 (and also Proposition 9 below) can be generalized as follows.

Let (X, ‖ · ‖) be a non-reflexive Banach space and let ϕ1, ϕ2, . . . , ϕn ∈ X∗ be lin-

early independent. Let M ⊂ co{ϕ1, . . . , ϕn} be analytic. Then there is an equiv-

alent norm ||| · ||| on X such that, for every f ∈ co{ϕ1, . . . , ϕn}, f ∈ NA(||| · |||) if

and only if f ∈ M.

Assuming that M is dense in co{ϕ1, . . . , ϕn}, we can prove this in a similar way

as Proposition 3. In the general case, we realize that M ∪ (co{ϕ1, . . . , ϕn, ϕn+1} \
co{ϕ1, . . . , ϕn}) is dense in co{ϕ1, . . . , ϕn, ϕn+1}, where ϕn+1 ∈ X∗ is chosen so that

ϕ1, . . . , ϕn, ϕn+1 are linearly independent.

(c) In [1], the authors also ask whether every separable non-reflexive Banach

space with separable dual admits a Fréchet smooth norm such that the set of norm-

attaining functionals is not Borel. This question is answered affirmatively in [4].

There is a simple way how to give the positive answer with use of Proposition 3.

We can proceed as follows. Let X be a separable non-reflexive Banach space with

separable dual. We choose M ⊂ [0, π/2] to be analytic, non-Borel and dense in

[0, π/2] and ϕ, φ ∈ X∗ to be linearly independent. As M is not Borel, it is enough to

find an equivalent Fréchet smooth norm ||| · ||| on X such that, for every t ∈ [0, π/2],

(cos t)ϕ + (sin t)φ ∈ NA(||| · |||) if and only if t ∈ M.

By [2, Theorem II.2.6], there is an equivalent norm ‖ · ‖ on X such that the dual

norm ‖·‖ is l.u.r. on X∗. Also, there is an equivalent norm ‖·‖′ on X such that the dual

norm ‖ · ‖′ is l.u.r. on X∗, too, and, for every t ∈ [0, π/2], (xn)n∈N is convergent in X

whenever ‖xn‖
′ ≤ 1 for n ∈ N and

(

(cos t)ϕ+(sin t)φ
)

(xn) → ‖(cos t)ϕ+(sin t)φ‖ ′.

Indeed, this can be shown for the norm ‖(y; r, s)‖ ′
= |(‖y‖, r, s)|, (y; r, s) ∈ Y × R

2,

where Y is as in Notation 4.

Let R be as in Proposition 3. We define ||| · ||| to satisfy

B(X,||| · |||) = B(X,‖·‖ ′) + R.

For u ∈ X∗, we have |||u||| = ‖u‖ ′ + supx∈R u(x). From here, it can be shown that

||| · ||| is l.u.r. on X∗. Consequently, ||| · ||| is Fréchet smooth [2, Proposition II.1.5]. It is
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straightforward to check that, for every t ∈ [0, π/2], (cos t)ϕ + (sin t)φ ∈ NA(||| · |||)
if and only if t ∈ M. So the norm ||| · ||| works.

(d) In fact, this method is a simple analogy of the method from [4]. Our method

allows us to choose which analytic subset of an arc will be the intersection of this arc

with the set of norm-attaining functionals. In [4], these functionals are chosen from

a considerably greater set. The following was proved.

If X is a separable non-reflexive Banach space with separable dual, then there is

a set H ⊂ X∗, homeomorphic to the Hilbert cube [−1, 1]N, such that, for every

analytic subset M of H, there is an equivalent Fréchet smooth norm ||| · ||| on X

such that H ∩ NA(||| · |||) = M.

In this case, to find the norm corresponding to our norm ‖ · ‖′ (mentioned in (c)) is

much more complicated. One of the reasons is that the analogy of our space Y above

has infinite codimension, and thus it does not have to be complemented.

Proposition 9 Let (X, ‖ · ‖) be a strictly convex non-reflexive Banach space and let

ϕ, φ ∈ X∗ be linearly independent. Let M ⊂ [0, π/2] be Borel and dense in [0, π/2].

Then there is an equivalent strictly convex norm ||| · ||| on X such that, for every t ∈
[0, π/2], (cos t)ϕ + (sin t)φ ∈ NA(||| · |||) if and only if t ∈ M.

The proof of the proposition is also given in the form of a series of claims.

Since M is Borel, there are a closed subset F of N
N and a one-to-one continu-

ous mapping p : F → [0, π/2] such that p(F) = M [5, Theorem 13.7]. We define

Y, ut , ψ, θ, P, R as in Notation 4. Clearly, Claims 5–7 hold. The condition that p is

a one-to-one mapping makes the situation more concrete and allows us to improve

some of them.

Claim 10 (coP) ∩ (Y × SR2 ) = P.

Proof It is enough to prove (coP) ∩ (Y × SR2 ) ⊂ P because the other inclusion is

obvious. Let x ∈ (coP) ∩ (Y × SR2 ). There are y ∈ Y and t ∈ [0, 2π) such that x =

(y; cos t, sin t). We have ut (x) = cos2 t + sin2 t = 1. By Claim 6(a), x ∈ coθ
(

p−1(t)
)

.

Let η denote the only element of p−1(t). We obtain x ∈ coθ
(

p−1(t)
)

= co{θ(η)} =

{θ(η)} ⊂ P.

Claim 11 R ∩ (Y × SR2 ) = P ∪ (−P).

Proof It follows immediately from Claims 10 and 7(a).

In the proof of the following claim, we need a continuous function f : [0, 2] ×
[0, 1] → [0, 1] with properties

(a) f (x, y) ≤ 1 − y for (x, y) ∈ [0, 2] × [0, 1],

(b) f
(

λa+(1−λ)b
)

> λ f (a)+(1−λ) f (b) for a, b ∈ [0, 2]×[0, 1), a 6= b, λ ∈ (0, 1),

(c) f (x1, y) > f (x2, y) when x1 < x2 and y < 1, f (x, y1) > f (x, y2) when y1 < y2.

An explicit example of such a function is

f (x, y) = 1 − y − (1 − y)2
[ 1

6
+

1

6 − x

]

.
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It is easy to check that the partial derivatives of f are negative on [0, 2] × [0, 1) and

that
∂2 f

∂(r, s)2
(x, y) = −

2

6 − x

[

s −
1 − y

6 − x
r
] 2

−
1

3
s2,

which is negative on [0, 2] × [0, 1) (by
∂2 f

∂(r,s)2 (x, y) we mean the second derivative of

f at (x, y) in the direction (r, s)).

Claim 12 There is a continuous function ρ : 2BY × BR2 → [0, 1] with properties

(a) ρ(y; r, s) ≤ 1 − |(r, s)| for (y; r, s) ∈ 2BY × BR2 ,

(b) ρ
(

λa + (1 − λ)b
)

> λρ(a) + (1 − λ)ρ(b) for a, b ∈ 2BY × (BR2 \ SR2 ), a 6= b,

λ ∈ (0, 1),

(c) ρ(x) = ρ(−x) for x ∈ 2BY × BR2 .

Proof We put

ρ(y; r, s) = f
(

‖y‖, |(r, s)|
)

, (y; r, s) ∈ 2BY × BR2 .

Properties (a) and (c) are obvious, let us check (b). Let (y1, z1), (y2, z2) ∈ 2BY ×BR2 ,

(y1, z1) 6= (y2, z2), |z1| < 1, |z2| < 1, λ ∈ (0, 1). We need to check the inequality

f
(

‖λy1 + (1 − λ)y2‖, |λz1 + (1 − λ)z2|
)

> λ f
(

‖y1‖, |z1|
)

+ (1 − λ) f
(

‖y2‖, |z2|
)

.

If ‖y1‖ 6= ‖y2‖ or |z1| 6= |z2|, then f
(

‖λy1 + (1 − λ)y2‖, |λz1 + (1 − λ)z2|
)

≥

f
(

λ‖y1‖+ (1− λ)‖y2‖, λ|z1|+ (1− λ)|z2|
)

> λ f (‖y1‖, |z1|) + (1− λ) f (‖y2‖, |z2|)
by the properties of the function f . If ‖y1‖ = ‖y2‖ and |z1| = |z2|, then, by the

strict convexity of ‖ · ‖, | · | and by (y1, z1) 6= (y2, z2), we have ‖λy1 + (1 − λ)y2‖ <
λ‖y1‖ + (1 − λ)‖y2‖ or |λz1 + (1 − λ)z2| < λ|z1| + (1 − λ)|z2|, and thus f

(

‖λy1 +

(1 − λ)y2‖, |λz1 + (1 − λ)z2|
)

> f
(

λ‖y1‖ + (1 − λ)‖y2‖, λ|z1| + (1 − λ)|z2|
)

=

λ f (‖y1‖, |z1|) + (1 − λ) f (‖y2‖, |z2|).

Let us take the function ρ from Claim 12. We denote

‖(y, z)‖∞ = max{‖y‖, |z|}, (y, z) ∈ Y ⊕ R
2,

B(x, r) = {(y, z) ∈ Y ⊕ R
2 : ‖x − (y, z)‖∞ ≤ r}, x ∈ Y ⊕ R

2, r ≥ 0.

We choose a sequence of positive numbers (εi)i∈N such that

∞
∑

i=1

εi ≤ 1,
∞
∏

i=1

(1 − εi) > 0, lim
n→∞

1

εn

∞
∑

i=n

εi = 1,

and define

R0 = R, Rn =
⋃

x∈Rn−1

B
(

x, εnρ(x)
)

, n ∈ N, R∞ =

∞
⋃

n=0

Rn.

It is easy to verify by induction that Rn ⊂ (1 +
∑n

i=1 εi)BY ×BR2 , and thus Rn, n ∈ N,

are well defined. Besides this, the sets Rn, n ∈ N, are absolutely convex.

Further on, by dist we mean the distance with respect to ‖ · ‖∞.
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Claim 13 R∞ ∩ (Y × SR2 ) = P ∪ (−P).

Proof Using Claim 11, we have P ∪ (−P) = R ∩ (Y × SR2 ) ⊂ R∞ ∩ (Y × SR2 ). It is

enough to show that if (y, z) ∈ Y × SR2 and (y, z) /∈ R, then (y, z) /∈ R∞.

Let (y, z) ∈ (Y × SR2 ) \ R. We denote d = dist
(

(y, z), R
)

. As (y, z) /∈ R and R is

closed, d > 0. Let n ∈ N. Given x = (y ′, z ′) ∈ Rn−1 and (y ′ ′, z ′ ′) ∈ B
(

x, εnρ(x)
)

,

we have

‖(y ′ ′, z ′ ′) − (y, z)‖∞ ≥ ‖x − (y, z)‖∞ − ‖x − (y ′ ′, z ′ ′)‖∞

≥ ‖x − (y, z)‖∞ − εnρ(x)

≥ ‖x − (y, z)‖∞ − εn(1 − |z ′|)

= ‖x − (y, z)‖∞ − εn(|z| − |z ′|)

≥ ‖x − (y, z)‖∞(1 − εn).

It means that dist
(

(y, z), B(x, εnρ(x))
)

≥ (1 − εn)‖x − (y, z)‖∞ for every x ∈ Rn−1.

By the definition of Rn, dist
(

(y, z), Rn

)

≥ (1 − εn) dist
(

(y, z), Rn−1

)

. By an easy

induction argument,

dist
(

(y, z), Rn

)

≥ d
n
∏

i=1

(1 − εi), n = 0, 1, . . . ,

dist
(

(y, z), R∞

)

≥ d
∞
∏

i=1

(1 − εi).

So (y, z) /∈ R∞ by the choice of the sequence (εi)i∈N.

Claim 14 If a, b are two distinct points of R∞, then λa + (1 − λ)b is an element of

the interior of R∞ for every λ ∈ (0, 1).

Proof Given such a, b, λ, we denote x = λa+(1−λ)b. Let us realize that x /∈ Y ×SR2 .

Assume that x ∈ Y × SR2 . Since a, b ∈ R∞ ⊂ Y × BR2 , there is z ∈ SR2 such that

a, b ∈ Y × {z}. By Claim 13, we have a, b ∈ P ∪ (−P). By the definition of P and by

the fact that p is a one-to-one mapping, the set
(

P ∪ (−P)
)

∩ (Y × {z}) has at most

one element. Thus a = b, which is a contradiction.

So x ∈ Y × (BR2 \ SR2 ). We may suppose that a, b ∈ Y × (BR2 \ SR2 ), too (we may

take (1/2)(a + x), (1/2)(b + x) instead of a, b). We have

ρ(x) = ρ
(

λa + (1 − λ)b
)

> λρ(a) + (1 − λ)ρ(b).

We choose r ′ > r > ρ(a) and s ′ > s > ρ(b) such that

ρ(x) > λr ′ + (1 − λ)s ′.

Since ρ is continuous, we can choose u > 0 and v > 0 such that ρ ≤ r on B(a, u)

and ρ ≤ s on B(b, v). Let us prove that, for n ∈ N,

dist(a, Rn) ≥ min{u − εn, dist(a, Rn−1) − rεn}.
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If y ∈ Rn−1 \ B(a, u) and z ∈ B
(

y, εnρ(y)
)

, then ‖a − z‖∞ ≥ ‖a − y‖∞ − ‖y −

z‖∞ ≥ u − εnρ(y) ≥ u − εn. If y ∈ Rn−1 ∩ B(a, u) and z ∈ B
(

y, εnρ(y)
)

, then

‖a− z‖∞ ≥ ‖a− y‖∞ −‖y − z‖∞ ≥ dist(a, Rn−1)− εnρ(y) ≥ dist(a, Rn−1)− rεn.

Now, since dist(a, Rn) → 0 and u−εn → u > 0, there is n0 such that dist(a, Rn) ≥
dist(a, Rn−1) − rεn for every n ≥ n0. For n ≥ n0, we have

dist(a, Rn) ≤ dist(a, Rn+1) + rεn+1

≤ dist(a, Rn+2) + rεn+1 + rεn+2 ≤ · · · ≤ r
∞
∑

i=n+1

εi .

By the same way, we can find m0 such that dist(b, Rn) ≤ s
∑∞

i=n+1 εi for n ≥ m0.

We put N = max{n0, m0} and, for every n ≥ N, we choose an, bn ∈ Rn such that

‖a − an‖∞ ≤ r ′
∑∞

i=n+1 εi and ‖b − bn‖∞ ≤ s ′
∑∞

i=n+1 εi . For n ≥ N, we put

xn = λan + (1 − λ)bn. Since ρ is continuous, we have ρ(xn) → ρ(x). Since

λr ′ + (1 − λ)s ′

ρ(xn)

1

εn+1

∞
∑

i=n+1

εi →
λr ′ + (1 − λ)s ′

ρ(x)
< 1,

we can choose n ≥ N such that
(

λr ′ + (1 − λ)s ′
)

∑∞
i=n+1 εi < ρ(xn)εn+1. We have

‖x − xn‖∞ ≤ λ‖a − an‖∞ + (1 − λ)‖b − bn‖∞

≤
(

λr ′ + (1 − λ)s ′
)

∞
∑

i=n+1

εi < ρ(xn)εn+1.

So x is an element of the interior of B
(

xn, εn+1ρ(xn)
)

, which is a subset of Rn+1.

Claim 15 If t ∈ [0, π/2], then ut attains its supremum on R∞ if and only if t ∈ M.

Proof Considering Claim 5, it remains to prove that ut (x) < 1 for every x ∈ R∞

in the case that t /∈ M. Suppose that t /∈ M, x = (y; r cos α, r sin α) ∈ R∞ and

ut (x) = 1. We have 1 = ut (x) = r(cos α cos t + sin α sin t) = r cos(α − t), which

is possible only if r = 1 and α = t , i.e., x ∈ Y × {(cos t, sin t)}. By Claim 13,

x ∈ P ∪ (−P) ⊂ R. By Claim 7(b), ut (x) < 1, which is a contradiction.

Now, we define ||| · ||| as the norm with the unit ball R∞. Proposition 9 follows

from Claims 14 and 15.

Proof of Theorem 1 Let ϕ, φ ∈ X∗ be linearly independent. We take M ⊂ [0, π/2],

dense in [0, π/2], which is Borel, but not of the additive Borel class α [5, Theo-

rem 22.4]. It is known that there is an equivalent strictly convex norm ‖ · ‖ on X

[2, Theorem II.2.6]. By Proposition 9, there is a strictly convex norm ||| · ||| on X such

that, for every t ∈ [0, π/2], (cos t)ϕ+(sin t)φ ∈ NA(||| · |||) if and only if t ∈ M. Since

M is not of the additive Borel class α, NA(||| · |||) is not of the additive Borel class α,

too (t ∈ [0, π/2] 7→ (cos t)ϕ + (sin t)φ is a continuous mapping).

The author is grateful to Petr Holický for suggesting the problem and for valuable

remarks on the preliminary versions of this work.
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