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Abstract—Notosuchia is a group of mostly terrestrial crocodyliforms. The presence of a prominent crest over-
hanging the acetabulum, slender straight-shafted long bones with muscular insertions close to the joints, and
a stable knee joint suggests that they had an erect posture. This stance has been proposed to be linked to endo-
thermy, because it is present in mammals and birds and contributes to the efficiency of their respiratory sys-
tems. However, a bone paleohistological study unexpectedly suggested that Notosuchia were ectothermic
organisms. The thermophysiological status of Notosuchia deserves further analysis, because the method-
ology of the previous study can be improved. First, it was based on a relationship between red blood cell
size and bone vascular canal diameter tested using 14 extant tetrapod species. Here we present evidence
for this relationship using a more comprehensive sample of extant tetrapods (31 species). Moreover, contrary
to previous results, bone cross-sectional area appears to be a significant explanatory variable (in addition to
vascular canal diameter). Second, red blood cell size estimations were performed using phylogenetic eigen-
vector maps, and this method excludes a fraction of the phylogenetic information. This is because it generates
a high number of eigenvectors requiring a selection procedure to compile a subset of them to avoid model
overfitting. Here we inferred the thermophysiology of Notosuchia using phylogenetic logistic regressions, a
method that overcomes this problem by including all of the phylogenetic information and a sample of 46
tetrapods. These analyses suggest that Araripesuchus wegeneri, Armadillosuchus arrudai, Baurusuchus sp., Iber-
osuchus macrodon, and Stratiotosuchus maxhechti were ectothermic organisms.
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Introduction Anatosuchus minor and Araripesuchus spp. (Ser-

Notosuchia is a group of extinct, mostly
terrestrial crocodyliforms. The presence of
several morphological features suggests that
they had an erect posture: the prominent crest
overhanging the acetabulum observed in Chi-
maerasuchus paradoxus (Wu and Sues 1996), Noto-
suchus terrestris (Pol 2005), Araripesuchus
tsangatsangana (Turner 2006), Baurusuchus albertoi
(Nascimento and Zaher 2010), and Stratiotosu-
chus maxhechti (Riff and Kellner 2011); the
straight-shafted long bones described in

eno and Larsson 2009); the slender limb bones
with muscular insertions close to the joints
reported in Malawisuchus muwakasyungutiensis
(Gomani 1997); and the tight/stable knee
joint shown in Pissarrachampsa sera (Godoy et al.
2016). Among extant tetrapods, only endotherms
(mammals and birds) show an upright stance.
This last feature has been proposed to be linked
to endothermy, because it contributes to the effi-
ciency of the respiratory system (Carrier 1987).
Thus, according to this morphological evidence,
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we can reasonably hypothesize that Notosuchia
were endothermic. However, Cubo et al. (2020)
concluded that they were primitively ectothermic
using two proxies: resting metabolic rate (RMR)
and red blood cell size (RBCgjze).

RMR is the minimal consumption of oxygen
over time per unit of body mass measured
under postabsorptive conditions during the
period of normal activity of the daily cycle in
resting, nonreproductive specimens (Andrews
and Pough 1985; Montes et al. 2007). RMRs of
extant endotherms are at least one order
of magnitude higher than those of extant
ectotherms of similar body mass, because the
mechanisms of thermogenesis operating in
the former are costly in terms of energy (Clarke
and Portner 2010; Legendre and Davesne 2020).
RMRs inferred by Cubo et al. (2020) for Notosu-
chia were significantly lower than the threshold
separating ectotherms from endotherms.

Within extant tetrapods, RBCg,, is lower in
endotherms (mammals and birds) than in
ectotherms (Amphibia, Squamata, Testudines,
and Crocodylia) (Hartman and Lessler 1964;
Snyder and Sheafor 1999; Soslau 2020). It has
been suggested that the acquisition of lungs
together with the subsequent evolution of the
cardiovascular system was the driving force
explaining the evolution of vertebrate RBCg;,e
(Snyder and Sheafor 1999). In endotherms,
thermogenetic mechanisms use a huge amount
of oxygen, producing high RMRs. Considering
that “Smaller capillaries [and smaller RBCs] are
associated with increased potential for diffu-
sive gas exchange” (Snyder and Sheafor 1999:
189), these features may have been positively
selected in endotherms. Huttenlocker and
Farmer (2017) found that RBCg,. values are
related to, and can be inferred from, bone vas-
cular canal diameter. Cubo et al. (2020) inferred
notosuchian RBCg,, values using this last rela-
tionship and concluded that they were signifi-
cantly higher than the threshold separating
ectotherms from endotherms.

To sum up, both proxies (RMR and RBCj,.)
suggest that Notosuchia were ectothermic
organisms. Considering that paleohistological
evidence (suggesting low RMR, large RBCgye,
and ectothermy) is not congruent with mor-
phological evidence (suggesting an erect
posture, cursoriality, and endothermy), the
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thermophysiological status (i.e., either ectother-
mic or endothermic) of Notosuchia deserves
further analysis.

The approach used by Cubo et al. (2020) to
perform these inferences can be improved in
two ways. First, notosuchian thermophysiolo-
gical status inferred using RBCg;,, is based on
the quoted relationship between RBCg,. and
bone vascular canal diameter (Cubo et al.
2020). This relationship was tested by Hutten-
locker and Farmer (2017) using a rather small
sample size (14 extant tetrapod species). Here
we tested this relationship using a more
comprehensive sample of extant tetrapods (31
species) and phylogenetic generalized least-
squares regression (PGLS). Second, RBCgi,e
estimations were performed using phylogen-
etic eigenvector maps (PEMs), and this method
excludes a fraction of phylogenetic informa-
tion. This is because PEM generates a high
number of eigenvectors (1 —1, with n being
the number of terminal taxa analyzed), thus
requiring a selection procedure to compile a sub-
set of eigenvectors to avoid model overfitting
(Guénard et al. 2013; Legendre et al. 2016).
Here we inferred the thermophysiology of Noto-
suchia using phylogenetic logistic regression
(PLR) (Ives and Garland 2010; Tung Ho and
Ané 2014), a method that overcomes this prob-
lem, because it includes all (instead of a fraction)
of the phylogenetic information.

Material and Methods

Phylogenies in Figure 1 and Supplementary
File 1 contain the tetrapod samples used in
this study. Topologies were taken from Pyron
and Wiens (2011) for amphibians; Meredith
et al. (2011), Zurano et al. (2019), Kumar et al.
(2013), and Upham et al. (2019) for mammals;
Ast (2001) and Villa et al. (2018) for Varanus;
Man et al. (2011) for crocodiles; Prum et al.
(2015) for birds; and Pol et al. (2014) for Notosu-
chia. Both phylogenies were dated using Time
Tree of Life (http://www.timetree.org). When
the ages of two successive nodes collapsed, we
arbitrarily added 1 Myr in between the more-
inclusive and less-inclusive nodes to facilitate
the graphic visualization of the topology. For
Notosuchia, nodes were dated according to
the last appearance datum (LAD) of the oldest
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FiGure 1. Phylogenetic relationships among extant taxa used to construct the thermophysiology inference model and the

extinct Notosuchia for which we performed paleobiological inferences. Sources of topology and divergence times are cited
in the main text. Scale on the right: geologic time in millions of years (Myr).

fossil included in each node taken from the
Paleobiology Database (https://paleobiodb.
org). The age of the node Notosuchia
(113 Myr) corresponds to the LAD of Malawisu-
chus mwakasyungutiensis. The age of the node
Armadillosuchus—Baurusuchus (100.5 Myr) cor-
responds to the LAD of Chimaerasuchus
paradoxus. The age of the node Iberosuchus—Bauru-
suchus (83.6 Myr) corresponds to the LAD of
Comahuesuchus  brachybuccalis, Pehuenchesuchus
enderi, Cynodontosuchus rothi, and Wargosuchus aus-
tralis. Finally, the age of the node Stratiotosuchus—
Baurusuchus (66 Myr) corresponds to the LAD of
these taxa. The latter (Stratiotosuchus—Baurusuchus),
as well as Armadillosuchus arrudai, come from
the Adamantina Formation, the age of which
is still debated. We follow the hypothesis of a
Campanian-Maastrichtian age proposed by
some authors (e.g., Gobbo-Rodrigues et al.
1999; Batezelli 2017).

Testing the Relationship between RBCg;,, and
Bone Vascular Canal Diameter Using PGLS.—
Supplementary File 1 contains the sample
(31 species of extant tetrapods) and the

phylogeny (topology and divergence times)
used to test the relationships between the
response variables (RBCyigm and RBC,yes) and
the explanatory variables (femoral vascular
canal diameter and femoral cross-sectional area
including the medullary cavity). Thin sections
of extant taxa are curated at the Vertebrate
Hard Tissue Collection of the Museum national
d’Histoire naturelle, Paris, and are available on
request to the curator (D. Germain). RBCyigtn
(defined as RBC minimum diameter) and
RBCyrea (either published values or values com-
puted using maximum and minimum published
diameters and assuming an ellipse) were taken
from the literature (Supplementary File 2). Fem-
oral vascular canal diameters (white arrowheads
in Fig. 2) were computed as Canparmean and
Cany,p,, as defined by Huttenlocker and Farmer
(2017). Canparmean, Canp,in, and femoral cross-
sectional area were either quantified in this
study or taken from Huttenlocker and Farmer
(2017) (data available in Supplementary File 2).
The method of ordinary least-squares regres-
sion makes the assumption of no covariance
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FiGure 2. Transverse thin section, lateral side, of the femur
of Araripesuchus wegeneri Buffetaut, 1981, observed in cross-
polarized light with lambda wave plate. The thin section
was made from a partial femur (MNHN.F.GDF660) from
the Aptian of Gadoufaoua (Niger), and is curated at the
Museum national d’Histoire naturelle (MNHN) (Paris,
France). The cortex is made of lamellar-zonal bone. It is
composed of three zones formed at moderate growth rate
and containing vascular canals (white arrowheads)
included in primary osteons, and three annuli formed at
low growth rates and made of parallel fibered bone (black
arrowheads). Periosteum is on the top and medullary cavity
on the bottom. The continuous black line occurring near the
medullary cavity is an artifact. Scale bar, 0.5 mm.

between residuals obtained from the regression
equation (i.e., the off-diagonals of the variance—
covariance matrix are expected to contain
zeros) (Symonds and Blomberg 2014). In ana-
lyses using interspecific data, this assumption
is not verified because of the hierarchical,
shared phylogenetic history among terminal
taxa (i.e., closely related species are more simi-
lar than expected by chance). PGLS (Grafen
1989; Martins and Hansen 1996; Rohlf 2001;
Symonds and Blomberg 2014) overcomes this
problem by using a variance—covariance matrix
in which off-diagonals correspond to the
phylogenetic history shared by the two species
under comparison. Symonds and Blomberg
(2014) described PGLS as a “weighted regres-
sion” in which data points corresponding to
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closely related species are “downweighted.”
We ran PGLS using the function pgls of the
package caper (Orme et al. 2013) in R (R Devel-
opment Core Team 2008).

Inferring the Thermophysiology of Notosuchia
Using PLR.—Figure 1 shows the phylogenetic
relationships among extant taxa (46 species of
tetrapods) used to construct the thermophy-
siology inference model (to infer the probabil-
ity of being endothermic) and the extinct
Notosuchia for which we performed paleobio-
logical inferences. This model was constructed
using femoral vascular canal diameter
(Canparmean and Cang,;,) and femoral cross-
sectional area as explanatory variables. As
noted earlier, femoral Canp,rmean, CaNmin, and
femoral cross-sectional area were either quanti-
fied in this study or taken from Huttenlocker
and Farmer (2017) (data available in Supple-
mentary File 3). As before, thin sections of
extant taxa are curated at the Vertebrate Hard
Tissue Collection of the Museum national
d’Histoire naturelle, Paris. Data for Notosuchia
are taken from Cubo et al. (2020): Araripesuchus
wegeneri, Armadillosuchus arrudai, Baurusuchus
sp., Iberosuchus macrodon, and Stratiotosuchus
maxhechti. Considering that the model was con-
structed using femora of extant species, we per-
formed inferences only for those Notosuchia
for which data for femora were available. Sam-
ple size was smaller for PGLS analyses, because
data for RBCg,. were not available for many
species analyzed in PLR analyses. PLR is a gen-
eralized linear model explaining the probabil-
ity of occurrence of the state “presence” of a
binary response (dependent) variable (here
the “presence of endothermy”) using continu-
ous explanatory (independent) variables
when residual variation of the former variable
is phylogenetically structured (Ives and Gar-
land 2010). The regression coefficients com-
puted do account for phylogenetic correlation;
when data are not phylogenetically structured,
these coefficients are those of standard logistic
regression (Ives and Garland 2010). PLR mod-
els contain two components. The first is con-
trolled by parameters o (the transition rate)
and p (the asymptotic probability of being in
state 1 [here the asymptotic probability of
being endotherm]). Parameter o equals o4 +
oo; oy being the probability that the response
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variable switches from 0 to 1 in each small time
increment when it evolves up a phylogenetic
tree, whereas the oy parameter is the probabil-
ity that it evolves from 1 to 0 (Ives and Garland
2010). The transition rate o is a measure of
phylogenetic signal, because the larger the o,
the quicker the evolutionary transitions and
the lower the phylogenetic structure of data
(Ives and Garland 2010). In the second compo-
nent, the probability of occurrence of the state
“presence of endothermy” is modeled using
values of the independent (explanatory) vari-
able (here bone vascular canal diameter). Para-
meters o and p are estimated using an iterative
process in which p is estimated given o, using
the quasi-likelihood function, and o is esti-
mated given , using least squares until conver-
gence (Ives and Garland 2010). Analyses were
performed using the package phyloglm (Tung
Ho and Ané 2014) in R (R Development Core
Team 2008).

Results

Testing the Relationship between RBCg;,, and
Bone Vascular Canal Diameter Using PGLS.—
We used PGLS to test the relationships between
RBCyigth and RBC,,e, and the explanatory vari-
ables femoral vascular canal diameter (com-
puted as Canparmean and Canp,in) and femoral
cross-sectional area (data available in Supple-
mentary File 2). Shapiro-Wilk normality tests
showed that residuals of PGLS regression of
RBC,rea to Canparmean + bone cross-sectional
area and the regression RBC, e, to Canmn +
bone cross-sectional area do not follow a nor-
mal distribution (p-values of 0.0007557 and
0.001896, respectively). Thus, we performed a
log transformation of all variables. After log
transformation, residuals of all four PGLS
regressions (RBC,en and RBC,., to the
explanatory variables bone cross-sectional
area and either Can,,;,, or Canparmean) do follow
a normal distribution. All four of these PGLS
regressions were significant and, in each regres-
sion, both explanatory variables (bone cross-
sectional area and either Can,;, or Canparmean)
were significant (Table 1).

Inferring the Thermophysiology of Notosuchia
Using PLR—We used PLR to construct models
aimed at computing the probability of being
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endothermic using paleohistological features
(data available in Supplementary File 3). When
Canparmean Was used as the explanatory variable,
we obtained a model with a transition rate o of
0.00144, an intercept estimate of 6.04 (p-value
=0.004) and an estimate for the coefficient of
Canyarmean of —0.45 (p-value = 0.001). The nega-
tive sign of the Canparmean coefficient indicates
that the probability of being endothermic
decreases as vascular canal diameter increases.
Figure 3 shows the distribution of probabilities
of being endothermic as a function of Canparmean
variation. The corresponding equation is:

In[p(endothermy)/p(ectothermy)]
= —0.45" Canparmean + 6.04 D)

or

p(endothermy)
= eXP(—0'45* Canparmean + 604)/ 2)
[1 + exp(—0.45" Canparmean + 6.04)]

Ives and Garland (2010: p. 17) stated that “we
assume that if y; < i, then trait Y will evolve
toward 0; [...] Conversely, if y; > f1, then trait Y
will evolve toward 1,” where i is the mean prob-
ability of being endotherm in our sample. Thus,
we considered that L is the cutoff probability,
so that an inferred probability higher than [
would be evidence for endothermy. Conversely,
a probability lower than x would be evidence for
ectothermy. When Canpaymean Was used as the
explanatory variable, L =0.59. To evaluate the
predictive power of the model, we constructed
a contingency table in which we inferred the ther-
mometabolic regime of each extant species of the
sample using its Canpaymean. Lines contain pre-
dictions (0, inferred ectothermy; 1, inferred endo-
thermy) and columns contain true states (0,
observed ectothermy; 1, observed endothermy):

state 0  state 1
prediction 0 14 2
prediction 1 3 27

The specificity (the ratio of quantity of true 1
inferred as 1 on the quantity of true 1; Sp=27/
(27 +2)) equals 0.931. The sensitivity (the ratio
of quantity of true 0 inferred as 0 on the quantity
of true 0; Se=14/(14+3)) equals 0.824. The
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TaBLE 1.

Testing the relationship between the dependent variables used to quantify red blood cell size (RBCygize; RBCyyigtn

and RBC,,.,) and the explanatory variables femoral vascular canal diameter (computed either as Cann 0r Canparmean) and
femoral cross-sectional area using phylogenetic generalized least-squares regression. *p-value < 0.05; **p-value < 0.01;

***p-value < 0.001.

Dependent (response) variable Adjusted R? Estimate p-value
RBCyidth 0.624 Intercept 0.895 0.001603**
Cangmin 0.714 2.08 x 1070+
Bone cross-sectional area —0.095 0.001249**
RBCyigth 0.341 Intercept 1.250 0.000888***
Canparmean 0.459 0.001557**
Bone cross-sectional area -0.101 0.006239**
RBC,rea 0.399 Intercept 1.910 0.016427*
Canpin 1.398 0.000315***
Bone cross-sectional area —0.158 0.027307*
RBCrea 0.189 Intercept 2.757 0.002499**
Canparmean 0.852 0.013002*
Bone cross-sectional area -0.176 0.043913*

classification error (the ratio (quantity of true 0
inferred as 1+ quantity of true 1 inferred as 0)/
total;, error=(3+2)/(14+2+3+27)) equals
0.109. This classification error is quite low, so
we used the cutoff probability of 0.59 to perform
paleobiological inferences using Canparmean as
the explanatory (predictor) variable.

When Cany,;, was used as the explanatory
variable, we obtained a model with a transition
rate o of 0.00052, an intercept estimate of 2.58
(p-value=0.032), and an estimate for the

coefficient of Cany, of —0.49 (p-value =0.018).
Figure 4 shows the distribution of probabilities
of being endothermic as a function of Canpy;,
variation. The corresponding equation is:

In[p(endothermy)/p(ectothermy)]
= —0.49* Cang, + 2.58 3)
or

p(endothermy) = exp(—0.49* Cany;n + 2.58)
[1 + exp(—0.49" Canp,n + 2.58)]
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Ficure 3. Distribution of probabilities of being endother-
mic inferred for our sample of extant tetrapods using a
phylogenetic logistic regression model that includes fem-
oral vascular canal diameter (computed as Cannarmean) as
the explanatory variable.
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Vascular canal diameter (Cang,)

FiGure 4. Distribution of probabilities of being endother-
mic inferred for our sample of extant tetrapods using a
phylogenetic logistic regression model that includes fem-
oral vascular canal diameter (computed as Cany,,) as the
explanatory variable.
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Again we evaluated the quality of the model
by constructing a contingency table in which
we inferred the thermophysiological regime of
each extant species of the sample using its
Canmin. We used a cutoff probability of =
0.32 (the mean probability of being endother-
mic in our sample), so that an inferred probabil-
ity lower than 0.32 is evidence for ectothermy
and a probability higher than 0.32 is evidence
for endothermy:

state 0  state 1
prediction 0 15 9
prediction 1 2 20

The specificity (the ratio of quantity of true
1 inferred as 1 on the quantity of true 1; Sp =
20/(20 +9)) equals 0.690. The sensitivity (the
ratio of quantity of true 0 inferred as 0 on the
quantity of true 0; Se=15/(15+2)) equals
0.882. The classification error (the ratio
(quantity of true 0 inferred as 1+ quantity
of true 1 inferred as 0)/total; error=(2+9)/
(15+9 +2 +20)) equals 0.239. This classifica-
tion error is quite high, so we recomputed a
new cutoff probability of 0.22 using the
receiver operating characteristic curve. Then
we constructed a new contingency table in
which we inferred the thermophysiological
regime of each extant species of the sample
using its Canpi, and considering that an
inferred probability higher than 0.22 is evi-
dence for endothermy:

state 0  state 1
prediction 0 15 1
prediction 1 2 28

With this contingency table, the classifica-
tion error [the ratio (quantity of true 0 inferred
as 1+ quantity of true 1 inferred as 0)/total;
error = (2+1)/(15+ 1+2+28)] equals 0.0652.
This classification error is quite low, so we
used the cutoff probability of 0.22 to perform
paleobiological inferences using Cany, as the
explanatory (predictor) variable.

We used these equations and cutoff probabil-
ities and femoral Cany,armean and Cang,;, values
published by Cubo et al. (2020) for Notosuchia
to compute the probability of these taxa being
endotherms (Table 2).
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Discussion

Notosuchia is an extremely diversified group
of crocodyliforms. This diversity is particularly
striking regarding their diet, suggesting that
they occupied various ecological niches (Car-
valho and Bertini 1999; Iori and Carvalho
2018). Uruguaysuchidae (Pol et al. 2014), the
most basal notosuchians, of which Araripesu-
chus wegeneri (in our sample) is a representative,
range from the Aptian (Araripesuchus gomesii) to
the Maastrichtian (Araripesuchus tsangatsangana)
(Price 1959; Turner 2006). Several species of this
group have been inferred as being omnivorous,
or even insectivorous, based on their dental
complexity (Sereno and Larsson 2009; Soto
et al. 2011; Nieto et al. 2021) and postcranial
remains suggest that they had an erect posture
(see “Introduction”). Uruguaysuchids were
smaller than Sphagesauridae (Carvalho et al.
2010; Godoy et al. 2019). Armadillosuchus (also
sampled by us) belongs to the large-bodied
sphagesaurids group (Melstrom and Irmis
2019). The diagnosis of this clade is based on
its peculiar dentition morphology (Price 1950).
They show extremely complex manducatory
systems, with evidence of “chewing” mechan-
isms, dental wear, and propalinal movements
(e.g., see Osi 2014; Tori and Carvalho 2018).
The foraging abilities of some notosuchians,
such as Armadillosuchus, Mariliasuchus, or Mala-
wisuchus, to locate food or water have led some
authors to propose the presence of burrowing
habits (Gomani 1997; Nobre et al. 2008; Marinho
and Carvalho 2009), a behavior that might play
a role in thermoregulation (e.g., to search for a
cooler shelter during dry periods, as in extant
crocodilian species; Campos and Magnusson
2013). This behavior has also been proposed
for the sebecosuchian Baurusuchus salgadoensis
(Vasconcellos and Carvalho 2010). Sebecosu-
chia (to which Iberosuchus and Stratiotosuchus,
also sampled by us, belong) were large preda-
tors with an erect posture (see “Introduction”)
and cursorial abilities (Nascimento and Zaher
2010; Riff and Kellner 2011), feeding on large
prey, including small sphagesaurids (Godoy
et al. 2014). Indeed, their ziphodont teeth (uni-
cuspidated, laterally compressed with serrated
carinae) associated with the biomechanical per-
formances of their skull allowed sebecosuchians
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TABLE 2.

Inferring the probability of endothermy for the sample of Notosuchia analyzed in this study using femoral

vascular canal diameters (computed either as Canyin 0r Canparmean) as explanatory variables and phylogenetic logistic
regressions. Vascular canal diameters for Notosuchia were taken from Cubo et al. (2020).

Probability of Inferred status at Probability of Inferred status at
being cutoff probability being cutoff probability
Canparmean endothermic of 0.59 Cangin endothermic of 0.22
Araripesuchus 25.99 0.0035 Ectothermy 13 0.0221 Ectothermy
wegeneri
Armadillosuchus 25.32 0.0047 Ectothermy 13.36 0.0186 Ectothermy
arrudai
Baurusuchus 25.02 0.0054 Ectothermy 12.67 0.0259 Ectothermy
sp.
Iberosuchus 31.76 0.0003 Ectothermy 14 0.0137 Ectothermy
macrodon
Stratiotosuchus 31.55 0.0003 Ectothermy 14.87 0.0090 Ectothermy
maxhechti

to effectively handle prey after wounding it
(Montefeltro et al. 2020). It is noteworthy that
the inferred ectothermic sebecosuchians occupy
a niche usually occupied by endothermic thero-
pod dinosaurs (Benson et al. 2013; Zanno and
Makovicky 2013).

The ectothermic condition of Notosuchia
suggested by Cubo et al. (2020) is supported
by the results of the present study using larger
sample sizes of extant species and a more
robust phylogenetic comparative method
(PLR). First, the finding that RBCg;,, is related
to bone vascular canal diameter (Huttenlocker
and Farmer 2017) is supported by our results
obtained using a sample size more than
twice of that used by these authors. Thus
bone vascular canal diameter can be used as a
proxy to infer RBCgi,e, and then endothermy
(because within tetrapods, RBCg,, is lower in
endotherms than in ectotherms; Snyder and
Sheafor 1999). Huttenlocker and Farmer
(2017) included bone cross-sectional area (in
addition to bone vascular canal diameter) as
an explanatory variable in models aimed at
explaining the variation of RBCs;,.. However,
in their study, bone cross-sectional area did
not improve the explanatory power of models
and was not retained (Huttenlocker and
Farmer 2017; Supplemental Information, “Ana-
lysis I, Training Data Set for Extant Taxa”).
Unexpectedly, our analyses (using a larger
sample size) showed that bone cross-sectional
area significantly improves the explanatory
power of models and is retained, together
with bone vascular canal diameter, in models
explaining the variation of RBCg,.. The fact
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that the estimate for bone cross-sectional area
is always negative (Table 1) indicates that
RBCg;,. decreases as bone cross-sectional area
increases. Second, notosuchian thermometabo-
lism is inferred here using a larger sample of
extant tetrapods (more than three times the
sample used by Cubo et al. [2020]) and logistic
phylogenetic regressions (a method more reli-
able than those used in previous studies; see
below). We are aware of the fact that Hutten-
locker and Farmer (2017) showed that histo-
logical changes reflect changes in VOpmax
better than changes in thermometabolism.
However, we have found here that microstruc-
tural variation is linked to thermometabolism
too. The models constructed to infer the prob-
ability of endothermy using vascular canal
size as an explanatory (predictive) variable
were highly significant, and the classification
errors obtained are quite low (6.5% using
Canyin). Thus we conclude that we can use
these models confidently in paleobiological
inference of thermometabolism.

Thermal paleophysiology is an emergent dis-
cipline (Cubo and Huttenlocker 2020). It has
great potential resulting from the synergy
between physiological studies aimed at deci-
phering the mechanisms of thermogenesis in
extant amniotes (e.g., Bal and Periasamy 2020;
Jastroch and Seebacher 2020; Grigg et al. 2021)
and paleobiological inferences in extinct
amniotes using phylogenetic comparative
methods (e.g., Cubo et al. 2012, 2020, 2022;
Legendre et al. 2016; Huttenlocker and Farmer
2017; Olivier et al. 2017; Fleischle et al. 2018;
Cubo and Jalil 2019; Faure-Brac et al. 2021;
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Knaus et al. 2021). Logistic phylogenetic regres-
sions are the third step in efforts performed
during the last decade to carry out reliable
inferences of thermometabolic status in extinct
amniotes. A decade ago, Cubo et al. (2012)
inferred bone growth rates using bone histo-
logical features and multiple linear regressions
tested for significance using permutations in
order to circumvent the nonindependence of
the observations due to the phylogeny. Consid-
ering that bone growth rates are significantly
related to RMR in amniotes (Montes et al.
2007), the former was used by Cubo et al.
(2012) as a proxy to infer the thermometabolic
status of extinct archosaurs. This method was
used by Legendre et al. (2013) to infer the
bone growth rate and the thermometabolic sta-
tus of Euparkeria. In a second step, Legendre
et al. (2016) adapted Guénard et al.’s (2013)
PEMs to perform paleobiological inferences of
RMR. This contribution represented significant
methodological progress, because paleobio-
logical inference models included the phyl-
ogeny (rather than circumventing its effects,
as did the preceding method), assuming an
evolutionary model (Molina-Venegas et al.
2018). PEMs have been widely used to infer
the thermometabolic status of extinct amniotes
(Legendre et al. 2016; Olivier et al. 2017;
Fleischle et al. 2018, Cubo and Jalil 2019;
Cubo et al. 2020, 2022; Faure-Brac and Cubo
2020; Faure-Brac et al. 2021; Knaus et al.
2021). Using logistic phylogenetic regressions
is a new step in this sequence. This method
improves upon the previous approach by
using all of the phylogenetic information
(rather than a fraction of it, as did PEMs in
order to avoid model overfitting). An encour-
aging sign is that results are congruent in spite
of the diversity of methods used to obtain
them. Inferring the maximum metabolic rate
of Notosuchia using the size of femoral nutrient
foramina (Seymour et al. 2012) would be the next
promising step to fully understand the thermo-
physiology of these amazing crocodylomorphs.
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