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Abstract

In this paper, we describe a class of Wiener functionals that are ‘indeterminate by their
moments’, that is, whose distributions are not uniquely determined by their moments. In
particular, it is proved that the integral of a geometric Brownian motion is indeterminate
by its moments and, moreover, shown that previous proofs of this result are incorrect.
The main result of this paper is based on geometric inequalities in Gauss space and on a
generalization of the Krein criterion due to H. L. Pedersen.
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1. Introduction

Suppose that {Wt }0≤t≤1 is a standard one-dimensional Brownian motion on [0, 1], θ ∈ R,
and that σ > 0. In [16], Yor studied the question of whether the random variable∫ 1

0
eθt+σWt dt

is ‘determinate by its moments’, that is, if the law of the random variable is uniquely determined
by its moments. Nikeghbali, and later on also the author, showed that a result of Pakes [12]
implied that the integral of a geometric Brownian motion is ‘indeterminate by its moments’
(see Nikeghbali [11] and Hörfelt [8]). However, the result by Pakes turned out to be false, as
recently shown in [3] and, thus, the proofs of the results about indeterminacy in [11] and [8]
have to be re-examined.

This paper will prove that the integral of a geometric Brownian motion is indeed indeter-
minate by its moments. In addition, the main result of this paper implies that other Wiener
functionals are indeterminate by their moments. For instance, suppose that µ is a positive
bounded Borel measure on [0, 1], with µ((0, 1]) > 0 and p > 4. Then the random variable∫ 1

0
|θt + σWt |pµ(dt)

is indeterminate by its moments. This result may be compared with a classic result by Berg
stating that the random variable |W1|p, p > 0, is determinate by its moments if and only if
p > 4 (see Berg [1]). We will give the exact statement of our result in Section 2.

Received 3 November 2003; revision received 11 February 2005.
∗ Postal address: Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park,
SE-412 88 Göteborg, Sweden. Email address: perh@fcc.chalmers.se
The author would like to thank Christer Borell, Chalmers University of Technology.

851

https://doi.org/10.1239/jap/1127322032 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1127322032


852 P. HÖRFELT

The new proof will be based on a generalization of the Krein condition due to Pedersen [13]
and some geometric inequalities in Gauss space.

The paper is structured as follows. In Section 2, we introduce some notation and present
the main result. In Section 3, we discuss geometric bounds on the distribution functions for
a class of Wiener functionals. In Section 4, we present an extension of the Krein criterion
for determinacy and, in Section 5, we prove the main result. We conclude the paper with an
appendix by Pedersen. This appendix gives a relatively simple and self-contained proof of the
main result in Section 4.

2. Notation and main result

From now on, the sample space � = C0([0, 1]; R
n) consists of all functions ω =

(ω1, ω2, . . . , ωn) such that, for each i = 1, . . . , n, the function ωi : [0, 1] → R is continuous
and ωi(0) = 0. The space � is equipped with the norm ‖ · ‖C0 , defined by

‖ω‖C0 = max
i=1,...,n

max
0≤t≤1

|ωi(t)|.

The measure P will henceforth denote the Wiener measure on �. In particular, if we define

Wt(ω) = ω1(t), 0 ≤ t ≤ 1,

then {Wt }0≤t≤1 is a standard Brownian motion on [0, 1] with respect to P .
Let I be an interval with closure [0,∞), and suppose that ψ : I → R is a continuous

function such that ψ(∞) = ∞. Furthermore, suppose that ψ is differentiable on the interior
of I and that ψ ′(s) > 0 for all s > 0. Next, consider a function � : � → (0,∞). We will say
that � ∈ L(ψ) if the map ω �→ ψ ◦ �(ω) is C0-Lipschitz continuous with constant 1. That
is, � ∈ L(ψ) if

|ψ ◦�(ω + ω̃)− ψ ◦�(ω)| ≤ ‖ω̃‖C0 ,

for all ω, ω̃ ∈ �. Furthermore, we write � ∈ C(ψ) if the map ω �→ ψ ◦ �(ω) is convex.
Thus, � ∈ C(ψ) if

ψ ◦�(λω + (1 − λ)ω̃) ≤ λψ ◦�(ω)+ (1 − λ)ψ ◦�(ω̃),
for all 0 ≤ λ ≤ 1 and all ω, ω̃ ∈ �.

Next we give some examples of functionals in L(ψ) and C(ψ). If p ≥ 1, θ ∈ R, σ > 0,
and

�(ω) =
∫ 1

0
|θt + σω1(t)|pµ(dt), (1)

whereµ is a positive, bounded Borel measure on [0, 1] withµ((0, 1]) > 0, then the Minkowski
inequality gives � ∈ L(ψ) ∩ C(ψ), where

ψ(s) = 1

σµ([0, 1]) s
1/p.

Suppose that µ is defined as above, that θi ∈ R and σi > 0, i = 1, . . . , n, and define

�(ω) =
∫ 1

0

n∑
i=1

eθi t+σiωi(t)µ(dt). (2)
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Then � ∈ L(ψ) ∩ C(ψ) with

ψ(s) = 1

maxi=1,...,n σi
ln s. (3)

More examples of functionals in L(ψ) ∩ C(ψ) with ψ as in (3) were described by the author
in [8].

Before we give the main result of the paper, recall that a distribution function F with support
on the positive real numbers and with moments of all order is Stieltjes indeterminate if there
is a distribution function G with support on the positive real numbers such that G �= F and∫ ∞

0 sk dG(s) = ∫ ∞
0 sk dF(s), for all integers k. Moreover, a positive random variable or a

probability measure with support on the positive real numbers is Stieltjes indeterminate if the
corresponding distribution function is Stieltjes indeterminate.

The purpose of this paper is to prove the following theorem.

Theorem 1. Suppose that� ∈ L(ψ)∩C(ψ) has moments of all orders and is nonconstant. If∫ ∞

a

s−3/2(ψ2(s)+ | ln(ψ ′(s))|) ds < ∞,

for some a > 0, then � is Stieltjes indeterminate.

Note that Theorem 1 implies that the functional � in (1) is Stieltjes indeterminate if p > 4
and that the functional in (2) is Stieltjes indeterminate for all parameter values.

3. Geometric bounds on the distribution function

In this section, we consider different bounds on the distribution function of �. The distri-
bution function will be denoted by F� , i.e.

F�(s) = P(� ≤ s), s ≥ 0.

It is well known that the topological support of P is �. Thus, if � ∈ C(ψ) ∩ L(ψ) and
Fψ◦�(s0) = 1, then the set {ω ∈ � : ψ ◦�(ω) > s0} is an open zero set and must therefore be
empty. Since ψ ◦� is convex, it follows that ψ ◦� is constant. Thus, if � is nonconstant and
� ∈ C(ψ) ∩ L(ψ) then F�(s) < 1 for all s ≥ 0.

Henceforth, we adopt the convention that ∞ − ∞ = −∞. Moreover, we define

�(x) =
∫ x

−∞
e−y2/2 dy√

2π
, −∞ ≤ x ≤ ∞,

and let �−1 denote the inverse of �. Finally, assume that

P∗(A) = sup{P(K) : K is a compact subset of A},
for any set A ⊂ �.

The following theorem is a special case of the Ehrhard inequality.

Theorem 2. Suppose that A and B are Borel sets in �. Then

�−1(P∗(λA+ (1 − λ)B)) ≥ λ�−1(P(A))+ (1 − λ)�−1(P(B)),

for every 0 ≤ λ ≤ 1.
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In [6], Ehrhard proved Theorem 2 for convex sets A and B. The general case was shown
recently by Borell in [5]. The formulation of the Ehrhard inequality is taken from [5]. In our
case, it is possible to replace P∗ by P since C0 is a polish space and, therefore, the convex sum
of two Borel sets is Borel measurable.

The proof of the following lemma is based on the Ehrhard inequality as well as an idea in [7].

Lemma 1. Suppose that � ∈ C(ψ) is nonconstant and continuous, and let Rψ denote the
range of ψ . The map

x �→ �−1 ◦ F� ◦ ψ−1(x), x ∈ Rψ,
is concave. In particular, F� is absolutely continuous on (s∗,∞), where

s∗ = inf{s ≥ 0 : F�(s) > 0}.
Proof. Put ϒ = ψ ◦�. By the convexity of ϒ , we obtain

{ϒ ≤ λx + (1 − λ)y} ⊇ λ{ϒ ≤ x} + (1 − λ){ϒ ≤ y},
for all x, y ∈ R and all λ, 0 ≤ λ ≤ 1. The Ehrhard inequality implies that

�−1(P(ϒ ≤ λx + (1 − λ)y))

≥ λ�−1(P(ϒ ≤ x))+ (1 − λ)�−1(P(ϒ ≤ y))

and, hence, �−1 ◦ F� ◦ ψ−1 is concave.
This result gives a concave function g : (x∗,∞) → R, x∗ = ψ(s∗), such that

F�(s) = � ◦ g ◦ ψ(s),
for all s > s∗. A concave function is absolutely continuous and, thus, g ◦ ψ(s), s > s∗, is
absolutely continuous. Since � is absolutely continuous, the proof is complete.

From now on, the space H consists of all functions h = (h1, h2, . . . , hn) such that, for each
i = 1, . . . , n, the function hi : [0, 1] → R is absolutely continuous with a square-integrable
derivative, and hi(0) = 0. The space H is equipped with the norm ‖ · ‖H , defined by

‖h‖H =
( n∑
i=1

∫ 1

0
(h′
i (t))

2 dt

)1/2

, h ∈ H ,

where a prime denotes weak-sense differentiation. The space H is usually referred to as the
Cameron–Martin space.

Theorem 3. Suppose that OH is the set of all h ∈ H such that ‖h‖H ≤ 1, and that A is a
Borel set in �. If an a is chosen such that

P(A) = �(a),

then
P(A+ λOH ) ≥ �(a + λ),

for each λ ≥ 0.

Theorem 3 is a special case of the celebrated isoperimetric inequality for Gaussian measures,
which was discovered independently by Borell [4] and Sudakov and Cirel´son [15].
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Lemma 2. Suppose that � ∈ L(ψ) ∩ C(ψ) is nonconstant and assume that

s∗ = inf{s ≥ 0 : F�(s) > 0}.
Then

f�(s) ≥ (ϕ ◦�−1 ◦ F�)(s)ψ ′(s), s > s∗,
where f� = F ′

� and ϕ = �′.

Proof. Suppose that OC0 consists of all ω ∈ � such that ‖ω‖C0 ≤ 1. Note that the Hölder
inequality implies

‖h‖C0 = max
i=1,...,n

max
0≤t≤1

∣∣∣∣
∫ t

0
h′
i (s) ds

∣∣∣∣
≤ max
i=1,...,n

max
0≤t≤1

√
t

(∫ t

0
h′
i (s)

2 ds

)1/2

≤ ‖h‖H ,

and, thus, OC0 ⊃ OH , where OH is defined as in Theorem 3.
Next, suppose that ϒ = ψ ◦� and A = {ϒ ≤ s} for some s > s∗. Since ϒ is C0-Lipschitz

continuous with constant 1 and OC0 ⊃ OH , it follows that

{ϒ ≤ s + λ} ⊇ A+ λOC0 ⊇ A+ λOH ,

for each λ > 0. Thus, if a satisfies P(A) = �(a) then Theorem 3 yields

P(ϒ ≤ s + λ)− P(ϒ ≤ s) ≥ �(a + λ)−�(a)

and, therefore, fϒ(s) ≥ ϕ(a), where fϒ is the density function of Fϒ . Thus, fϒ(s) ≥
ϕ ◦�−1 ◦ Fϒ(s). Lemma 2 now follows by the relation f�(s) = (fϒ ◦ ψ)(s)ψ ′(s).

4. The moment problem

A famous result in the theory of the moment problem is the Krein condition. The following
theorem presents a generalization of Krein’s result established by Pedersen [13]. A relatively
simple proof of this result is shown in Appendix A.

Theorem 4. Suppose that dµ(x) = f (x) dx is a probability measure on [0,∞) with moments
of all orders. If, for some a ≥ 0, ∫

s≥a
log f (s2)

1 + s2 ds > −∞,

then µ is Stieltjes indeterminate.

We will need a slight modification of Theorem 4.

Corollary 1. Suppose that the distribution function F is absolutely continuous on (s∗,∞),
where s∗ = inf{s ∈ R : F(s) > 0} ≥ 0. Assume that F has moments of all orders and that
f (s) = F ′(s), s > s∗, satisfies ∫ ∞

a

ln f (s2)

1 + s2 ds > −∞,

for some a > s∗. Then F is Stieltjes indeterminate.
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Proof. Define C = F(s∗). It is evident that C < 1. Introduce the distribution function

G(s) =
⎧⎨
⎩
F(s + s∗)− C

1 − C
, s ≥ 0,

0, s < 0.

This function is absolutely continuous on [0,∞) and, by Theorem 4, Stieltjes indeterminate.
Suppose that H �= G is a distribution function with support on [0,∞) and with the same
moments as G. In addition, define

J (s) =
{
(1 − C)H(s − s∗)+ C, s ≥ s∗,
0, s < s∗,

and recall that

F(s) =
{
(1 − C)G(s − s∗)+ C, s ≥ s∗,
0, s < s∗.

It is evident that J is a distribution function such that J �= F and J (s) = 0, s < 0. However,
J has the same moments as F . Thus, F is Stieltjes indeterminate.

5. Proof of Theorem 1

Now, to prove the main result, suppose that � ∈ L(ψ) ∩ C(ψ) with∫ ∞

a

s−3/2(ψ2(s)+ | ln(ψ ′(s))|) ds < ∞, (4)

for some a > 0. Define, as previously, F�(s) = P(� ≤ s) and f�(s) = F ′
�(s) if s > s∗ =

inf{s ≥ 0 : F�(s) > 0}. By Theorem 1, � is Stieltjes indeterminate if∫ ∞

a

ln f�(s2)

1 + s2 ds > −∞,

for some a > s∗, or, equivalently,∫ ∞

a

s−3/2 ln f�(s) ds > −∞.

Lemma 2 yields∫ ∞

a

s−3/2 ln f�(s) ds ≥
∫ ∞

a

s−3/2 ln[(ϕ ◦�−1 ◦ F�)(s)ψ ′(s)] ds.

The right-hand side equals

−1

2

∫ ∞

a

s−3/2(�−1 ◦ F�(s))2 ds +
∫ ∞

a

s−3/2 lnψ ′(s) ds − 2
√
a ln(2π). (5)

The proof of Theorem 1 is thus complete if we can prove that each integral in (5) is finite.
Lemma 1 gives constants m and k such that �−1 ◦ F� ◦ ψ−1(x) ≤ kx +m, for all x in the

range of ψ , or, equivalently, �−1 ◦ F�(s) ≤ kψ(s) + m, for all s > 0. Combined with (4),
it follows that the first integral in (5) is finite. Furthermore, (4) gives at once that the integral∫ ∞
a
s−3/2 lnψ ′(s) ds is finite. The proof of Theorem 1 is complete.
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Appendix A by H. L. Pedersen: The Krein condition for the moment problem

The purpose of this appendix is to give a relatively simple proof of Theorem 4. Theorem 4
can be obtained from the corresponding theorem for measures on the real line, stated as follows.

Theorem 5. Suppose that dµ(x) = h(x) dx is a probability measure on R having moments of
all orders. If, for some a ≥ 0, ∫

|x|≥a
logh(x)

x2 + 1
dx > −∞,

then µ is indeterminate on R.

This theorem goes back to Krein [10], who obtained it for a = 0. (For a simple proof in
this case see, for example, [2].) It is frequently called ‘Krein’s condition for indeterminacy’.
Theorem 4 is obtained from Theorem 5 by considering the symmetric measure |x|f (x2) dx on
R, as in [2].

Theorem 5 can be seen as a corollary of Krein’s condition for indeterminacy over sets
of so-called positive lower uniform density (see [13]). Indeed, the set {|x| ≥ a} contains a
set of this form. The proofs in [13] were based on estimates of harmonic measure due to
Carleson and results of Koosis about harmonic estimation (see [9, Chapter VIII]). The point is
that Theorem 5 is much more elementary to prove, although the proof below is still based on
harmonic estimation. For an introduction to harmonic measures see, for example, [14] and [9].

The harmonic measure ω� in the unit disk � is defined in terms of the Poisson kernel. We
have

ω�(�,w) = 1

2π

∫
�

1 − |w|2
|eit − w|2 dt,

for any Borel set � in [−π, π) and any point w ∈ �.
We shall define and use the harmonic measure ωD in the simply connected domain

D = C \ ((−∞,−1] ∪ [1,∞)),

by using a conformal mapping of D onto �.
It is easily checked thatψ(w) = 1/((w+1/w)/2) is a conformal mapping of� onto D and,

hence, that φ(z) = 1/z − (1/z2 − 1)1/2 is a conformal mapping of D onto � with φ(0) = 0
(for the square root in φ(z) that is positive for z ∈ (−1, 1)).

We consider the boundary of D to have upper and lower sides (see, for example,
[9, Chapter VIII, A.1]), due to the fact that ψ maps the unit circle onto ∂D in a two-to-one
way (ψ(eiθ ) = 1/ cos θ ). Hence, we think of a Borel set E in ∂D as having two sides E+ and
E−. For x ∈ R, we put

φ+(x) = lim
y→0+φ(x + iy), φ−(x) = lim

y→0−φ(x + iy).

It makes sense to talk about two harmonic measures, namely ωD (E+, z) = ω�(φ+(E), φ(z))
and ωD (E−, z) = ω�(φ−(E), φ(z)). We shall use the sum of these two measures, and we thus
define

ωD (E, z) = ωD (E+, z)+ ωD (E−, z).
We have

ωD (E+, z) = 1

π

∫
E

1 − |φ(z)|2
|φ+(t)− φ(z)|2

√
t2

t2 − 1

dt

t2
,
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and similarly for ωD (E−, z). Furthermore, if E = [α, β] then limz→x ωD (E, z) = 1 for
x ∈ (α, β). We stress that the limit is 1 both when z approaches x ∈ (α, β) from above and
from below.

For each Borel set E in ∂D , ωD (E, ·) is a positive harmonic function in D . We also see
that, for example,

ωD ([r, r + 2], 0) ≤ const

r2 , (6)

for r ≥ 1, with some constant independent of r . For r = 1 it is definitely true, and for r > 1
we have

ωD ([r, r + 2]+, 0) = 1

π

∫ r+2

r

1

|φ+(t)|2

√
t2

t2 − 1

dt

t2
≤ const

∫ r+2

r

dt

t2
≤ const

r2 ,

since

1

|φ+(t)|2

√
t2

t2 − 1

is bounded.
The proof of Theorem 5 follows the same lines as the proof of Theorem 2.2 of [13], where

it was shown that the polynomials are not dense in the corresponding L2-space, but now based
on the proposition below.

Proposition 1. Let a > 0. There exists a constant C, depending only on a, such that∫ ∞

−∞
log+ |p(x)|
x2 + 1

dx ≤ C

∫
|x|≥a

log+ |p(x)|
x2 + 1

dx,

for all polynomials p.

Proof. (This proof is inspired by the arguments in [9, Chapter VIII, Section A.3].) We may
take a = 1

2 . Let p be any polynomial and consider the function

v(z) =
∫ 1/2

−1/2
log+ |p(z+ t)| dt.

This is a subharmonic function in the complex plane and satisfies v(z) ≤ o(|z|), as z tends to
infinity.

For n ≥ 1 and x ∈ [n, n+ 1], we find that

v(x) ≤
∫ n+3/2

n−1/2
log+ |p(t)| dt ≡ vn

and, similarly, that

v(x) ≤
∫ −(n−1/2)

−(n+3/2)
log+ |p(t)| dt ≡ v−n,

for n ≥ 1 and x ∈ [−(n+ 1),−n].
From the definition of v±n, we obtain

vn

n2 ≤ const
∫ n+3/2

n−1/2

log+ |p(t)|
t2 + 1

dt, n ≥ 1,
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and
v−n
n2 ≤ const

∫ −(n−1/2)

−(n+3/2)

log+ |p(t)|
t2 + 1

dt, n ≥ 1.

We consider the function

m(z) =
∞∑
n=1

(vnωD (En, z)+ v−nωD (−En, z)),

where En = [n − 1
2 , n + 3

2 ] for n > 1 and E1 = [1, 5
2 ]. For z = 0 we have, by (6) and the

relations above involving v±n,

m(0) ≤ const
∞∑
n=1

vn + v−n
n2

≤ const
∞∑
n=1

(∫ n+3/2

n−1/2
+

∫ −(n−1/2)

−(n+3/2)

)
log+ |p(t)|
t2 + 1

dt

≤ const
∫

|t |≥1/2

log+ |p(t)|
t2 + 1

dt.

The functionm is the limit of an increasing sequence of harmonic functions in D . By Harnack’s
theorem (see, for example, [14, p. 16]) this limit is either identically equal to∞ or it is a harmonic
function in D . Since m(0) converges, m is harmonic. Hence, the function v(z) − m(z) is
subharmonic in D and satisfies v(z) − m(z) ≤ o(|z|) as z tends to infinity. If x > 1 then we
choose an n ≥ 1 such that x ∈ (n, n+ 1]. Then

lim
z→x

vnωD (En, z) = vn ≥ v(x)

and, therefore,
lim sup
z→x

(v(z)−m(z)) ≤ 0,

for all x > 1. Similarly, we find that

lim sup
z→x

(v(z)−m(z)) ≤ 0,

for all x < −1, and therefore all boundary values, except at ±1, of v(z) − m(z) are less than
or equal to zero. At ±1, we have

lim sup
z→±1

(v(z)−m(z)) ≤ v±1.

Lemma 3, below, implies that, for example, v(z)−m(z) ≤ v−1 + v1 in D . In particular,∫
|t |≤1/2

log+ |p(t)|
t2 + 1

dt ≤
∫

|t |≤1/2
log+ |p(t)| dt

= v(0)

≤ m(0)+ v−1 + v1

≤ const
∫

|t |≥1/2

log+ |p(t)|
t2 + 1

dt.

This completes the proof.
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The following lemma is a slight variation on the maximum principle.

Lemma 3. Suppose that u is subharmonic in D , that u(z) ≤ o(|z|) as |z| tends to infinity, and
that lim supz→x u(z) ≤ a for all x ∈ ∂D . Then u(z) ≤ a throughout D .

Proof. We let YD (z) = Im(z2 − 1)1/2, where we choose the square root that is positive and
imaginary for z ∈ (−1, 1). This is a harmonic function in D , with YD (x) = 0 for x ∈ ∂D and
YD (z) ≥ | Im z| for z ∈ D . (It is a so-called Phragmén–Lindelöf function (see, for example,
[9, Chapter VIII, Section A.2])).

Let ε > 0 be given, and consider the subharmonic function uε(z) = u(z) − εYD (z) in D .
We shall verify that this function is bounded from above in D . Then we apply an extended
maximum principle (see, for example, [9, Chapter III, Section C]).

We put S = {x ≥ 1, y ≥ 0}. It is clear that uε(z) = u(z)− εYD (z) is bounded from above
on the boundaries of the four sectors S,−S, S, and −S. From a standard Phragmén–Lindelöf
result, we then find that the function is bounded from above in all of these sectors (see, for
example, [9, Chapter III, Section C]). It is also bounded from above in {|x| ≤ 1}, so, in fact, it
is bounded from above in D .

We remark that a stronger form of Lemma 3 holds. From the assumptions that

lim sup
z→x

u(z) ≤ 0,

for all x ∈ ∂D \ {±1}, and lim supz→±1 u(z) ≤ a, we are able to deduce that u(z) ≤ 0 still
holds throughout D . This is because uε(ψ(w)) can be shown to be a subharmonic function
that is bounded from above in the bounded domain �. In that situation we can even exclude a
sequence of points from the assumption on the boundary values.
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