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Abstract. We show that entire functions which are critically finite and which meet
certain growth conditions admit 'Cantor bouquets' in their Julia sets. These are
invariant subsets of the Julia set which are homeomorphic to the product of a Cantor
set and the line [0, oo). All of the curves in the bouquet tend to oo in the same
direction, and the map behaves like the shift automorphism on the Cantor set.
Hence the dynamics near oo for these types of maps may be analyzed completely.
Among the entire maps to which our methods apply are exp (z), sin (z), and cos (z).

0. Introduction
In recent years there has been an explosion of interest in the dynamics of complex
analytic maps. The important works of Mandelbrot [Ma], Douady-Hubbard (DH1],
and Sullivan [S], among many others, have fuelled this interest. Most of this work
has dealt with the dyanmics of either polynomials or rational maps, but recently,
there has been increasing interest in the behaviour of entire, transcendental functions
([DK], [BR], [GK], [EL2]).

The goal of this paper is to describe the structure of the Julia set of a large class
of entire functions. The Julia set of a map E, denoted by J(E), is the set which
carries all of the complicated or chaotic dynamics of the map. It may be denned
as the set of points at which the family of iterates of the map, E,E2 = E°E, E3,...,
fails to be a normal family of functions. Equivalently, J(E) is the closure of the set
of repelling periodic points of the map, as was proved by Fatou [F] and Baker [Ba].
See [B] for background on the Julia sets of complex analytic maps.

The Julia set of an entire transcendental function is necessarily quite different
from that of a polynomial or a rational map. For one thing, the Julia set of an entire
transcendental function is never compact, as it is for polynomials and rational maps.
In addition, the essential singularity at oo injects a huge amount of hyperbolicity
or stretching into the map. Indeed, by the Great Picard theorem, one iteration of
the map on any neighbourhood of oo covers the entire plane, missing at most one
point. This type of hyperbolicity serves to increase the complexity of the dynamics
on the Julia set.

In this paper we will show that the geometry of the Julia sets of entire maps is
quite different from that of polynomials. For a large class of entire maps, we will
show that the Julia set consists of a collection of what we call 'Cantor TV-bouquets'.
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490 R. L. Devaney and F. Tangerman

Roughly speaking, a Cantor bouquet is the Cartesian product of a Cantor set CN

with the closed half-line [0, oo). On this set, the map behaves in a simple manner,
dynamically speaking. On CN x {0}, E reduces to the well-understood shift
automorphism. E simply permutes the 'tails' or 'hairs' c x [0, oo) according to this
shift automorphism. On these tails, all points tend to infinity under iteration of E,
with the exception of c x {0}, whose orbit remains bounded.

Thus the Julia set for our class of maps may be visualized as containing a collection
of Cantor sets of curves, and the map on each of these sets may be readily understood.

The class of maps to which our results apply are those entire functions which are
crtitically finite (i.e. only finitely many critical and asymptotic values) and which
meet certain growth conditions. These conditions are described in detail in § 3,
where we introduce the notion of a hyperbolic exponential tract with asymptotic
direction. In § 1 we discuss the basic properties of Cantor bouquets, and in § 2 we
show how Cantor bouquets arise in a specific example, the complex exponential
map. Later, in § 4, we show that our methods apply to a variety of important entire
functions, including sin z and cos z.

It is a pleasure to acknowledge helpful conversations with Lisa Goldberg and
Linda Keen while this paper was being written.

1. Cantor bouquets
Let E be an entire transcendental function which is critically finite, i.e. which has
finitely many critical and asymptotic values. This class of entire functions includes
some of the most important transcendental functions such as ez, sin (z), and cos (z).
They are also among the simplest entire functions dynamically; for example, as was
recently shown by Goldberg and Keen [GK] and Eremenko and Ljubic [ELI], they
do not possess wandering domains. It is known that wandering domains may exist
for certain entire, transcendental functions [Ba2], [Ba3], although they do not exist
for rational maps [S].

Let D be an open disk in the plane which contains all of the critical and (finite)
asymptotic values. Let Y be the complement of D.

THEOREM 1.1 (Existence of exponential tracts). Let E be an entire, transcendental
function which is critically finite.

(1) Any connected component T of E'1(Y) is a disk whose closure contains oo.
(2) E : T-*Y is a universal covering.

Proof. We first show that E:E~X(Y)-*Y is a covering map. Let zeintT and let B
be an open disk about z in Y. Let U be a component of E~l(B). If U is compact,
then £ : l/-»B is a diffeomorphism, since J5V0 in U. If U is non-compact, let
q € B and choose an exhaustion of B by simple closed curves y, for 0 < t < 1 with
yo = {g}- E~1(y,) is a simple closed curve for t small. Let 5 be the smallest real for
which E'}(ys) is not a simple closed curve. E~l(ys) is a submanifold of C, since
£ V 0 on 0. Hence E'^yJ extends to infinity. Thus we may choose a curve in
E~l(B) tending to oo which is mapped into ys. This yields an asymptotic value in
B. Hence E\E~l(Y) is a covering map.
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Now F is a punctured disk in Cu{oo}. Hence any component T is either a
punctured disk or a disk. In the latter case E | T is a universal covering, as required.
In the former case, if the puncture is at oo, E is a polynomial, contrary to our
assumption that E is transcendental. If the puncture is at a ^ oo, then E has a pole
at a, which contradicts the fact that E is entire. This completes the proof. •

We call a component T of E^iT) an exponential tract. In such a region, we may
write E(z) = exp {<f>(z)) for ze T and some analytic map <j>.

Our goal is to understand the behaviour of E on the Julia set near infinity. Points
which leave E~l{Y) under iteration fall into D and hence leave a neighbourhood
of oo. We will exclude these points from consideration. Given an exponential tract
T, let JT(E) = {ze J(E)\E"(z)e T for all n}. Clearly, JT(E) is a closed, invariant
subset of J(E). Our goal is to analyze the topological structure of JT(E) as well as
the dynamics of E on this set.

As in other types of dynamical systems, Cantor sets and shift automorphisms
often arise as invariant sets for entire maps. Let N e Z+ and define

2/v = {(s) = {sosis2...) | sj e Z, \sj\ < JV}.
£N consists of all infinite sequences of integers less than or equal to JV in absolute
value. It is well known that, with the product topology, SN is homeomorphic to a
Cantor set.

Define cr: SN -> J.N by a(s0sis2 . . . ) = (s,5253...); i.e. cr 'forgets' the first entry of
a sequence. The map cr is known as the shift automorphism. The following properties
of o- are well known (see [Sin]).

PROPOSITION 1.2. (i) Periodic points of a are dense in ZN.
(ii) <T has a dense orbit, i.e. a is topologically transitive.

We call an invariant subset C of J(E) an N-bouquet for E if
(1) There is a homeomorphism h: 3LN x [0, oo) -> C.
(2) 7T o h~l» E a h(s, t) = o-(s), where IT : 2 N x [0, oo) -> J,N is the projection map.
(3) lim,_oo fc(s, f) = oo.
(4) lim^co E" ° h(s, t) = oo if t*Q.

An N-bouquet includes naturally in an (iV+l)-bouquet by considering only
sequences with entries less than or equal to JV in absolute value.

The invariance of C requires that E(h(s, 0)) = h(o-(s), 0). Hence the set of points
A = h(s, 0) is an invariant set on which E is topologically conjugate to the shift. We
call A the crown of C. The curve hs(t) for t> 0 is called the tail associated to s. We
view each tail as comprising a piece of the 'stable manifold' of infinity.

The following situation often arises for entire maps. Let Cn be an n-bouquet and
suppose Cn c Cn+1<= • • • is an increasing sequence of bouquets with the natural
inclusion maps. The set

is then called a Cantor bouquet.
In the next section we will work out an explicit example of a Cantor bouquet

which occurs for the complex exponential family.

https://doi.org/10.1017/S0143385700003655 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003655


492 R. L. Devaney and F. Tangerman

2. The exponential map
Cantor bouquets arise very often in the dynamics of entire maps which are critically
finite, as we will show in § 3. Here we describe in some detail the simplest example
of a Cantor bouquet. In the last section, we will extend these ideas to other important
examples.

Let Ex = A exp (z), where 0< A < l/e. The graph Ek on K is depicted in figure 1.

A > l /e

F I G U R E 1

Note that Ek has two fixed points, an attracting fixed point at q < 1 and a repelling
fixed point at p> 1. Since Ex maps the vertical line x = p onto the circle of radius
p, it follows that all points with Re z<p lie in the basic of attraction of q. Hence,
J(EK) lies to the right of this line. More can be said:

PROPOSITION 2.1. The basin of attraction of q is open and dense in C. J{E) is the
complement of this basin.

Proof. Suppose D is an open disk in the complement of the basin of q. Hence
Re(£"(z))>l for all n and all zeD. But then \(E")'(z)\> 1, so £" expands D for
each n. In particular, there exists n such that E"(D) contains a disk of radius larger
than27r. It follows that there exists ze D with Im E"(z) = (2/c+l)ir for some integer
fc. But then E"+\z)eU~, contradicting the fact that Re £"+1(z)> 1- This proves
that the complement of the basin of q is nowhere dense. It also shows that the
family of iterates of E is not a normal family at any point in the complement. This
establishes the second part of the proposition. •

Our goal for the remainder of this section is to prove that J(EX) is a Cantor bouquet.
We first describe the crown. Let NeZ+. For each fceZ with |fc|< N we construct
a rectangle B(k) whose boundaries are:

(1) x = log (I/A) on the left;
(2) y = (2k ± 1)77- above and below;
(3) x= v on the right, where v satisfies Ae"- v> (2N+ 1)TT.
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Clearly, there exists v0 such that, if v> v0, (3) holds. See figure 2.

493
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FIGURE 2

PROPOSITION 2.2. (1) A is homeomorphic to 2 N .
(2) £A|A is conjugate to the shift on 1.N.

Proof. Each B(k) is mapped by 2A onto the annulus 1 < r< Ae" and therefore covers
each other B{j). Moreover, |£A(z)|> 1 for all zeljr=-jv B(k). Therefore the pre-
image of B(j) in B(k) is a 'quadrilateral' completely contained in the interior of
B(k). Standard arguments similar to the Smale horseshoe construction [Sm] now
complete the proof: a nested sequence of appropriate inverse images converges to
the unique point A with pre-assigned symbol sequence. •

We now turn to the existence of the tails for points in A. Let Sv denote the strip

Sv = {z\Re (z)> v, |lm (z)|< {2N+ 1)TT}.

We will show that if v is large enough, then the set of points whose orbits remain
for all time in S,, is homeomorphic to 1.N x[p, oo).

LEMMA 2.3. There exists vx such that if v>vx and if both z, Ex(z)eSv, then
Re(£A(z))>2Re(z).

The proof is a straightforward computation using the fact that vertical lines x = v
are mapped to circles r = \e".

LEMMA 2.4. Choose v2> P0 such that Ae"2>l. Suppose v>v2 and E\(z)&Sv for
j = 0 , . . . , k then |(£j)'(z)|aexp v(2k'1 -1) .
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Proof. We have

R. L. Devaney and F. Tangerman

\(Ei)'(z)\ =
k - l

j = 0

k-l

n
1=0

k - l

>Afc n exp(2JRez)

(2*~- i ) . n

Let teU and define for any integer k the square &(t + 2mk) of sidelength277 centred
at t + 2mk Note that the horizontal boundaries of k(t + 2irik) lie along the lines
y = (2k±\)iT and hence are mapped to W by £A. We also define the substrip
SJj)^Sv to be

L E M M A 2.5. (1) Suppose f 3 > l o g {{2N + 2)Tren/\{e"-\)). Ift> v3, then the image

of A(t + 2mk) covers A(Ek(t) + 2nij) for any j with | j | < N.

(2) Let v>vi+v. Suppose E\(t)e S,, for j = 0 , 1 , . . . ,k. Let s0, s l s . . . , sk_, fte

integers with \sj\ < TV. 77ien f/iere exisfs z G 5^ wi//i £J
A(z) e Sv(.*,•) and £j(z) = £*(')•

For the first part one checks easily that, if t > ^3, then

and

For the second part, we use induction. First, recall that t is real. If k = \, then
z= t + 2ms0, so the result is true. If the result is true for fc-1, then from part (1)
we have E{{z) e A(E{(t) + 2-rrisj) forj = 1 , . . . , k. By (1), £A maps A(t + 2iris0) over
(£A(O + 277-is,).Ifz€Sl,(so)andRe(z)e[(-77-, t+7r],then £A(Z)J^ A(£A(f) + 2im1).
This completes the proof. •

Remark The content of the second part of this lemma is that £A behaves very much
like £A |R on the set of points whose orbits remain for all time in S,,.

Let Log be the branch of the natural logarithm taking values in |lm (z)| < n. Let Lk

be the branch of the inverse of £A which takes values in Sv{k), i.e. Lk(z) =
Log (Z/A) + 2T7-I7C Let 5 = (s0SiS2,... ) e I N . For each /c>0 we define

for t sufficiently large. Note that each 3>fc is well defined by lemma 2.5.

PROPOSITION 2.6. Let T> vt + ir for i' = 0, I, 2, 3. Then, for each se~LN, <I>fc(s, t)
converges uniformly on [T, OO) as k-><x>.
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Proof. We have

By lemma 2.4 we have

This gives uniform convergence in f.

(*)

D

In particular, this proposition yields, for each j e 2 N , a continuous curve $>(s, t)
denned for l > r in 5T. If r e I N with r = (s0Si • • • skrk+lrk+2 • • •) then (*) implies
that <b(s, t) is close to <I>(r, t), so that <$> is continuous in s. <J> is easily seen to be
one-to-one as a map on 2,N x [T, OO). Let Ar = {ze ST\EJ

x(z)e ST for all j}. We claim
that 0,: 2 N x [r, oo) -»AT is also surjective. For if z € AT, then there is a well-defined
sequence s associated to z since the horizontal boundaries of Sv(si) are mapped
out of Sv into R~ by EK. Furthermore, \(E\)'(z)\~>oo as j-*<x>. Thus, any small disk
U about z is eventually expanded so that the diameter of its image exceeds 2TT. It
follows that there is a sequence of points zk in U which converge to z and which
satisfy E{(zk)e Sv(sj) for j<k but E*(zk)eU. Let t* denote the supremum of the
real parts of points in U. Then it follows immediately that

Hence zk = <$>k(rk, tk) for some rke2.N and ( ,<(*. It follows that the sequence
^k(^k, h) converges to z. Thus, we have proved:

PROPOSITION 2.7. AT is homeomorphic to I.N x [0, oo).

Let z be any point whose orbit lies for all time in S,og 1/A and which does not lie in
A, i.e. z does not lie in the crown of the TV-bouquet. It follows easily that there
exists an m for which E™(z) e AT. Hence we may pull back the curve in AT through
any such point. It follows that {z\E{{z)e S,ogl/A for all ;} is an N-bouquet. See
figure 3.

FIGURE 3
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Remarks. (1) All of the tails are asymptotic at infinity in the following sense. Let
<$(/) be the parametrization of any tail. Define the d-angle about $ to be Bs,(4>(0)-
If 4>,(0 is any other tail, then there exists r such that for t> T, 4>,(/) belongs to
the 5-angle about <$>.

(2) The vertical boundary x = log (I/A) of the exponential tract also has dynami-
cal significance. Recall that a Julia ray is a ray such that in any 8-angle about it,
the conclusion of the Great Picard theorem holds. The line x = log (I/A) is a Julia
ray in the direction of both increasing and decreasing imaginary part.

(3) If A > 1/e, the above ideas must be modified somewhat. First, it is known
that J{Ek) = C in this case [BR], [D], [Mi]. So J(E\) is certainly not a Cantor
bouquet. Moreover, any vertical line x = c is mapped to a circle with radius greater
than c, so the above construction fails. Nevertheless, if we eliminate certain of the
strips ST(fc) for |/c|<K, then the above construction does work and there is an
invariant subset of J(£A) which is a Cantor bouquet.

(4) One can use this construction to show that the Lebesgue measure of J{EK)
is zero. This is a recent result of Eremenko and Ljubic [ELI]. McMullen has recently
shown [Me] that /(£A) has Hausdorff dimension 2.

3. Hyperbolic exponential tracts
In this section we give specific conditions that guarantee that the set of points whose
orbits remain inside a given exponential tract T is a Cantor bouquet. We assume
throughout that T is contained in a sector S and that the entire, transcendental map
E is critically finite. Let Cr denote the circle given by |z| = r and Br the closed disk,
z\ < r. We assume that all of the critical and asymptotic values of E lie in the interior
of Br. We also assume that there exists p such that E \ T covers the complement of
the disk Bp and that Tn Bp = 0. We will discuss later the changes that ensue if T
and Bp overlap.

Since 7 c S, we may fix a ray £ = £(r) = re'e which is disjoint from S and defined
for r > p, and use the pre-images of this ray in T to set up the fundamental domains
for the Cantor bouquet. More precisely, let y, = %(r) for i e Z denote the pre-images
of £ in T. That is, y,(r) = £~'(£(r)) for an appropriate branch of E~l. We may
choose the index i in the natural way so that y; and yi+l are adjacent for each i.
Clearly, y,(r) tends to oo as r-»oo.

The curves y, and y1+1 bound a strip which serves as a fundamental domain for
E | T. See figure 4. Let us denote this strip by 7]. Let WN = {J"=-N T{. Our goal will
be to give conditions that guarantee that

AN={zeWN\EJ(z)e WN for all ja0}

is homeomorphic to a Cantor N-bouquet. Basically, the conditions which we will
give amount to an assumption on the direction in which points approach oo as well
as the rate at which they approach oo under iteration. As such, these conditions are
reminiscent of the conditions which define a hyperbolic fixed point for a map.
Indeed, if we regard oo as a fixed point for £ | T (and not globally), then this is a
fairly good analogy.

Our first assumption is that all of the fundamental domains approach infinity in
the same direction.
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'c, r
FIGURE 4. Fundamental domains in exponential tracts.

Definition 3.1. E\ T has asymptotic direction 0* if y,(r) is C1-asymptotic to a straight
line with direction 0* for each curve y, denning the fundamental domains.

Note that, if E \ T has asymptotic direction 6*, then all of the y, which lie in WN

meet circles of sufficiently large radius in a unique point. That is, there exists Ro

such that, if r> Ro and y, c WN, then the equation \yt\ = r has a unique solution.
As a consequence, we may assume that the tails of each of the y, in WN are
parametrized by r, at least for r> Ro.

Besides assuming that the y, tend to oo in a certain direction, we also assume that
points approach oo with a certain speed under iteration. Our second assumption is:

Definition 3.2. T is a hyperbolic exponential tract if there exist positive constants
Ru a, C such that, if z and £(z) lie in WN, with \z\ = r> R,, then

(i) |£(z)|>Ce'°
(ii) \E'(z)\>Cer"

(iii) |arg(£'U))|<Ce-r'>

We remark that Ri, a, and C may depend on N. Our aim is to prove the following
theorem.

THEOREM 3.3. Let E be a critically finite, entire, transcendental map. Let T be a
hyperbolic exponential tract on which E has asymptotic direction 6*. Then, for each
N, AN is a Cantor N-bouquet. Consequently,

JT(E) = {z\EJ(z)eTforallj>0}

contains a Cantor bouquet.

To prove this theorem, we need several lemmas. Let g(r) = Cer° for r>Rt where
/?!, C, a are as given in definition 3.2. The proof of the following lemma is
straightforward.

LEMMA 3.4. (1) There exists i?2— Ri such that, if r> R, then g(r)>r. Moreover,
g"(r)^oo ifr>R2.

(2) Let e>0. Then there exists R3= R3(s) such that, ifr>R3, then
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For simplicity of notation, let us denote the set of points {ze 7]||z|>r} by 7](r).
We will also concentrate for the moment on a single fundamental domain To, later
extending these results to the collection of domains WN.

LEMMA 3.5. Let T be a hyperbolic exponential tract for E with asymptotic direction
0*. Then E has a unique fixed point in To, and this fixed point is repelling.

Proof. By lemma 3.4, we may choose R2 so that Cer° > r provided r > R2. Then we
choose R S: max (Ro, R2) where Ro is such that the boundaries y0 and yl are functions
of r for r>i?0 , as described after definition 3.1.

Consider the subset UR = Tt- Tt(R). That is, UR = {z e T, \ \z\ < R}. The closure
UR is easily seen to be homeomorphic to a rectangle, two of whose boundary
components lie in y0 and y,. The third lies in BT, and the fourth lies in CR. E
expands UR onto an annular region bounded by Cp and the image of CRnT0. By
condition (i) in definition 3.2, this latter image lies in the region \z\> R, while the
former image lies in the exterior of T. Since E | UR is one to one except on y0 u yt,
it follows that E has a fixed point in UR. We henceforth denote this fixed point by
z0. Note that z0 is the unique point whose orbit remains for all time in UR. •

Now let us consider the set of points Ao which remain for all time in the larger set,
To. We remark that Ao is a closed set, since

where <f> is the branch of the inverse of E taking values in To. Moreover, provided
|£(z)|> Cer" as in assumption (i) in definition 3.2, it follows easily that there is
exactly one fixed point in Ao and all other points in Ao tend to oo under iteration
of E. Hence, Ao 'connects' the fixed point to oo. To prove that Ao is actually a curve,
however, necessitates the full power of the definition of hyperbolicity.

In analogy with our construction for the exponential map, we will first work with
those points which remain in To and have sufficiently large modulus. Let

A0(R) = {ze T0(R)\Ej(z)e T0(R) for all;>0}.

LEMMA 3.6. If R is sufficiently large, then A0(R) is a continuous curve.

Proof. We will construct a pair of sequences of C°° curves ak(r) and fik(r) which
will be defined for r>/? and have the following properties:

(1) k ( r ) | = |/3k(r)| = r;
(2) A0(R) lies in the strip contained in T0(R) and bounded by ak and /3fc for

each k;
(3) |ak(r)-/3fc(r)|-»0 uniformly as fc-»oo.

As a consequence, A0(R) is a continuous curve which may be parametrized by r > R.
To define R and the ak and /3k, we first recall that there exists Ro such that, if

r>jR0, then both y0 and y, meet Cr in a unique point. Here, y0 and y, are the
boundaries of To. Hence we may parametrize both of these curves by r > Ro. We
set a0 = y0 and /30 = yx. Since both a0 and /30 have asymptotic direction 0*, we may
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further assume that, if r> Ro, then

\<Lrga'0(r)-e*\<e/2,

larger)-0*| <e/2.
Let

So = sup|ao('')-/3o(r)|.

Since both a0 and /30 are asymptotic to lines with the same direction, it follows that
S0<oo.

Now let zeA0(R) and suppose that |z| = r. If we choose R> Rlt then we have
\Ek(z)\>gk(r) for all k>0, where g{r) = Cer°. If R> R2, then lemma 3.4 shows
that £k(z)-»oo as fc->oo.

If R > R,, then we also have that

1
arg(E'(z))|<

g(r)'
By the chain rule, we have

|arg(Efc)'(z) arg "ft E'(E'(z))

< I |argE'(E'(z))|
i = 0

k"1 1

(*)

-.-og'irY
If we choose R> R3, then lemma 3.4 guarantees that

|arg(£k)'(z)|<e/2.
for all k.

Now let (f> denote the branch of the inverse of E | T which takes values in To.
We define the curves ak and /3k by <p~k(a0) and cf>~k(p0). Provided R is chosen
large enough, (*) guarantees that ak and (lk have arguments which differ from 6*
by no more than e/2. Hence ak and /3fc may also be parametrized by r. That is,
ak(r) is the unique point in Crn To whose orbit stays in To under E, E2,..., Ek

and which satisfies Ek(ak(r))e a0.
We thus assume that R >max (Rt). Let Sk be the C°-distance between ak and fik

for r>i? i.e.,

«t = sup(|at(r)-j8t(r)|)

Using conditions (ii) and (iii) in definition 3.2, it follows immediately that there is
a constant v< 1 such that, if r> R, then Sk < vk80. Consequently, Sk-»0 uniformly
for R sufficiently large. Thus the ak and j8k converge uniformly to A0(i?).

This completes the proof of lemma 3.6. •

This shows that A0(.R) is a continuous curve parametrized by r for r> R. To show
that Ao is homeomorphic to [0, oo), we use a fundamental domain argument. Let D
be the complement of T0(R) in the entire strip To. D is homeomorphic to a disk
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and is mapped inside itself by the inverse map </>. Moreover, by the Schwarz lemma,
any point zeD tends to z0 under iteration of <t>. Now the region F = D — <j>(D)
forms a fundamental domain for <f>. Note that A0(R) meets this region in a unique
point. Denote this point by p0. Then 0(AO(/?)) meets F in a continuous curve which
extends from px = 4>{po) to p0 in F. Hence we may parametrize this portion of Ao

by any continuous map defined on the interval (R/2, R] and taking R/2 to pt.
Taking the jth image of this curve and then choosing any parametrization defined
on intervals of the form (R/2j+1, R/2J~\ (with endpoints matching appropriately)
shows that A 0 - z 0 may be continuously parametrized on the interval (0, oo). Since
F is a fundamental domain, we may extend this parametrization continuously to
0, with 0 corresponding to z0.

This proves theorem 3.3 in the case of a single fundamental domain. The case of
WN is essentially the same, provided R is chosen large enough so that each of the
fundamental rectangles are expanded over all of the rectangles. This produces the
shift map on the invariant Cantor set, much as in the case of the exponential map.
More precisely, as above, we may choose R large enough so that UN =
{z e WN | |z| s R) is a union of 'rectangles', D_N,..., DN, with D, e 7}. Choosing
R larger if necessary, we may guarantee that E is one-to-one on the interior of each
Dj and that E\Dj covers UN. Hence, for each j with -NsjsN, we may define
the branch of the inverse of E given by </>,: UN -» Dj. In the Poincare metric on UN,
each (j>j is a strict contraction. That is, there exists fi < 1 such that \<t>j(z)-(f>j(w)\<
fi\z — w\. Now let (s) — (s0, s-i, s2,. •.) be any sequence in S N . L e t ^ = 4)^° • • • ° <f>5k.
By the above considerations, the Wk converge uniformly in the Poincare metric to
a constant map zi-»zs. The point zs is clearly unique and has itinerary 5. The
collection of all such zs for s&1N gives an invariant Cantor set on which the map
E is topologically conjugate to the shift map, just as in the case of the exponential
map. The construction of the tails associated to each zs proceeds as above. We
therefore leave the details to the reader. This completes the proof of theorem 3.3.

Remark. Our proof of the existence of the tails in the iV-bouquet is somewhat
different from the proof we gave in the special case of the exponential map in § 2.
This proof can be adapted to the general case provided we have the existence of at
least one tail in the bouquet already. Symmetry conditions often give the existence
of this tail without difficulty, as we shall show in the next section.

4. Applications and extensions
In this section we gather together several applications of the previous results and
show how to eliminate some of the restrictions imposed in § 3. First consider the
map Sx(z) = A sin z. If A is real with 0 < A < 1, then SA has an attracting fixed point
at 0. Moreover, since 5A(i>') = iA sinh (y), SA preserves the imaginary axis. There
are two other fixed points on this axis, located at ip±(A), where p+ > 0 and />_ = -p+.
These fixed points are repelling, and the portion of the positive imaginary axis
connecting ip+(A) to oo consists of points which tend to oo. We will see below that
this is the tail attached to ip+(A) in /(SA). Similarly, ip-(\) has a tail on the negative
imaginary axis.
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We claim that J(SX) contains a pair of Cantor bouquets, one tending to <x> in the
direction of the positive imaginary axis and one in the direction of the negative
imaginary axis. To see this, we note that SA is critically finite: there are only two
critical values at ±A and no (finite) asymptotic values. Choose v such that 0 < v<
p+(k). The horizontal line y = v is mapped by SA onto an ellipse with centre at 0.
This ellipse meets the imaginary axis at I'A sinh (v) < v since v<p+(\). Moreover,
SA maps the half plane H+ given by Im (z) > v onto the exterior of this ellipse. By
the results of § 1, this region is an exponential tract for 5A. We may choose the
negative imaginary axis to define the fundamental domains in H+. Since the vertical
half-lines given by x<={2k+\)n, y>v for keZ are mapped by SA onto this axis,
it follows that H+ has asymptotic direction 6% = TT/2. Furthermore, since SA(z) =
(A/2i)(e'z — e~'z), one may check readily that H+ is a hyperbolic exponential tract.

Similar results hold as well for H_ = {z|lm (z)< -v}. As a consequence, we have:

THEOREM 4.1. /(SA) contains a pair of Cantor bouquets for 0 < A < 1, one in H+ and
one in / /_.

One has a similar theorem for CA(z) = A cos z provided A e U is chosen so that CA

has a fixed sink. This is true for |A| < 1, as one may easily check.
Theorem 3.3 yields an interesting alternative definition of the Julia set of an entire

function which meets our growth and asymptotic direction requirements in all
exponential tracts.

THEOREM 4.2. Suppose E is an entire transcendental function which is critically finite
and which has an exponential tract D which is hyperbolic with a given asymptotic
direction. Then

J(E) = closure {z | EJ(z) -> oo}.

Proof. By a result of Fatou [F], J(E) is the closure of the set of pre-images of any
point in J(E). Hence we simply take this point to be a point which lies on one of
the tails in JD(E). •

Remarks. (1) Note how this differentiates the entire, transcendental case from the
case of polynomial maps: for polynomials, points which tend to oo under iteration
are never in the Julia set.

(2) For entire maps which have a hyperbolic exponential tract with an asymptotic
direction, there are thus two seemingly contradictory definitions of the Julia set.
One gives J(E) as the closure of the immediate unbounded orbits, while the other
gives / ( £ ) as the closure of perhaps the simplest bounded orbits, the periodic orbits
(which are repelling). Of course, our definition of Cantor bouquet explains this
apparent contradiction.

(3) This definition of J(E) yields an easy algorithm to compute the Julia set
numerically: one simply computes which points tend to go far from 0 in the required
asymptotic directions.

(4) Let T be a hyperbolic exponential tract. Since E \ T is a universal covering
map, the Julia set JT(E) has infinitely many symmetries given by the various deck
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transformations on T. This accounts for some of the self-similarity observed in
computer pictures of Julia sets of entire functions.

Our final topic in this section deals with the behaviour of the Cantor bouquets in
case an exponential tract overlaps the disk which contains all of the critical and
asymptotic values. In this case there may occur bifurcations or other changes in the
structure of the Julia set.

One such bifurcation involves the exchange of 'hairs' among the various points
in the crown of the bouquet. For example, consider the family Sx(z) = A sin (z) for
A e U. For 0< A < 1, the Julia set contains two distinct Cantor bouquets, one in the
upper half-plane H+ given by Im (z) > v, and the other in the symmetrically located
lower half-plane, H_. The two repelling fixed points at </>±(A) have tails or hairs
attached as described above. As A increases through 1, a bifurcation occurs: 0 ceases
to be an attracting fixed point and two new attractors appear at ±q{\) on the real
line. One may check as before that SA still preserves the imaginary axis, but this
time all points except 0 tend to infinity under iteration. Thus the hairs in the Cantor
bouquet previously attached to ip±(\) are now permanently attached to 0 for A > 1.
For more details, see [D3]. See figure 5.

F I G U R E 5. The exchange of hairs of SA at A = 1.

We remark that similar exchanges simultaneously occur at A = 1 along all of the
pre-images of the imaginary axis.

There is a second, completely different type of bifurcation which may occur when
the exponential tract overlaps the disk containing the critical values. This is an
explosion of the Julia set. For example, consider the family EA(z) = A exp (z). For
0< A < 1/e, we have shown that J(EA) is a single Cantor bouquet. For 0< A < 1/e,
the asymptotic value at 0 tends to the single attracting fixed point on the real axis.
But when A > 1/e, E"{0) -* oo. By Sullivan's theorem [S] as extended to entire maps
by Goldberg and Keen [GK], the Julia set must be all of C in this case. This example
shows that bifurcations also occur when the critical and asymptotic values fall onto
one of the hairs in the Cantor bouquet. For more details, see [Dl].
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