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Abstract

We study function multipliers between spaces of holomorphic functions on the unit disc of the complex
plane generated by symmetric sequence spaces. In the case of sequence `p spaces we recover Nikol’skii’s
results [‘Spaces and algebras of Toeplitz matrices operating on `p’, Sibirsk. Mat. Zh. 7 (1966), 146–158].
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1. Introduction

Let H(D) denote the space of holomorphic functions on the unit disc D of the complex
plane. For a fixed p ∈ [1,∞], consider a space F `p given by

F `p = { f ∈ H(D) : { f̂n} ∈ `p},

where { f̂n} denotes the sequence of Taylor coefficients of f . Note that the F `p are
Banach spaces when equipped with a norm induced from `p, that is, ‖ f ‖F `p = ‖{ f̂n}‖`p .
In 1966, Nikol’skii studied function multipliers between F `p spaces (see [5]). To be
more precise, he investigated spacesM(F `p,F `q) of all functions holomorphic on the
unit disc such that their pointwise multiplication with any F `p function is an element
of F `q. Following Nikol’skii’s notation, we will writeM(p, q) forM(F `p,F `q). The
main result from [5] can be presented as the following theorem.

Theorem 1.1. Suppose that p, q ∈ [1,∞]. Then:

(i) M(p, q) , {0} is equivalent to p ≤ q;
(ii) M(p,∞) =M(1, p′) = F `p′ , where 1/p + 1/p′ = 1 and p ∈ [1,∞);
(iii) M(p, p) ⊂ H∞, the space of bounded holomorphic functions on D;
(iv) M(p, q) =M(q′, p′) ⊂ F `q ∩ F `p′ .
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The aim of this paper is to prove more general results in the setting of symmetric
sequence spaces. This problem of function multipliers can be reduced to the study of
convolution multipliers between symmetric sequence spaces. We note that pointwise
multipliers between symmetric sequence spaces were used in [1] to investigate
eigenvalues of operators between symmetric spaces. Schur multipliers between
symmetric sequence spaces were studied in [7].

2. Preliminaries
Throughout the paper, by a Banach sequence space we mean a complex Banach

lattice E modelled on N0 = N ∪ {0} containing sequences x with supp x = N0. A
Banach sequence space E is said to be symmetric if ‖x‖E = ‖x∗‖E for all x ∈ E, where
x∗ as usual stands for the nonincreasing rearrangement of x, and E is called maximal
provided its unit ball BE is closed in the pointwise convergence topology on the space
ω := CN0 of all complex sequences. In what follows, for any sequence {xn}

∞
n=0 ∈ ω we

write {xn} to simplify the notation.
The Köthe dual of a Banach sequence space E,

E′ =

{
{xn} ∈ ω :

∞∑
n=0

|xnyn| <∞ for all {yn} ∈ E
}
,

equipped with a norm ‖x‖E′ := supy∈BE

∑∞
n=0 |xnyn| is a maximal Banach sequence space

which is symmetric provided E is. Recall that if E is separable, then the Banach
dual space E∗ is order isometrically isomorphic to E′ and E′′ = E if and only if E is
maximal. For more information on Köthe dual spaces of Banach function lattices, we
refer the reader to [3].

Let {en} denote the standard unit vector basis in c0(N0). We note that if E is a
Banach sequence space modelled on N0, then en ∈ E for each n ∈ N0. Observe that if
‖en‖E = 1 for each n ∈ N0, we have `1 ↪→ E ↪→ `∞ and the norms of the continuous
inclusions are equal to 1. In what follows, we consider symmetric sequence spaces E
for which ‖en‖E = 1 for each n ∈ N0.

The two most classical examples of symmetric spaces of the above type, apart from
the `p spaces, are Lorentz and Orlicz sequence spaces. Let w = {wi} ∈ c0\`

1 be a
decreasing sequence such that w1 = 1. Then, for p ∈ [1,∞), the Lorentz sequence
space d(w, p) is defined by

d(w, p) =

{
x = {xn} : ‖x‖w,p =

( ∞∑
n=0

(x∗n)pwn

)1/p
<∞

}
.

Let ϕ be an Orlicz function, that is, ϕ is an even, continuous, increasing, convex
function defined on [0,∞) such that ϕ(0) = 0, ϕ(1) = 1 and limt→∞ ϕ(t) =∞. Then the
Orlicz sequence space `ϕ is defined as the space of all sequences x = {xn} such that

‖x‖ϕ = inf
{
λ > 0 :

∞∑
n=0

ϕ
( xn

λ

)
≤ 1

}
.

For more information on these spaces, see [4].
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Suppose that E is a symmetric sequence space. By F E, we denote the space of
holomorphic functions on the unit disc D given by

F E :=
{

f ∈ H(D) : f (z) =

∞∑
n=0

f̂nzn, { f̂n} ∈ E
}
.

It can be easily checked that F E equipped with the norm ‖ f ‖ = ‖{ f̂n}‖E is a Banach
space. By M(F E,F F), we will denote the set of all functions f ∈ H(D) called
multipliers such that for every g ∈ F E we have f g ∈ F F.

Given two arbitrary sequences x = {xn} and y = {yn} in ω, the convolution of x and
y, denoted by x ∗ y, is the sequence defined by

x ∗ y =

{ n∑
k=0

xkyn−k

}
.

Suppose that f ∈ H(D) with f (z) :=
∑∞

k=0 f̂kzk for all z ∈ D. It is easy to see that
f ∈ M(F E, F F) if and only if for every g ∈ F E, g(z) :=

∑∞
k=0 ĝkzk we have

{ f̂k} ∗ {̂gk} ∈ F. From this observation, describing function multipliers between
spaces F E and F F is equivalent to describing sequence convolution multipliers
for symmetric sequence spaces E and F. We will denote the latter by M(E, F).
Furthermore, let M(E) :=M(E, E). For every µ ∈ M(E, F), we can construct a
bounded operator Tµ : E → F by the formula

Tµ(x) = µ ∗ x for x ∈ E.

Thus, we can equipM(E, F) with the operator norm

‖µ‖M(E,F) = sup{‖Tµ(x)‖F : ‖x‖E ≤ 1}.

The following two operators will be of great importance. For a given n ∈ N0, we
define Pn : ω→ ω and σn : span({e0, . . . , en})→ span({e0, . . . , en}) by the formulas

Pnx :=
n∑

k=0

xkek for x = {xk} ∈ ω

and

σn

( n∑
k=0

ykek

)
:=

n∑
k=0

yn−kek for (y0, . . . , yn) ∈ Cn+1.

3. Multipliers

We start with some basic properties of convolution multipliers between symmetric
sequence spaces.
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Proposition 3.1. Let E, F,G be symmetric sequence spaces. Then:

(i) M(E, F) ⊂ F;
(ii) E ⊂ F if and only if ek ∈ M(E, F) for each k ∈ N;
(iii) E ⊂ F if and only if `1 ⊂M(E, F);
(iv) E ⊂M(F,G) if and only if F ⊂M(E,G);
(v) M(`1, E) = E.

Proof. Statements (i) and (ii) are easy consequences of the observation that ek ∗ y =

{0, 0, . . . , 0, y0, y1, . . . }, where 0 appears k times. Statement (iv) is an immediate
consequence of the definition ofM(E, F).

Next, to prove (iii), observe that, by (ii), it is enough to show that E ⊂ F implies
`1 ⊂ M(E, F). Suppose that E ⊂ F. Denote by S the right-shift operator given by
S y = {0, y0, y1, . . .} for any y = {yn} ∈ ω. Then ek ∗ y = S ky for each k ∈ N0 and y ∈ ω.
Since E is symmetric, S : E → E and ‖S ‖ = 1. The same applies to S k for each k.
Then, for a = {ak} ∈ `

1,

Ta(y) = a ∗ y =

∞∑
k=0

akS ky for y ∈ E.

We need to show that ‖Ta(y)‖F = ‖a ∗ y‖F <∞. Since E ⊂ F, it follows from the closed
graph theorem that the inclusion map i : E → F is bounded. Let C = ‖i‖E→F . Then,
for all y ∈ E,

∞∑
k=0

‖akS ky‖F ≤
∞∑

k=0

|ak| ‖S ky‖F ≤ C
∞∑

k=0

|ak| ‖S ky‖E ≤ C
∞∑

k=0

|ak| ‖y‖E = C‖y‖E‖a‖1,

which shows that the series is absolutely convergent. Since E is a Banach space,

‖a ∗ y‖F ≤
∥∥∥∥∥ ∞∑

k=0

akS ky
∥∥∥∥∥

F
≤ C

∞∑
k=0

‖akS ky‖E ≤ C‖y‖E‖a‖1

and the proof of (iii) is finished.
As to the proof of (v), from (i) we know thatM(`1, E) ⊂ E. We have to show the

reverse inequality. Bearing in mind (iv), it suffices to show that `1 ⊂M(E, E), which
follows from (iii). �

Now we will focus on the question when M(E, F) = {0}. Let us start with the
necessary definitions. Let E be a symmetric sequence space. Following [2], we define
the upper inclusion index γE and the lower inclusion index δE by the formulas

γE = inf{p ≤ ∞ : E ↪→ `p}, δE = sup{p ≤ ∞ : `p ↪→ E}.

The next proposition follows from the definition of multipliers and Theorem 1.1(i).
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Proposition 3.2. Let E, F be symmetric sequence spaces.

(i) IfM(E, F) , {0}, then δE ≤ γF .
(ii) If γE < δF , thenM(E, F) , {0}.
(iii) If γE = δF , E ↪→ `γE and `δF ↪→ F, thenM(E, F) , {0}.

For `p spaces, δ`p = γ`p = p, which gives the equivalence of Theorem 1.1(i).
A celebrated result of Schur (see [6]) states that M(`2) = Ĥ∞, where Ĥ∞ is the

space of all sequences of Taylor coefficients of bounded holomorphic functions on D.
Based on some ideas from [6], we prove the following result.

Theorem 3.3. Let E be a symmetric sequence space. ThenM(E) ⊆ Ĥ∞.

Proof. Let µ ∈ M(E) and C = ‖µ‖M(E). Then

‖µ ∗ x‖E =

∥∥∥∥∥{ n∑
k=0

µk xn−k

}∥∥∥∥∥
E
≤ C‖x‖E for x ∈ E.

First we show that for all x ∈ E the following inequality holds:∥∥∥∥∥{ ∞∑
k=0

µk xn+k

}∥∥∥∥∥
E
≤ C‖x‖E . (3.1)

Fix n ∈ N. Then, since ‖Pnx‖E ≤ ‖x‖E for all x ∈ E and n ≥ 1,

‖Pn(µ ∗ Pnx)‖E =

∥∥∥∥∥ n∑
j=0

( j∑
k=0

µk x j−k

)
e j

∥∥∥∥∥
E
≤ C‖Pnx‖E .

Now consider the previous inequality with σnPnx instead of Pnx, that is, interchange
xi for xn−i. This gives ∥∥∥∥∥ n∑

j=0

( j∑
k=0

µk xn− j+k

)
e j

∥∥∥∥∥
E
≤ C‖σnPnx‖E .

By relabelling s = n − j we obtain for all x ∈ E,∥∥∥∥∥ n∑
s=0

( n−s∑
k=0

µk xs+k

)
en−s

∥∥∥∥∥
E
≤ C‖σnPnx‖E .

Since E is a symmetric space, we can rearrange coordinates without changing the norm
and so ∥∥∥∥∥ n∑

s=0

( n−s∑
k=0

µk xs+k

)
es

∥∥∥∥∥
E
≤ C‖σnPnx‖E .

Fix m ≤ n and observe that then∥∥∥∥∥ m∑
s=0

( n−s∑
k=0

µk xs+k

)
es

∥∥∥∥∥
E
≤ C‖σnPnx‖E .
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Combining ‖σnPnx‖E = ‖Pnx‖E ≤ ‖x‖E with the fact that the above inequality is valid
for all n ∈ N, we arrive at ∥∥∥∥∥ m∑

s=0

( ∞∑
k=0

µk xs+k

)
es

∥∥∥∥∥
E
≤ C‖x‖E

for each positive integer m; thus finally we get the desired inequality (3.1).
For z ∈ D, set x := {zn}. Since `1 ⊂ E, we have x ∈ E. From (3.1),∥∥∥∥∥{ ∞∑

k=0

µkzn+k
}∥∥∥∥∥

E
≤ C‖{zn}‖E . (3.2)

Furthermore, observe that
∞∑

k=0

µkzn+k = zn
∞∑

k=0

µkzk := zn fµ(z).

Combining the above with (3.2),

| fµ(z)| ‖{zn}‖E = ‖{zn fµ(z)}‖E ≤ C‖{zn}‖E ,

which gives | fµ(z)| ≤ C for all z ∈ D. Thus, f ∈ H∞(D) and ‖ fµ‖∞ ≤ C = ‖µ‖M(E). �

We need another piece of terminology and a lemma. Let D be a domain of the
bilinear form 〈· , ·〉 given by

〈x, y〉 :=
∞∑

k=0

xkyk

for all (x, y) ∈ D with x = {xn} and y = {yn}. We will say that 〈x, y〉 is meaningful
provided that it is well defined (that is, (x, y) ∈ D).

Lemma 3.4. For sequences x, y, µ ∈ ω, the equality

〈µ ∗ x, y〉 = 〈µ ∗ y, x〉

holds whenever the terms in the equation are meaningful.

Proof. We have

〈µ ∗ x, y〉 =

∞∑
k=0

(µ ∗ x)nyn = lim
n→∞

((µ ∗ x) ∗ σnPny)n

= lim
n→∞

(µ ∗ (x ∗ σnPny))n = lim
n→∞

(µ ∗ (σnPnx ∗ y))n

= lim
n→∞

(µ ∗ y ∗ (σnPnx))n = lim
n→∞

((µ ∗ y) ∗ (σnPnx))n

= lim
n→∞

(σnPn(µ ∗ y) ∗ x)n =

∞∑
k=0

(µ ∗ y)nxn = 〈µ ∗ y, x〉. �
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Theorem 3.5. If E, F are maximal symmetric sequence spaces, then M(E, F) =

M(F′, E′).

Proof. Suppose that µ ∈ M(E, F). Since F′′ = F isometrically, for any x ∈ E,

‖µ ∗ x‖F = sup
y∈BF′

|〈µ ∗ x, y〉| ≤ C‖x‖E .

Hence, for all x ∈ BE and y ∈ F′,

|〈µ ∗ x, y〉| ≤ C‖y‖F′ ,

which yields
sup
x∈BE

|〈µ ∗ x, y〉| ≤ C‖y‖F′ .

Using Lemma 3.4,
sup
x∈BE

|〈µ ∗ y, x〉| ≤ C‖y‖F′ .

Thus, ‖µ ∗ y‖E′ ≤ C‖y‖F′ , which completes the proof. �

The following corollary is an immediate consequence of Proposition 3.1(v) and
Theorem 3.5.

Corollary 3.6. If E is a maximal symmetric sequence space, then E′ =M(E, `∞) and
E =M(E′, `∞).

Following the method of [5, Theorem 6], we will prove the following theorem.

Theorem 3.7. The Banach space M(E) contains an isomorphic copy of `1 for any
symmetric sequence space E.

Proof. Given λ > 1, let {nk} be a sequence of positive integers such that nk+1/nk ≥ λ
for all k ∈ N0. Define

M = {µ = {µn} ∈ M(E) : µi = 0 for i , nk, k ∈ N0}.

Since E ↪→ `∞, it follows that E ↪→ ω. This fact easily yields that M is a closed linear
subspace ofM(E). Then, from Theorem 3.3 and Sidon’s theorem (see [8, Theorem 6.1
in Ch. VI]), we see that M ⊂ `1. Having in mind that ‖x‖1 ≥ ‖x‖M(E) for all x ∈ `1 and
using the closed graph theorem, we obtain the equivalence of the norms ‖ · ‖1 and
‖ · ‖M(E) on M. Consequently, we conclude that M is isomorphic to `1. �

It is well known that every closed subspace of a reflexive Banach space must be
reflexive. Hence, from Theorem 3.7, we get the following corollary.

Corollary 3.8. The Banach spaceM(E) is not reflexive for any symmetric sequence
space E.
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e-mail: bartsta@amu.edu.pl

https://doi.org/10.1017/S0004972717000235 Published online by Cambridge University Press

https://orcid.org/0000-0002-2181-1131
mailto:bartsta@amu.edu.pl
https://doi.org/10.1017/S0004972717000235

	Introduction
	Preliminaries
	Multipliers
	References

