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FUNCTORIAL RADICALS AND NON-ABELIAN TORSION

by SHALOM FEIGELSTOCK and AARON KLEIN

(Received 1st May 1979)

Radicals appear in many algebraic contents. For modules over a ring, they give rise to
pre-torsion and torsion theories, Goldman (5), Lambek (14). In the category of groups,
Kurosh, Plotkin and others have introduced radicals (6), (13), (21), but unlike the radicals
in module theory these radicals are not necessarily functorial, as for example the nil radical
and the Hirsch-Plotkin radical (6). The functorial method in module theory has been
extended to abelian categories, Dickson (2), to the category of nilpotent groups, Hilton (8),
Warfield (25), and to the category of groups, Plotkin (22), and to general categories,
Wiegandt (26), Holcombe and Walker (10).

In this paper the theories for groups and for modules are united by gathering both types
of algebraic structures under a wider concept of module, namely not necessarily commuta-
tive (A, 2)-modules, where the set of scalars A is a near-ring distributively generated by a
monoid 2. These are the (A, 2)-groups of Frohlich (4).

The non-abelian case has been extensively studied by Barr (1), Lambek and Rattray
(15), (16), (17), (23). Their theory makes use of injectives. Lack of injectives in the general
case implies that a general theory has to be kept down to a sort of "pre-torsion" and this is
done in the present paper. The definitions are for categories of (A, £)-modules since we
propose a theory which should apply to both groups and modules. Several of the concepts
considered here were introduced by Holcombe and Walker in a more general setting.

In Section 1, a theory of radicals and torsion is constructed for (A, 2)-modules. This
approach unites the torsion and pre-torsion theories for modules with the study of
radical-classes of groups (for functorial radicals).

In Section 2, which may be viewed as an independent purely group-theoretic contribu-
tion, we pause to construct extensions of the torsion and torsion-free functors whose
operations on the category of abelian groups are well known. A new concept of "pre-
torsion group" arises. It seems that this is the right class in the category of groups which
extends the class of torsion abelian groups: the pair torsion-abelian — torsion-free abelian
extends to pre-torsion — torsion-free which is the pair radical — semisimple for the radical
constructed. Important classes of groups are classified with respect to their torsion type.
The following is a benefit. In the presentation theory of groups it is useful to have
conditions which determine whether or not a given group is a one-relator group. For
instance, in constructing groups for which the word problem is unsolvable one must be
careful not to select one-relator groups as possible candidates. The radical constructed in
Section 2 provides a sufficient condition for a group not to be a one-relator group.

We proceed with a short section to exhibit other radicals for groups. Some important
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318 S. FEIGELSTOCK AND A. KLEIN

classes of groups are realised as either the radical class or the semisimple class associated
with radicals.

In the last section we sketch briefly generalities concerning classes of radicals. Further
details and ramifications will appear elsewhere. Some points, not approached in this paper
(such as the influence of injectives with respect to given classes of monomorphisms,
existence of factorisation systems (15), the problem of quotients, topological considera-
tions), are of sufficient interest to deserve further study.

1. Radicals and torsion

Let (A, 2) stand for a unitary distributively generated rear-ring. So (i) (A, + > is a group
and (A>") is a monoid; (ii) (Ai + A2)A = AiA + A2A for all Ai, A2, A e A; ("0 (2, *) >s a
submonoid of (A>'); 0v) 2 is a set of generators for the group {/\, +); and (v) o-(Ai + A2) =
0-A.j + cr\2 for all a e 2, ku A.2 e A-

We write groups additively, but this is not meant to imply that they are abelian. For
groups X, Y denote by MAP(X, Y), hom(X, Y), HOM(X, Y) respectively, the group of
mappings of X into Y with natural addition, the set of homorphisms of X into Y, the
subgroup of <MAP(X, Y), +> generated by hom(X, Y). Consequently (HOM(X, X)), with
the natural composition, is a unitary distributively generated near-ring.

Definition 1.1. A (A, £)-module X, m consists of a group (X, +) with a morphism of
distributively generated near-rings m: (A, 2)-»(HOM(X, X), hom(X, X)), As a rule we
write X.JC for m(k)x( \e /\, x e X).

For (A, 2)-modules X, Y we denote by homA(X, Y) the set of A-homomorphisms of X
into Y and HOMA(X, Y) the subgroup of <MAP(X, Y), +) generated by homA(X, Y).
The respective categories will be denoted by (A, 2)-mod, (A, X)-MOD.

In particular: (Z, {l})-mod is the category of groups cSr; (Z, {1, — 1})-MOD =
(Z, {1, — l})-mod is the category of abelian groups sib; (A, A)-m°d = (A» A)-MOD with a
unitary ring A is t n e category of ordinary A-modules; (Z[r], {1, t, t2, ...})-mod is the
category of pairs (X, £) consisting of groups X with a fixed endomorphism £: X—» X, and
homomorphisms that form commutative squares with the given endomorphisms.

Observe that KdX is a kernel in (A, 2)-mod iff K is a submodule and a normal
subgroup of X. In this case we shall write K < X.

Let M be a full subcategory of (A, X)-mod closed under epimorphic images and
monomorphic pre-images.

Definition 1.2. A pre-radical on i is a functor R:$l-*s& which is a normal
subfunctor of the identity of M. A radical is a pre-radical R satisfying R(X/R(X)) = 0 for
all X. An idempotent (pre-)radical is a (pre-)radical R satisfying R2 = R.

An idempotent pre-radical on si evidently gives rise to an idempotent cotriple on si. If
R is a radical then S = IIR is an idempotent functor which gives rise to a triple on si. To
obtain a torsion theory, S is required to preserve regular monies, Barr (1). In our case this is
not satisfied in general (see for instance S = I/T on cSr, 2.8). Actually in (1) injective
effacements are employed, but in %• there are no non-trivial injective effacements (12).

So a pre-radical R assigns to each object X of si a submodule JR(X) <3X such that
f(R(X))<ZR(Y) for all Yand / 6 homA(X, Y).Ifd = (A, 2)-mod then, by additivity, R
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extends to a normal subfunctQr of the identity on (A, 2)-MOD. Unfortunately, a sub-
module is not necessarily a normal subgroup. To bypass this flaw we add the following
assumption in certain cases.

(a) For every X,homA(X, X) includes the group conjugations x>-*ax= a + x — a for
all a e X.

The presence of (a) permits the omission of the word "normal" from Definition 1.2
since f(R(X)) C R(X) for all / e homA(X, X), in particular for all the conjugations.

The following statement is equivalent to (a): In every X, era + ax — era = a + crx — a for
all a e 2, a, x e X.

Observe that in the theory for nilpotent groups (25), the objects are R-groups for a
binomial domain R and they are required to meet two extra conditions; one of them is
precisely our (a). (The other is the Hall-Petresco formula, 10.4 (25).)

The assumption (a) obviously holds in the category of groups (Z, {l})-mod and in
categories of modules over rings (A, A)-m°d. The following is a further example with (a).
The category (Z, {3k \ k i? 0})-mod is easily shown to be the variety of groups satisfying the
law 2a + 2b = 2(b + a) and (a) follows from 3a+3x-3a= a + x + 2(a + x)-3a =
a + 3x—a.

The category (Z[f], {tk | /cS0})-mod does not satisfy (a). The category

is precisely the category of pairs (X, g) composed of a group X, and a central endomorph-
ism £ and homomorphisms that form commutative squares with the prescribed
endomorphism. Indeed, with such a pair (X £) the map 1 + £ is an endomorphism and we
define p(t)a = p(g)a for all p(t) e Z[f], a e X. Conversely for an object in the above
category the map £: a •-» ta is an endomorphism and it is central since 1 + £ has to be an
endomorphism. It follows that both a + tb — a and ta + tb — ta are always tb and similarly
with 1 + t instead of t. Hence (a) holds in this category. Observe that a non-zero nilpotent
group admits non-zero central endomorphisms. (If Xis nil-/c there are bu ..., bk e Xsuch
that [>i,..., 6fc]^0. With b = [bu..., bk-t% since [au[b, a2]] = 0 for all au a2 e X, it
follows that £: a^[b, a] is a central non-zero endomorphism on X)

For classes 38, <£ of (/\, 2)-modules denote

®' = {Y\ homA(B, Y) = 0, VB e 38}, <gl = {X| homA(X, Q = 0, VC e «}.

Before we state the following theorem let us mention that the categories (/\, 2)-mod admit
products and coproducts, (4), (19), If M is a class of (A, S)-modules, we say that X is an
^-extension of M if M and XIM axe. in M.

Theorem 1.2. Assume that sd is a category with coproducts. The following statements
are equivalent for classes S3, % of objects in M, with (a) assumed: (i) 38 = ^ ' and <€ = 38r; (ii)
B is closed under epimorphic images, coproducts, S3- extensions and %= %r;{iii) Thereexists
an idempotent radical R on si such that 58 = {X| R(X) = X) and <€ = {X\ R(X) = 0}.

Proof, (i) => (ii) and (iii) => (0 are easily verified. To establish (ii) => (iii) consider the
set of submodules of X which are in 38 and call R(X) the epimorphic image in Xof their
coproduct. So R(X) e 38 and if X e 38 then R(X) = X by construction, thus R2 = R.
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Since any / : X-> Y takes S3-submodules onto S8-submodules it follows that f(R(X))d
R(Y) and R(X)<X by (a). The module X/R(X) does not possess non-trivial 33-
submodules, since U/R(X) e 33 would imply U e 33 so UCR(X).Thus R(X/R(X)) = 0.
Finally X e S3riff there is no ( B - » X ) ^ 0 with B e S3, hence iff X does not possess
non-trivial S3-submodules and this is equivalent to R(X) = 0.

Remarks 1.3. For modules over rings a fourth statement "dual" to (ii) is equivalent to
the three statements of the theorem, (14). It reads as follows:

(ii)' ^ is closed under monomorphic preimages, products, ^-extensions and S3 = c€l.

Here the implication (i) ^> (ii)' is certainly true. We assert that (ii)' implies (iii) with the
word "idempotent" omitted. To obtain this assertion take R(X) = the intersection of all
the normal submodules Kof Xsuch that XIK e % hence C= HX/K e <# and the arrow
X-+ C determined by the arrows X^>X/K admits R(X) as kernel. Thus X/R(X)-*Cis
monic, so X/R(X) e <6 and R(X/R(X)) = 0 since <£ = {X| R(X) = 0}. For any f:X-* Y
and any normal submodule L of Y for which Y/L e % write K for the kernel of
X-> Y-» Y/L. So XIK^ YIL is monic and XIK e <€. But f(K)GL, hence every L
appearing in the intersection which determines R{Y) includes an f(K), thus f(R(X))C
R( Y). Finally <€l = {X \ R(X) = X) since R(X) = Xiff there is no K^ Xwith XIK e % so
iff there is non-zero X—* C e %.

Observe that the assumption (a) was not employed. Observe further that an assump-
tion of the form "subnormal is normal" would lead to idempotence R2 = R, hence to the
equivalence of (i), (ii)', (iii). Indeed, if R(R(X)) ^ R(X) then there is a non-zero R(X)IKin
<€ and if K<X we are done since X/R(X) and R(X)/K in <g imply X/K e % so
R(X) C K. We summarise the remarks in the following proposition.

Proposition 1.4. For classes S3, <€ the implication (i) =£> (ii)' >̂ ((Hi)-idempotent)
holds. If "subnormal is normal" in the category then (i), (ii)', (iii) are equivalent. If (a) also
holds then (i), (ii), (ii)', (iii) are equivalent.

Definition 1.5. A pre-torsion theory on si, with (a) assumed, is a pair of classes S3, <#
satisfying the equivalent statements of Theorem 1.2.

Thus there is a 1-1 correspondence between pre-torsion theories and idempotent
radicals. The objects of the classes S3, 9? associated with a radical R will be called
R-radical, resp. R-semisimple.

If (ii), (ii)' are not equivalent, then the two objects R(X) constructed above, namely by
"intersections" or say "unions" may not be equal. However, if R constructed by
intersections is idempotent then it yields the same objects as the previous R by the
following corollary.

Corollary 1.6. LetR be an idempotent radical. Then R(X) = C\{K< X \ X/K e <<?«}.

Proof. Let L be the intersection. Since XIR(X) e % it follows that L C R(X). Now if
X/K e % then (R(X) + K)/K e <€. However, (R(X) + K)/K= R(X)/(R(X)DK) e S3;
hence (R(X) + K)/K = 0. Therefore R(X)OK and so i?(X)CL.
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Observe that a sum of submodules appears in the proof. It is not difficult to show that,
since the near-ring is distributively generated, a sum of two normal submodules is a normal
submodule.

In module theory over rings a radical related to a torsion theory satisfies a condition
stronger than X C Y => R(X) C R( Y). Here we obtain

Theorem 1.7. For classes % <# the following are equivalent, assuming (a).
(1) 98 is closed under epimorphic images, monomorphic pre- images, extensions, co-

products and <# = W.
(2) There is a radical R (necessarily idempotent) such that X < Y => XDR( Y) = R{X)

X}, <€ = {X | R(X) = 0}.

Proof. For x e XC\R( Y), the /\-submodule generated by x is in R{ Y) so in 98, hence
in R{X). This completes the implication (1) >̂ (2). If XC Y e 98 then i?(Y) = Y so
R(X) = Xn Y= X and X e 95. Hence (2) => (1).

Definition 1.8. A radical R satisfying XnR(Y)=R{X) for X < Yis a torsion radical;
(93, <#) satisfying (1), (2) of the theorem is a torsion theory for (A, £)-mod.

2. Extending the torsion and torsion-free functors from sib to <§r

It is well known that the torsion elements of an abelian group A form a subgroup tA of
A characterised as the smallest subgroup H such that A/H is torsion-free. If A is an
arbitrary group, the torsion elements do not necessarily form a subgroup and even if we
consider the subgroup tA generated by the torsion elements of A then Alt A need not be
torsion-free.

We construct a fully-invariant subgroup T(A) of an arbitrary group A, which has
exactly the same characterisation as tA in the abelian case.

Definition 2.1. For an arbitrary group A we define inductively to(A) = 0, tt(A) = the
subgroup of A generated by the set of torsion elements of A and tk+\{A)ltk{A) =
ti(AJtk{A)). Finally denote T(A) = \Jktk(A). We call A a pre-torsion group if T(A) = A

Theorem 2.2. (1) AIT(A) is torsion-free. (2) If H<A such that A)H is torsion-free
then HD T(A).

Proof. If x+T(A) is of finite order m then mx belongs to some tk(A) so x e
tk+1{A)C T(A). Now if A/H is torsion-free and T(A)f£H then there is a fcSO with
tk(A)CH and ffc+1(A)(Z!H. Let x e ffc+i(A)\.H, x = Xi + ... + xr with integers mu...,mr

such that myxy e ffc(A) for j = 1,..., r. At least one of the x/s is not in H, yet m,-xy e H. A
contradiction.

It may be shown that T(A) = fl{ker/1 / : A -> X, X torsion-free}.

Theorem 2.3. T is an idempotent radical on (Z, {l})-mod w/f/i 98 = f/ie c/as.s o/
pre-torsion groups and <€= the class of torsion-free groups. (55, ^ ) is a pre-torsion theory.
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Proof. m=<€1 and %=®r.

The functors tk are idempotent pre-radicals for all k. If we regard them as functors from
%r to the subcategory of groups with tk(A) = A, then they are adjoint to the respective
inclusion functors. However, for T we obtain more.

Corollary 2.4. The following are adjoint pairs of functors:

(i) IIT: groups^* torsion-free groups, inclusion: torsion-free groups^ groups;
i\i) inclusion: pre-torsion groups^ groups, T: groups->pre-torsion groups.

The above is an extension of well-known facts in Mb since pre-torsion-abelian is
identical to torsion abelian.

Corollary 2.5. If A is a pre-torsion group then A/A' is a torsion group, A' the derived
group of A.

Proof. Every epimorphic image of A is a pre-torsion and A/A' is abelian.

Remark 2.6. An abelian group is a torsion group iff hom(A, Q) = 0, Q the additive
group of rationals. In the general case if T(A) = A then hom(A, Q) = 0. The converse is
not true: if A is a simple torsion-free group then T(A) = 0 = hom(A, Q). Such groups are
constructed, for instance, in (7).

A group A will be called a torsion-generated group if h{A) = A.

2.7. A subgroup of a torsion generated group may not be, but a quotient group is,
torsion-generated. Any coproduct of torsion-generated groups is torsion-generated.

2.8. Every group is embeddable into a symmetric group, yet this latter group is
torsion-generated. Moreover, every permutation on a finite or infinite number of letters is
the product of two permutations of order 2, (24). The same applies to the alternating
groups.

Proposition 2.9. The special linear groups SL(n, Z), and SL(n, F) for fields F, are
torsion-generated. The orthogonal groups 0(n) are torsion-generated.

Proof. In (11) it is shown that, for n§2 , SL(n, Z) is generated by the matrices

r
1n-2'

O In-i

It may be verified that /3 is a torsion element (/?" = 1 for n odd, j82n = 1 for n even). Now,
with

V O I.-J \ O i,J
we obtain a = yS and -y4 = l, 56 = 1. So SL(n, Z), n^2, is generated by the torsion
elements j8, y, S.
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To prove the assertion for SL(n, F) observe that it is generated by transvections (24).
Every transvection is a conjugate of In + Eln e SL(n, Z). Hence the conjugates of /3, y, 8
in GL(n, F) generate SL(n, F). (For n S3 it suffices to take the conjugates in SL(n, F}.)

For 0(w) the assertion follows from the canonical form of an orthogonal matrix and the
obvious identity

\
cos 0 sin 0

—sin 0 cos 0
v '

The general linear groups are obviously not torsion-generated, but we will see that T
coincides with tx for them.

Corollary 2.10. Let K be either a field F or the ring Z. Then

T(GL(n, K))=h(GL(n, K)) = {a\ 3r, a e SL(n, K}}.

Proof. If a e h(GLn) then a = px...(ik and 07 = 1 for some r/s. Put r = IIr,, so
det (ar) = (det a)r = 1, thus ar e SL,,. Conversely, assume a' e SLn. Write a for det a, so

since det /3 = ar~A a = 1. The matrix )3 is a product of elements of finite order, and

O /„-!
is of finite order, so a e h{ GL,,). Finally T(GLn)= h{GLn), for if as e h(GLn) then there
is a k such that (det a)sk = 1, i.e., ask £ SLn.

The following is another important class of groups with T= ft. It is well known (9), (24)
that the torsion elements of a nilpotent group form a subgroup, hence

Proposition 2.11. If A is nilpotent then T(A) = h(A).

So far we only demonstrated groups for which Tis tx. The following shows that this is
not true in general.

Proposition 2.12. The following group

is not torsion-generated and t2(A) = A.

Proof. In A, xyk = y~2xyk~2 for k^2 and xy~k = y2xy~k+2 for fc^l, so every
element a in A can be written (even uniquely—as it can be shown) in one of the two forms

aw=ym(xy)r or a(2)= ym{xy)rx

with r§0 . We claim that if m + r is odd then a is not of finite order. To prove this, we
employ the infinite dihedral group D = (x, y; x2 = (xy)2 = 1) and a coproduct of two
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two-element groups H=(x, y; x'L = yz = 1). Both D and H are epimorphic images of A,
hence if a is of finite order in A it must be of finite order in D and in H. Now, if m is even
then r is odd and aw in H is (xy)r which is not of finite order, a(2> in D is y"1"1 not of finite
order. If m is odd then r is even and aw in D is ym, a(2) in H is (yx)r+1, both not of finite
order. Now y 9L h(A) since the contrary implies y=wl...wk with all elements w, of finite
order; but at least one w; must contain an odd number of y's to yield y as their product, a
contradiction. Evidently y2 = x(xy2) e ft(A) so y e t2(A), hence A = t2(A).

2.13. Consider the following sequence of groups

for all n e N, and A^ = UnAn. This sequence of groups might provide examples that show
that

tn(An) = An/ t,_i(An) for all n e N,

T(AJ = A ^ fc(AJ for all k e N.

Yet, a good induction process has to be produced to verify the assertions.
Once the above is established, then large classes of groups with Tbeing precisely tn can

be produced, for instance using 2.15 or 2.16.

2.14. Observe that all tn preserve direct products, namely: for any family of groups

tm denoting T. This formula is almost evident for n — 1, is implied by an easy induction for
n<cj, and for <o since X commutes with direct limits.

In particular a direct product of pre-torsion, resp. torsion-generated, groups is
pre-torsion, resp. torsion-generated. Moreover the following is an easy consequence of the
formula.

Proposition 2.15. For any family of groups, i/T(jBt) is precisely fni(Bt),0^ n t ^ <o, then
T of the direct product is precisely

T(XBJ = tm(XBt), with m = sup nL.

Evidently, the formula of 2.14 does not hold in the general case for products. Actually
T: groups ̂ pre-torsion groups, as a right adjoint, 2.4, preserves "products" but the
product in the category of pre-torsion groups is not the usual product. However the "dual"
holds for IIT which, as a left adjoint, preserves coproducts namely UBJT{UBL) =

Proposition 2.16. For a family of groups, ifT{Bt) isprecisely ^ (BJ , 0 ^ n t ^ w, then

T( II Bt) = tm( IIBJ, with m = sup nt.
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Proof. T(Bt) = tm(Bt) for all i and U(BJtm(Bt)) is torsion-free; so II BJtm(UBt) is
torsion-free, since tm( IIBJ certainly contains the normal closure [IItm(Bt)] and

The group of 2.12 is, in a certain sense, a "minimal example" by the following

Theorem 2.17. For a one-relator group A, T(A) = ti(A). If A is a direct product or a
coproduct of one-relator groups, then T(A)= h(A).

Proof. The single relation on A is of the form wk, with the word w not a true power.
Then h(A) is the normal subgroup generated by w. It follows that A/ti(A) is a one-relator
group with the relator w and it is torsion-free (see (18)). The second assertion follows from
the last propositions.

Observe that the last proposition may be of importance in presentation theory where
one sometimes looks for conditions which determine whether or not a given group is a
one-relator group. The radical Tprovides such a condition; namely, if T(A)^ h{A) then
A is not a one-relator group and even not a direct product or a coproduct of one-relator
groups.

2.18. Assume T(B) = tk(B) and N<1B. Is T(B/N) = tk+l(B/N)7 2.12 supplies us with
a counter-example. Take B = (x, y; x~1y2xy2 = 1) and N the normal subgroup of B
generated by x2. Then B is torsion-free and BIN is A of 2.12. Thus T(B) = to(B) and
T(B/N) = h(B/N). With 2.13 established we could produce, for any k, groups B, N with
T(B/N) = tk(B/N) and B torsion-free.

3. Other radicals on ^Sr

Evidently a class of (Z, {l})-modules satisfying 1.7(1) is either trivial or the whole
category. This implies

Corollary 3.1. There is no non-trivial torsion theory on the category of groups.

Consider Nil-c, the category of groups of nilpotence class c. This category admits
coproducts (IIAt in Nil-c is the quotient group of the ordinary free-product of the A/s
over the group generated by commutators of the form [*i,..., xc+i]). So any pre-torsion
theory is given by classes 98, "S as in 1.2. For nilpotent groups N, the elements of finite order
form a subgroup, t(N) = h(N), hence the radical T induces a torsion theory on Nil-c.

3.2. Denote by di(A) the product of all normal divisible subgroups of a group A and

inductively da+l(A)/da(A) = di(A/da(A)), da(A)= U dt(A) for limit ordinals. Finally

D(A) = da(A) if a is the first ordinal for which da(A) = da+l(A).
D is an idempotent radical. The D-radical groups are those groups all of whose

non-trivial epimorphic images contain a non-trivial divisible subgroup. "D-semisimple
group" is synonymous to "reduced group".

3.3. Kurosh and Chernikov have introduced the class of JRX-groups (13). These
groups are precisely the semisimple groups for the following radical S. Denote by 8a(A)
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the a-th term of the derived series for A and 8(A) = Sa(A), the first ordinal for which
Sa(A) = 8a+1(A). The 5-radical groups are the perfect groups.

3.4. Denote by Ta(A) the a-th term of the lower central series of a group A and
F( A) = Ta( A), a the first ordinal for which Ta(A) = Ta+i( A). Each Ta is a non-idempotent
radical and F is an idempotent radical. "F^-semisimple" is "nilpotent of class ^ a", "Fa

(or F)-radical" is "perfect". The F-semisimple class consists of all groups A for which
TV(A) = 0 for some ordinal v. Kurosh and Chernikov (13) called this the class of
ZD-groups.

3.5. Both the above examples may be generalised as follows. Let F be a free group
and W a set of words in F. For any group A denote by R(A) the normal subgroup of A
generated by all the words of Win A (i.e. all images of Wfor any homomorphism F—» A).
R is a radical with semisimple class = the variety of groups satisfying the set of laws W.

Consider again Si. This is a radical but not idempotent. % is still the class of perfect
groups and % is the class of abelian groups. 58 = <#' but <#^ 58r = the class of RK-%\oxvp%.
This is a particular case of the following proposition which is a weak form of 1.2.

Proposition 3.6. For a radical R with 38, <# as in 1 the following holds.

(i) ®=<$';
(ii) 08 is closed under epimorphic images, extensions, coproducts;

(iii) <€ is closed under monomorphic preimages and products.

4. The class of radicals and the class of pre-radicals

We summarise some facts about classes of radicals and pre-radicals. Proofs of results
presented here will appear in a future paper (3).

We denote by 9?ad the class of radicals on (A, 2)-mod. (We assume (a).) Sftad is a
monoid with respect to composition of functors.

Each radical R determines 9iR ( = the radical objects) and <#« ( = the semisimple
objects). We denote <# = {<SR | R e 52ad}. We employ a common construction in varieties
(19), (21): if R, S e S#ad we denote by ^R"^ the collection of (A, 2)-modules A such
that there is a normal submodule A' in A with A' e <#« and A/A' e ^s- Then {% °) is a
monoid and it includes the collection of varieties as a submonoid. The mapping R •-» <#« is
an epimorphism of monoids.

The intersection of any set of radicals, namely R = DRl defined by R(A) = nRt{A) for
all A, is a radical. This fact yields a simple method of constructing an idempotent radical R

from a given radical R. For ordinals i, let Rl+i = R°Rl and Rl = C\ R" for limit ordinals.

Then Rl e 3$ad for all i and we denote R = R\ i the first-ordinal such that Rl = RL+\
(The example 3.3 fits this construction with R = Si.)

The following is implied.

Proposition 4.1. R is an idempotent radical with S8R = S8R.
We denote by p9?ad the class of pre-radicals on (A, 2)-mod. The following is a weak

form of 1.2 + 1.3.
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Theorem 4.2. For an idempotent pre-radical (i) S8r = %\ (ii) 58 is closed under
epimorphic images and coproducts; (iii) <# is closed under monomorphic preimages, products
and extensions. Even without "idempotent" the inclusion 3§C <#' holds.

Let B = {%R | R e p$ad}. It follows that <p5$ad,°> and {B, D) are isomorphic monoids
under the map R •-» 38R.

For R, S e pSKad we define RxS by (i?xS)(A)/5(A) = R(A/S(A)). A»straight-
forward argument shows that Rx-S is a pre-radical.

Here is a method of constructing a radical R from a given pre-radical R. For ordinals i

put R1+i(A) = RxRL(A) and Rt(A) = U RV(A) for a limit ordinal. Finally R(A) =

for the first t with Rl+i(A) = R,(A). The following is readily established.

Proposition 4.3. R is a radical. IfR is idempotent then R is idempotent and <£R = ^Ri

for all i.

The radical Ton "Sr, Section 2, may be represented in this way. Start with fi which is
clearly an idempotent pre-radical and ?i = k, = T. Observe that S8T is the class of groups
whose every non-trivial epimorphic image possess a non-trivial torsion subgroup. A
similar fact holds for the radical D of 3.2. This suggests the following. With any object
function R and i38R call an object A a hyper-R-object if every non-trivial epimorphic
image of A possesses a non-trivial S8R-subobject. Then

Proposition 4.4. Let R be an idempotentpre- radical and R as constructed above. Then
S3R is the class of hyper-R-objects.

Here are some additional results.

Proposition 4.5. (i) Let R be an idempotent pre-radical. Then S8Rn ° S5Rm C S3Rn+m for
all non- negative integers n, m. For % a similar fact holds even without idempotence. (ii) Let R
be a pre-radical. Then %R" ° %R^ C %Rn+m for all non-negative integers n, m.

A well-known example for the radicals in 3.5. If HO A, H nilpotent of class ^ n, A/H
nilpotent of class ^ m, then A is nilpotent of class ^ n + m.

The following are preliminary remarks concerning series of submodules. R stands for
an object function on (A, 2)-modules.

An ascending R-series for A is a sequence of normal /\-submodules

0<]Ai<i...<lAa = A such that Ap+i/Ap e $ftR for every index ordinal /3 and AP = U Av

for every limit ordinal /3. A.descending R-series for A is a sequence of normal /\-
submodules 0 = A^O.. .<] Ax < A such that Ap/Ap+1 e <#R for every index ordinal /3 and

Ap= D Av for limit ordinal /3.

The following facts are obtained.
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Proposition 4.6. Let R be an idempotent pre-radical. Then A e $&R iff there exists an
ascending R- series for A. In this case the sequence 0<iR(A)...<iR(A) = A is the unique
upper R-series for A.

Corollary 4.7. For any class Q) put poly- 3) for the class of (A, 2)- modules A having a
finite series 0 = Ao <] A, <]... <l An = A with AJA^ e 3)forl^i^n. Then, for an idem-
potent pre-radical R, poly93R = S8R(u.

Proposition 4.8. Let R be aradical. Then A e %R iffthere exists a descending R- series
for A. In this case the series 0 = R( A) <1... OR(A) = A is the unique lower R-series for A.
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