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SCORING WITH CONSTRAINTS
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Abstract

This paper considers the solution of estimation problems based on the maximum likelihood
principle when a fixed number of equality constraints are imposed on the parameters of
the problem. Consistency and the asymptotic distribution of the parameter estimates are
discussed as n -y oo, where n is the number of independent observations, and it is shown
that a suitably scaled limiting multiplier vector is known. It is also shown that when this
information is available then the good properties of Fisher's method of scoring for the
unconstrained case extend to a class of augmented Lagrangian methods for the constrained
case. This point is illustrated by means of an example involving the estimation of a mixture
density.

1. Introduction

The method of maximum likelihood provides an important paradigm in many
modelling situations which require a parameterised class of models to be fitted to
observed data. Its general good behaviour, and the existence of an effective numerical
algorithm in the method of scoring, are now well understood [6]. Simple constraints
on the likelihood are familiar and include examples such as:

(1) Constraints defining discrete pdf's:

7r, > 0, i = 1 ,2 , . . . ,m; y^7f, — 1;

(2) Constraints imposed to ensure identifiability:

=-fi + a t + bj, i = l , 2 , . . . , n a , 7 = 1 , 2 , . . . , n b ,
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10 Michael R. Osborne [2]

I typical examples of such adjoined constraints include

(3) Constraints implied by additional information such as constraints of physical
origin (for example bound constraints)

Xii > 0, i = 1, 2 , . . . , p ; and

(4) Constraints imposed by exploratory techniques in which components of the
parameter vector are controlled or set in defining a sequence of test models.

Typically these can be taken into account by simple devices such as the elimination
of variables and the scoring algorithm can then be applied with little change. However,
there are cases where it can be convenient to treat the constraints explicitly. Examples
include:

(1) Likelihoods based on the Kent density [4]:

/ (y, | a, A) = exp (-a ry , - y,rAy,),
c(a A)

where the parameters a, A must satisfy the constraints

a7" A = 0,

trace(A) = 0;

(2) Estimating p x p systems of ordinary differential equations from observations
made on a solution trajectory in the presence of noise. Here p additional pieces of
information are needed to parameterise the set of possible solutions. This can be
done by adjoining suitable auxiliary conditions [3], but also by imposing the suitably
discretized differential equation [1] as a system of constraints. This latter approach
has been explored further in [7]. It would appear to have significant advantages; and
(3) Testing complex hypotheses in contingency tables [10]. Here the y,/n give

consistent estimates of the frequencies 7r,. This information can be used to obtain
consistent estimates of the multipliers.

This paper is concerned with the application of scoring when there are explicit
constraints on the likelihood. The scope of the approach used extends to problems
where an a priori consistent estimate of the Lagrange multipliers associated with the
constraints is known. However, consideration here is restricted to the case where the
consistent estimate is provided by zero. In other cases it is necessary to modify the
algorithm to take explicit account of constraint second derivatives. The basic data for
the class of estimation problem considered consists of:
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[3] Scoring with constraints 11

(1) Observations y,, i = 1,2,... , n, indexed by an associated configuration de-
scriptor th i = 1, 2 , . . . , n, which could be time for example. Observations made at
different times are assumed to be independent;
(2) A density / (t, r}(t, P), y) giving the distribution of the observations y,. Here

t](t, P) can be considered a model for the process generating the sample values y,,
and it is parameterised by p e Rp;
(3) It is assumed that there is a true parameter vector p*. It will be necessary to

distinguish between expectations computed for different values of p, and this will be
done using the notation £$. If the true p is used then the expectation is written <£;
(4) Constraints providing additional information about the parameter vector p.

These may be either linear,

CP = d, (1)

where C e Rp ->• Rm is required to have full rank m < p, and d e Rm; or nonlinear,

gi(P) = 0, i = l , 2 , . . . , m , (2)

where the Vpgiip*) are linearly independent; and
(5) It is assumed that the limiting situation corresponding to increasing n without

bound can be conceptualised. This requires a method for assigning the observation
points ti and this could be either random or deterministic. In either case it is assumed
there exists a density w(t) describing the limiting process in the sense that

i

q(t)dw(t), n -> oo, (3)

for all suitably smooth functions q(t).

The method of maximum likelihood seeks to estimate /?* by maximizing the like-
lihood

Here this is to be maximised subject to the constraints (1) or (2). Let

L,(t,, P, y,) = log/ (th r,(th P), y,), (4)

then the problem is equivalent to minimizing

Li(ti,P,yi) (5)
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subject to the same constraint set.
The main results obtained are as follows. It is shown that the Lagrange multipliers

associated with the equality constraints are statistically orthogonal to the estimates of
the natural problem parameters, that consistent estimates of suitably scaled Lagrange
multipliers are available a priori, and that, as a consequence, augmented Lagrangian
methods appear to offer attractive solution procedures which inherit the good proper-
ties of the scoring method in this case. In particular, the augmented Lagrangian can be
used as a merit function in the line search in order to stabilize the computation. These
good properties are not inherited by the straightforward application of scoring as an
obvious modification of Newton's method applied to the usual Lagrangian formulation
of the problem. This approach does lead to an algorithm with good local convergence
properties, but it lacks a suitable merit function to use in the line search. Thus scor-
ing here loses one of the most attractive features it possesses in the unconstrained
case, and, in this respect, will be seen to compare unfavourably with the approach
based on the augmented Lagrangian. This approach is illustrated by applying the
sequential Powell-Hestenes technique to estimate the components of a mixture in the
case that the proportions are prescribed functions of the individual population means.
The Powell-Hestenes technique involves a sequence of minimizations of the objective
function with multiplier estimates being updated after each minimization [5]. Scoring
is applied to minimize the augmented Lagrangian in each of the sequence of steps, and
its characteristic fast rate of convergence provided n is large enough is demonstrated.

The plan of the paper is as follows. In the next section the properties of the problem
are developed in the case of linear constraints and the naive use of a scoring algorithm
discussed. Then the possibility of using an augmented Lagrangian formulation of
the problem is explored first for linear constraints and then for nonlinear constraints
where additional problems resulting from constraint curvature are considered. The
final section describes the application to estimating a mixture of densities. A derivation
of the main formulae of the Powell-Hestenes method is summarised in an appendix.

2. Scoring with linear constraints

The problem considered in this section is

min Kn(fi); CP = A. (6)
p

It is considered first because the vanishing of the constraint curvature makes this
somewhat simpler to treat than the general case. In practice it may well be that
the linear constraints are used to solve for a subset of the variables. The resulting
unconstrained system can then be minimised by scoring in the usual way. Here the
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necessary conditions for a minimum give

VfiKn=STC, (7)

where £ is the vector of Lagrange multipliers for the equality constraints. Equation
(6), together with the constraint equations, gives p + m equations for the p + m
unknowns ft and £. The limiting form for this equation as n -> oo is obtained by
considering

l X = (S/nf C.

The first term on the left-hand side tends to zero as n -* oo by the law of large
numbers. Making use of (3), the second has the limiting form

Jo

Thus the limiting system is

- / '
Jo

(8)

where £* = linv+oo £/n. This equation has the solution

as a consequence of the standard identity ^{V^L(f, fi, y)} = 0 and the rank condition
on C. It is an isolated solution provided the Jacobian of the system is nonsingular.
This requires that the augmented matrix

be nonsingular where the information matrix ^ is given by

J = - f <£ {V/L(r, p, y)} dw(t) = [ <£ [V?L
TVfiL] dw(t). (9)

Jo Jo

A form of second-order sufficiency will serve. Let C have the orthogonal factorization

CT = [Ql | G2] [ Q ] . (10)

then Aug(/J*) is nonsingular provided:
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(1) U is nonsingular—a consequence of the linear independence assumption; and
(2) Q\^ Qi is nonsingular.

If 0n minimizes (6) then the argument in [6] serves to prove consistency almost
surely as n -*• oo. Here it is convenient to apply Newton's method with 0 = 0* as
initial guess to the system comprising

VpK«Q2=0 (11)

and the constraint equations (1). Equation (11) is obtained from (8) using the factor-
ization (10) to eliminate the Lagrange multipliers.

Scoring can be defined for either system by applying Newton's method with the
variation that Vp2Kn is replaced by its formal expectation

'iVfiL,}. (12)

For example, the system corresponding to (11) is

C8fi = -(C0-d).

The left-hand side matrix is nonsingular if and only if the corresponding augmented
matrix is nonsingular. The rate of convergence for the resulting iteration is most
readily analysed by considering it as the fixed point iteration

(13)

Let nr{A} denote the spectral radius of the matrix A, that is, the magnitude of the
largest eigenvalue in modulus. Then the condition for an attractive fixed point at
0 = 0n is

UJ

= m u~Kr" *2 V" *-'=» -' - ' - « ^ - v < i

as (11) holds at 0n. This condition is satisfied for large enough n almost surely. In
fact the much stronger result m -*• 0 holds. This follows by consistency (m is not
changed much by evaluating it at 0*) followed by an application of the law of large
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numbers. This shows that scoring is locally an effective algorithm for maximizing
a likelihood subject to linear equality constraints, and that the rate of convergence
asymptotically approaches second order as n —> oo. However, an important feature
of scoring for unconstrained problems is that Kn provides a natural merit function
which can be used in a linesearch strategy to stabilize the computation and improve its
global properties. This follows because VpKn8 < 0 whenever <#„ is nonsingular and
P =£ fin. It is not clear that a similar effective merit function exists in the constrained
case. The emphasis here is on 'effective'. The situation corresponds to that for
Newton's method for solving f = 0. Here J^f? provides a merit function which is
always available, but which suffers from being poorly scaled, and this often translates
into poor performance in practice [2]. In our case, different scales for the likelihood
function and the constraints have the potential to add further complications.

Distributional properties for fin can be derived using (11). The argument is sketched
below. For additional details see [9] (for example). Expanding (11) gives

o = QI j-Lv^n(/n
r + ^xonv^fl , - n + ^C

o =

An application of the central limit theorem shows that asymptotically

^fiKn(n
T ~ N{0, S). (14)

Using (3), (9) and noting that /?„ — ft* is in the span of the columns of Q2, gives the
asymptotic result

-lQl). (15)

The distribution of the multiplier vector £ can be found from (7). Expanding this in
similar fashion gives

(16)

It follows that %/y/n is asymptotically normally distributed with bounded variance.
A consequence is that £//i is a \j-Jn consistent estimate of £* = 0.

https://doi.org/10.1017/S1446181100011561 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011561
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REMARK 2.1. The following calculation is of interest (terms small in probability
are ignored without further comment):

lSQ2)-1Ql\

= 0.

This shows that %n/y/n and y/n(/3n - /J*) are orthogonal parameter vectors.

3. Computation of pn

Direct application of scoring to solve the necessary conditions (7) does not appear
too attractive because of the need to find a suitable monitor function to improve the
global convergence properties of the method. Thus it appears to have similar utility
to that of Newton's method in this application, but it does require one less order of
differentiation. However, the a priori knowledge that £* = 0 may make attractive the
Powell-Hestenes method (also known as the augmented Lagrangian method) [5]. The
idea here is to proceed iteratively by two steps at each stage. In the first step, given
o/° and 0('\ an estimate /J(l) of /§„ is computed by minimizing

Hntf, 9
li\ o/'>) = -Kn + to™ £ (cjp - dj + 6»(")2 . (17)

Here 80) is an auxiliary vector of parameters and a> is a penalty parameter which
governs the rate of convergence of the two-step method (which is geometric with ratio
l/co) and must be chosen large enough. In the second step, either co is increased to
increase the rate of convergence or, more usually, 9 is adjusted to make fi satisfy the
constraint equations. The appeal of the method is in the simplicity of the formula for
updating 6 when co is large:

0«+» <_ 0«> + Q8(0 - d. (18)

A derivation of this formula is given in Appendix 1 for completeness. The necessary
conditions for a minimization of (17) with respect to /8 give

- V,*„ + 2a>« £ (cjp - dj + *«) cj = 0.
" 7 = 1
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This must be equivalent to the Lagrange multiplier equations (7) when ft = pn because
the constraints are satisfied at (}„. It follows that 2co9j estimates £*, j = 1 ,2 , . . . , m.
The importance of a good estimate follows from the result sketched in Appendix 1
that if icoOJ0 - (£„),- = e, then

Newton's method applied to minimize (17) gives a correction 8H satisfying

1
VK 2 (19)

One-step consistency is an immediate consequence of the argument used in [6]. It is
only necessary to start the Newton iteration with ft = fi* and u>0m = 0, and to note
that, as the constraints are satisfied initially, the right-hand side of (19) is tfil/y/n)
in probability as a consequence of (15). Now, because the initial estimates are
G{ 1 /*Jn) accurate, and because the estimates are improved by a factor G{\ /a>) at each
complete iteration provided the 8 update is acceptable, it follows that Cfim — d must
be (?(l/(a)*Jn)) if (18) is to give the required improved estimate for 9(2). Choosing
co = &(^/n) appears a convenient choice which should ensure both rapid convergence
of the 6{J) and 1/'*/n consistency of the estimator of £*. In this context, scoring
appears an attractive method for minimizing (17) with respect to /3 given 6. The idea
is to use (12) to replace -Vp2Kn in (19) by J^. This gives a correction 8S satisfying

\jn + 2co J2 CjcJ 8S = -V,ffB
r. (20)

The rate of convergence of the corresponding fixed-point iteration can be calculated
in the same way as before. We have

, - l

at the minimum V^/// = 0, so the condition for f}PH, the minimizer of (17), to be a
fixed point becomes

UJ < 1. (21)

Here the contribution from the constraints has cancelled in the numerator, so the left-
hand side —>• 0 as n —> oo, assuming as before that the estimates are consistent and

https://doi.org/10.1017/S1446181100011561 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011561


18 Michael R. Osborne [10]

that the law of large numbers applies. Thus the existence of a consistent estimate of f *
to ensure that fiw is a consistent estimator of ft* is critical to the argument. This shows
that scoring can be expected to have a good rate of convergence for n large enough.
But another attractive feature of scoring in the unconstrained case is also available
because here the Powell-Hestenes objective function can be used directly to monitor
progress when a linesearch is used to improve global convergence characteristics.
This follows because

VpHn8s = -VpHn{Jn + 2(oCTCylW0Hn < 0, (22)

provided the generic condition of Jn being positive definite is satisfied. There are
some negative aspects, however. Choosing 10 = G(-Jn) means that the condition
number of (<?„ + 2coCTC) is &(yfn) provided Aug(^) is nonsingular, and reflects
some imbalance in the scaling of the objective function Hn.

4. Extensions to nonlinear constraints

If the constraint equations are nonlinear then details of the results in the linear case
go over largely unchanged, but the arguments become somewhat more complicated.
The estimation problem is written

min !*„(/?); g(/5) = 0. (23)
fi n

The necessary conditions become

^ T (24)

g(/3) = 0.

Let

Pifi) = Vfig{fi)T(Vt>gVfigTrlVfig(P) (25)

and define V* : Rp -+ RP~m by

V^g(/S*)V* = 0, V*TV* = I. (26)

Then V/S € B(p, fi*), with p small enough so that V^g has its full rank in B,

V(fi) = (I - P(fi)) V* -> V*, 0-+ p, (27)
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and V(fi) inherits the smoothness of V^g, fi € B. This permits a reduced system
analogous to (11) to be defined in the nonlinear case. This is

-VPK,,V(P)=O, (28)
n

g(P) = 0.

It reduces to (11) in the linear case if the choice V* = Q2 is made. It has fin as
an isolated solution provided the Jacobian is nonsingular. It is the right system to
use in order to derive the properties of the parameter estimates; but compared to the
linear case there is an extra term to be considered. This comes from differentiating
V(f}). However, the law of large numbers can be used to show this is small so the
corresponding results hold almost surely provided n is large enough. The arguments
used to show consistency and to derive limiting distributions also follow through in
a similar manner. As before, the limiting equations have the solution p = ft* and

r = o.
To develop the extension of the Powell-Hestenes algorithm, the following defini-

tions are appropriate:

i m

HH(fi, 6(i\ «<•">) = -Kn+ a>(i) Y, (gj 08) + 6f ) 2 , (29)
n j=i

(30)

n =
 l-%Kn + 2a/" J2 (VpgJVpgj + {8J W + Of) %g>) •
n _

In the scoring algorithm it is desirable to avoid calculating second derivatives also in
the constraint terms. To see that this is possible here consider the scoring correction
8S given by

[ „ f n r n 1 „ T
\j?n+2u>) VfjgJVpgj \ 8S = -V^H/. (32)

I U \
The associated fixed-point iteration is

i 1-1

The condition for /5(0 to be an attractive fixed point of the /'th step of the Powell-
Hestenes iteration requires the variational matrix associated with the iteration to have
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spectral radius < 1. The variational matrix is

J £ l
2co

In this expression the term ^V^ATn — JPn gets small by the usual argument involving
the law of large numbers provided that /Jw is 1/V" consistent for each i, and that
the extra term in the nonlinear case involving the constraint second derivatives is of
similar order. This requires that a>(l)0(l) is 0(1/^fn) at most for each i. This follows
because £n/n is a consistent estimator of £* = 0 so that the error in the initial estimate
of fn/n by co9m obtained by setting 9m = 0 is of the right order. Also the rate of
convergence result shows that this estimate improves by a factor of O(\/a)) in each
outer iteration. Thus g(/J(l)) can be at most (1/co^/n) andg(/8(0) = o(l/a)y/n), i > 1,
in agreement with the estimates of ||j8(0 — y3|| given in the appendix. Given this, then

nr(/<'">)-• 0, n^oo, i = l ,2 (33)

The significant conclusions are:

(1) The Powell-Hestenes algorithm generates l/y/n consistent estimates of the so-
lution variables at each combined step of the iteration, i = 1,2,...;

(2) The convergence of the outer iteration has a characteristic 6(\l *Jn) rate provided
co is chosen appropriately. Thus there is little point in proceeding beyond the first
few steps of the process; and

(3) The convergence of the iterates in each of the scoring steps has the characteristic
speed associated with the method, provided n is large enough.

5. An example

Consider the mixture density

(y - Mi)2

expf = ; e x p
V27TO-, Il\+fl2 2<7,

1 ix2 (y -
+ —== exp ——.

V27r<72 Mi + M2 2<72'
:
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Random numbers generated according to a realisation of this density can be considered
also to be generated according to the density

(y — Mi)2 1 (y — M2)2
,exp —-2— + /—- «2exp — - j — ,

where

a = ["it Ml) &\i a2> M2> o?\y

subject to the constraints

gi(a) = a, - j — = 0, g2(a) = a2 —— = 0.

Thus it should be possible to recover fi{, \x2,ox and o2 from data generated according
to fR by considering the likelihood defined by / subject to the above constraints.

Let
1 (y — /x,)2

e,(y) = / _ exp —2—, i = 1, 2.

Then

/(yla) =

We have:

VaKn(a) = --y,1r^—y!, 04)

where

yi - /*i / (y , -Mi ) 2

1, a2 j — , a2 j ))e2 \.

To avoid computing the expectation of the Hessian note that the operations of taking
expectations and summation can be interchanged so that

i = l

" E " {V«LJV°L> - S {VaLjVaL,}} + -
n <=i n i
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This shows that the expected Hessian Kn can be computed to within working accuracy
(that is, to within the errors committed in using the law of large numbers) by a sum of
quantities computed using the observed data.

In this case the augmented Lagrangian is

g,.(a)
1=1

It follows from (34), (35) and (32) that the scoring method using the above estimate
for the expected Hessian gives a set of equations for the correction Ss which can be
written as the linear least squares problem:

minr rr ;

r = y/2a>(g2 (36)

Note that the constraint contributions appear first. This is because they have a larger
scale than the likelihood contributions, and this ordering is advisable for numerical
stability when a QR factorization is used to solve the least squares problem [8].

Numerical results are presented for computations carried out using ^x = 1.0,
fj.2 — 2.0 for two cases:

• O\= CT2 = 0-5 and
• o\ = a2 = 0.7.

A random number generator was used to produce random numbers to provide data
on the mixture density for n = 100, 1000 and 10000. Results for two different seeds
for the uniform generator d rand4 8 are displayed in the tables given below. In both
the estimated values and a summary of the iteration progress are given. The latter
is given in the column headed 'P-H steps' which summarises the number of scoring
iterations in each Powell-Hestenes step. In each case the exact values were taken as
starting values and appear to provide a fair test. The estimate computed by the 'inner'
scoring algorithm is accepted when

where f is the data vector in (36) and tol = 10~4. The 'outer' iteration is terminated
when || g || < tol. As expected, the performance of the algorithm improves significantly
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TABLE 1. Results for first seed.

23

n
100
1000
10000

100
1000
10000

Mi
0.9079
1.0289
1.0106

0.5018
0.9555
1.0211

M2
2.0137
2.0104
2.0048
1.9324
2.0023
2.0106

0.4209
0.4761
0.4870

0.7718
0.6583
0.7040

0.4579
0.4948
0.4952

0.6688
0.6564
0.7013

P-H steps
(3,2,2,1)
(3,2,1)
(2,2)

17 P-H steps
(3,2,1)
(2,2)

T A B L E 2. Results for second seed.

n
100

1000
10000

100
1000

10000

Mi
1.0090
0.9749
0.9652

1.1709
1.1462
1.0372

M2
2.0933
2.0067
2.0020

2.0311
1.9789
1.9894

O\

0.4233
0.4734
0.4749

0.6723
0.7495
0.7094

CT2
0.4489
0.5079
0.4934

0.6234
0.7192
0.6941

P-H steps
(5,2,2,1)
(2,2,1)
(2,2)

(5,2,2,1,1,1,1)
(3,2,1)
(2,2)

as n is increased. Note that the sample replacement (35) for the expected Hessian
does not appear to have caused any deleterious effects in the scoring iteration.
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Appendix 1: The Powell-Hestenes method

The computation of the Powell-Hestenes correction is carried out for the linear
constraint case for simplicity. The necessary conditions for a minimum of Hn give

-VpKn + 2o)T(cJp - di + 0,)c,r = 0
n ir-f

1=1

and these determine f$ as a function of 6. The aim is to adjust 9 so that

QJ(0) - d = 0.

If a Newton iteration is used to solve this equation then a correction to the current 6 is
given by

- d ) .

To calculate dfi/dO, differentiate the necessary conditions to obtain the equation

1 1 f)R
-VlKn + 2coCTC\ - £ = -2coCT.

The special form of the right-hand side should be noted. Transforming this equation
using the factorization (10) gives

The inverse of QT^1pHn Q when co is large is given by

https://doi.org/10.1017/S1446181100011561 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011561


•(=)•

[17] Scoring with constraints 25

Thus

so that

Substituting in the Newton step gives

The advantage of a good estimate for the Lagrange multipliers can be seen by arguing
in a similar fashion. Let 2w#, = A., 4- eit where \t is the exact multiplier and fi the
solution of the constrained problem. Then

-VfiKn(P) + 2co Y(CP - d + e)Tc = 0,

VK(P)
n

Subtracting, and arguing as above, gives

\\P - P\\ = 0{\\e\\/<o).
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