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CHARACTERISING COMPLETE BOOLEAN ALGEBRAS
IN TERMS OF PURE ESSENTIALNESS

KiraN R. BHUTANI

We discuss purity and pure essentialness of abelian groups in a topos ShL of sheaves on
a locale £ and show that purity is not.a local property. We prove that A € AbSAL is
divisible if and only if it is pure in every extension, and give an example of a category in
which absolutely pure does not imply divisible. We discuss uniform abelian groups and
show that each AU uniform in Ab does not imply that A is uniform in AbShC.

Banaschewski showed that the pure subgroups of Z. are exactly of the type Ty Z.
for the different U € £. We show that Ty Z is essential in Z. if and only if U is dense
in £, Finally, we characterise as complete boolean algebras the locales for which the only
pure and essential subgroup of Z. is Z..

1. BACKGROUND

DEFINITION 1.1: A locale denoted by L is a complete lattice staisfying the follow-
ing:

uva\U.=\UnU,

for all U and any family {U:}ier in £. We denote the minimal element of £ by 0
and the maximal element by E. Some examples of locales are a topology of a space, a
complete chain, complete boolean algebra or a finite distributive lattice.

DEFINITION 1.2: Recall that for any 0 #n € N and A € AbShL, one has a map
nag:A— A=A — A™ — A where Imn, is denoted by nA. Further A is said to
be divisible if and only if A = nA for all 0 £ n € N, that is, for any ¢ € AU and
0 # n € N there exists a cover u = \/ U; such that e | U; = nb; for some b; € AU; for
all 7.

For reference on background material required here, the reader may refer to [2, 4,
6, 7,9, 10].

Received 9 September 1987

Part of this paper is a part of the author’s Doctoral dissertation, submitted March 1983 to McMaster
University. I am grateful to my supervisor, Professor Bernhard Banaschewski, for his valuable guidance
and encouragement throughout the research work. Facilities for the preparation of this paper were
provided by the Laboratory of Statistical and Mathematical Methodology at the National Institutes of
Health, Bethesda, MD.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 $A2.00+4-0.00.

23

https://doi.org/10.1017/50004972700027192 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700027192

24 K.R. Bhutani (2]

2. PurIiTY

DEFINITION 2.1: A monomorphism h: A — B in AbShL is said to be pure if for
all n € N, the diagram

h
nA —— nB

L

A —— B
h

is a pull back diagram. If A is a subgroup of B and % is a natural embedding then
AC B is pureif nA=ANnB, that is, (nA)U = AUN(nB)U forall U e L.

Counterexample 2.2. The following counterexample shows that purity is not a local
property: that is , there is a local £ and A,B € AbShL such that for some cover
E=VUi, A|U; C B| Ui is pure in AbSh | Ui forall i € I, but A C B is not
pure in AbShL. Consider the locale,

E
U v
/ .
o)
and A,B € AbShL given by,
. %3 ; Ze
1 .
A= Z;/ \:) B = 287, \o
“\‘za/ ;Nz;/

where a is multiplication by 3 and the other maps are obvious maps. Then
A|UCB|U and A|V C B|V are both pure maps in AbSh | U and AbSh | V
respectively, but A C B is not pure in AbShC, for if this was pure then

34 —— 3B

Lo

A —— B
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has to be a pull-back which implies that
0=(3A)E —— (3B)E =2,
Z3=AF ——— BE =174
is a pull-back, a contradiction, hence the conclusion.

PROPOSITION 2.3. If A € AbShL is divisible, then for all extensions B of A, the

monomorphism h: A — B is pure.

PROOF: If A is divisible then nA = A. Hence, it is clear that the diagram

R
nA —— nB

l !

A —— B
h

is a pull-back, that is, h is a pure map. [ ]

PROPOSITION 2.4. If h: A — B is a pure map with B a divisible group, then A
is also a divisible group.

ProoF: By the given hypothesis, we have a pull back diagram

R
nA —— nB

! !

A —— B
h

for all n € N. So, there exists a unique a: A — nA such that in the diagram,

4 A 4
-
A nd — nB(= B)
| dl |
A4 4 — B

ha = h and ia = 14. So i is an epimorphism, hence an isomorphism and therefore
A =nA, that is A is divisible. Thus we obtain the following: |
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COROLLARY 2.5. A € AbShC is divisible if and only if it is pure in every extension.

PROOF: (=) This is clear from Proposition 2.3. For the converse, since AbShL
has enough injectives [10], there exists an injective B € AbShL and a monomorphism
h: A — B, and since injective implies divisible, the result now follows from Proposition
2.4. i

Remark 2.6. It is clear that A € AbShL is injective if and ounly if A is an absolute
retract. Since the category AbShL has the special property that injective always implies
divisible, by the above Corollary we have that injective implies absolute purity. Of
course in AbShL, A an absolutely pure group does not necessarily imply that 4 is
injective. This is so because for a non-boolean locale £, there are divisible (=absolutely
pure) groups which are not injective (1]. Here is an example of an abelian category,
where we show that injective does not imply divisible, which also shows that absolutely
pure does not imply divisible.

Example 2.7. Consider the category P of elementary abelian p-groups. Then P is an
abelian category and is the same as the category of vector spaces over the field Z /pZ.
Therefore each A € P is an injective group, hence absolutely pure but no nonzero A
is divisible, since 0 = p4 # A.

PROPOSITION 2.8. For A — B in AbShL, if each AU — BU is pure in Ab, then
A — B is purein AbShL.

PROOF: This is clear, since the sheaf reflection preserves finite limits and co-limits
it preserves pull backs and satisfies the condition (n4)~ = n4. 1

PROPOSITION 2.9. The torsion subgroup of a group is a pure subgroup.

PRroOOF: Let T denote the torsion subgroup of a given group A € AbShL. Then
T = UgstnenN Kern g, which is the same as saying that TU = T(AU), where T(AU) is
the torsion subgroup of AU. Now at each U € L, the diagram

nT(AU) —— nAU

! !

T(AU) —— AU

is a pull-back in Ab, therefore
nl, ——— nA

l !

T, —— A
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is a pull-back in AbPShL, where T, is the presheaf U ~» T(AU). By 2.8 it follows

that the square
nl —— nd

! !

T —— A

is a pull-back square in AbShL, hence T is a pure subgroup of A.
PROPOSITION 2.10. If h: A — B is retractable, then h is pure.

PROOF: Let g: B — A be such that gh = 1,. Consider the diagram

% ¢ c
|| J¢
¢ nd —— nB
|l s
C— 4 — B

where hs = igt. Now it can be seen as follows that gh = 1, implies Gh = 1,,4 (where
g: nB — nA is the unique map such that i,4g = gig). Since iph = hia, gip = 147,
giph = ghig =i4. Now i4,Gh = giph = i4 = 141,4. Since i4 is a monomorphism,
Gh =1,4. Consider the map a = gt: C - nA. We claim this is the desired map, that
is a is unique such that i4a = s and fo =t. That « is unique is clear, since 14 is a
monomorphism. Also iga = is§t = gigt = ghs = s, and ighgt = hisgt = hs = igt.
Since ip is a monomorphism, it follows hgt = ha =t, hence h: A >= B is pure. ]
Motivated by module theory we say,

DEFINITION 2.11: A in AbShL is uniform if every subgroup of A is essential in
A.

PROPOSITION 2.12. A is uniform if and only if E(A), the injective hull of A, is
uniform.

PROOF: Let 0 # B,C be non-zero subgroups of E(A). Since A is an essential

subgroup, therefore ANB, ANC are non-zero subgroups of 4. But 4 uniform implies
(ANBYN(ANC)# 0,hence BNC #£0.
Conversely, if E(A) is uniform, then it is clear that every subgroup is uniform. n

PROPOSITION 2.13. A uniform implies that A is indecomposable and A an inde-
composable injective implies that A is uniform.
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PROOF: (=) Let A= B®C, B #0, then A uniform and BN C = 0 implies
C=0.
(<): Let 0# BC A, then E(B) C A andso A = E(B)®C. But A indecomposable
implies E(B) =0 or C = 0. Since 0 # B it follows C =0 and so E(B) = A. Hence
A is an essential extension of each of its subgroups, that is A is uniform. [ |

Counterexample 2.14. If all AU(U € £) are uniform in Ab then A need not be
uniform in AbShL. Consider the locale £ =3, and an A in AbSh3 given by

zZ
4= |
zZ
We claim A is not uniform although each AU = Z is uniform in Ab.
Z 0
B=| c=|
0 Z
are non zero subgroups of A but certainly
0
BnC=l

0.

PROPOSITION 2.15. For any U € L the restriction functors Ry: AbShL —
AbSh | U preserve uniform groups.

ProOF: Let A € AbShL, be uniform. We claim A | U = RyA is uniform in
AbSh | U. Let B, C be non zero subgroups of A |U. Then BW #0 for W C U
and CV # 0 for some V C U. This means FyB and EyC are non-zero subgroups of
Eu(A|U) = Ty(A). Since Ty(A) C A [2] and A is uniform, EyB N EyC # 0, that
is (EyB N EyC)W for some W ¢ L. By definition of the functor Ey, [2], there exists
some W; C W, W, C U such that (BN C)W; #0, hence BNC # 0, thatis A| U is
uniform in AbSh | U. ]

PROPOSITION 2.16. Let C be purein B and B purein A such that A is a pure
exxential extension of C. Then B is a pure essential extension of C and A is a pure

essential extension of B .

PrROOF: Let a: B — E be such that ot is pure where i: C — B is the natural
embedding. Embed FE into its pure injective hull denoted by E. Since j: B — A is
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pure and E is pure injective, there exists @: A — E such that @j = ka.

i j

C — B —

d
E —
k

AP

Now @ji = kai and therefore @ji is pure. But ji pure essential implies that
@ is a monomorphism and so @j is a monomorphism. Since ka = @j, a is a mono
and hence i is pure essential. Now to see that A4 is pure essential extension of B, we
consider §: A — D such that §j is pure. Then §ji is pure, but ji pure essential
implies § is monomorphism, hence j is pure essential. [ ]

Remark. In [2], Banaschewski has shown that the pure subgroups of Z. are exactly
of the form Ty Z,. for U € £. The aim is now to characterise those u € £ for which
the pure subgroup Ty Z is essential.

PROPOSITION 2.17. For any U € L, TyZ. C Z is an essential subgroup if and
only if U is dense in L.

PROOF: (=) Consider 0 # V € L and 0 # a € ZcV. By hypothesis there
exist W < V and m € Z such that 0 # ma | W € (TyZ:.)W. By definition
of TyZ,, this means there is a cover W = ViEI W; such that for some W; C U,
0# (ma|W) | W; =ma| W; € ZcW;. That shows 0 # W; < UAYV, that is
UAV #0 and therefore U is dense in L.

(<) Consider any 0 # ¢ € Z,V for some V € L. Then V =V ., #n), and since U
isdensein £, 0£UAV =V, ., UA¢(n), therefore U A ¢(n) # 0 for some n. Thus
0#£¢ | (UA@(n)) € Ze(UA@(n)) = (TuZe)(U A ¢(n)) which shows TyZe C Z¢ is
essential. [ ]

PROPOSITION 2.18. A locale L is Boolean if and only if the only pure and essential
subgroup of Z¢ is Z¢.

Proor: (=) I L is Boolean, then £ has no dense elements and so the result
follows by 2.17.
(<) The given conditions imply that £ has no dense elements, hence £ is Boolean. R
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