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We study numerically the microjetting mode obtained when a fluid is injected through a
tube submerged in a uniaxial extensional flow. The steady solution to the full nonlinear
Navier–Stokes equations is calculated. We obtain the linear global modes determining
the linear stability of the steady solution. For sufficiently large outer viscosity, the flow
remains stable for infinitely small values of the injected flow rate. This implies that jets
with vanishing diameters can be produced regardless of the jet viscosity and outer flow
strength. For a sufficiently small inner-to-outer viscosity ratio, the microjetting instability
is associated only with the flow near the entrance of the jet. The tapering meniscus
stretches and adopts a slender quasiconical shape. Consequently, the cone tip is exposed to
an intense outer flow, which stabilizes the flow in the cone–jet transition region. This work
presents the first evidence that fluid jets with arbitrarily small diameters can be stably
produced via tip streaming. The results are related to those of a droplet in a uniaxial
extensional flow with its equator pinned to an infinitely thin ring. The pinning of the
equator drastically affects the droplet stability and breakup.

Key words: capillary flows, microfluidics

1. Introduction

The stable production of arbitrarily thin fluid jets has become the ‘holy grail’ for many
microfluidic applications that demand monodisperse collections of tiny droplets, bubbles,
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capsules and emulsions. The microjetting mode of tip streaming (Anna & Mayer 2006;
Montanero & Gañán-Calvo 2020) has been the preferred method in most cases because
it allows the formation of long fluid threads much thinner than any fluid passage of the
microfluidic device. Using hydrodynamic (De Bruijn 1993) or electrohydrodynamic forces
(Duft et al. 2003), energy is gently focused into the tip of a tapering meniscus anchored
to the feeding tube. In a particular region of the parameter space, the meniscus tip steadily
emits a jet much thinner than the tube. The jet eventually breaks up into droplets due to
the capillary instability.

In most tip streaming realizations, the kinetic energy per unit volume ρjv
2
j /2 (ρj and

vj are the jet’s density and velocity, respectively) gained by the inner-phase fluid particle
results from the work done by the external driving force on the tapering meniscus (the
pressured drop applied to an outer gas current, the electric field, etc.). This work is
approximately fixed when the driving force intensity is fixed (Montanero & Gañán-Calvo
2020). Therefore, the fluid particle kinetic energy is practically independent of the injected
flow rate Qi. This implies that the jet diameter dj ∼ (Qi/vj)

1/2 scales approximately
as Q1/2

i .
In principle, the jet diameter can be indefinitely reduced by lowering the injected flow

rate. However, experiments and numerical simulations have shown that the flow inevitably
becomes unstable at a critical value of Qi, which sets a minimum value of the jet diameter
(Montanero & Gañán-Calvo 2020). For instance, the microjetting modes of gravitational
jets (Rubio-Rubio, Sevilla & Gordillo 2013), flow focusing (Cruz-Mazo et al. 2017),
confined selective withdrawal (Evangelio, Campo-Cortés & Gordillo 2016; López et al.
2022) and electrospray (Ponce-Torres et al. 2018) become unstable at this well-known
minimum flow rate stability limit, which prevents producing jets with arbitrarily small
diameters.

A number of significant studies of the microjetting mode of tip streaming demonstrated
the production of thin jets, but they did not determine the minimum flow rate stability limit.
Using a double flow-focusing arrangement, Gañán-Calvo et al. (2007) produced compound
fluid jets with submicrometre diameters. The transient numerical simulations of Suryo &
Basaran (2006) showed the transition from jetting to microjetting (tip streaming) in the
coflowing configuration when the inner-to-outer flow rate ratio decreased below a critical
value. The vanishing flow rate ratio limit was not analysed in that work.

It is worth mentioning that Gañán-Calvo (2008) showed that an infinitely thin jet is
stable (convectively unstable) if the interface speed exceeds a critical value, which depends
on the ratio between the jet and outer medium viscosities. However, this must be regarded
as a prerequisite for microjetting, which does not consider the critical instability that
originates in the tapering meniscus.

Gordillo, Sevilla & Campo-Cortés (2014) studied the stability of fluid jets stretched
by a coflowing viscous current using a one-dimensional approach. In this approach, the
outer flow field was calculated as the addition of the unperturbed flow field (i.e. that
obtained if the inner fluid were not injected) plus a distribution of sources located at
the axis of symmetry. The outer tube was much bigger than the inner one, therefore, the
effect of confinement could be neglected. They found both oscillatory and non-oscillatory
critical modes. The perturbation amplitude in the tapering cone was virtually zero in the
oscillatory mode. Gordillo et al. (2014) also showed the critical stabilizing effect of the
capillary pressure gradient in the stretched jets.

Taylor (1932, 1934) proposed a long-wave model to describe the flow in an axisymmetric
drop submerged in a viscous uniaxial extensional flow. Using this approximation, Zhang
(2004) showed how the extensional flow might produce a vanishingly thin jet from the tip
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of a meniscus attached to a tube. A continuous transition to microjetting with an arbitrarily
small flow rate (jet diameter) can occur when the imposed capillary number is decreased.
As the flow rate decreases, the solution to the long-wave model tends to a universal velocity
profile when the variables are appropriately scaled. However, these numerical results were
based on the slender body theory, which is known to fail for conical tips (Eggers 2021).
More importantly, the flow stability was not determined, and, therefore, the viability of this
method was not demonstrated. It must be pointed out that numerical simulations usually
converge to a microjetting solution even when the bifurcation point has been crossed,
making the stability analysis critical.

This work examines the microjetting mode obtained when a fluid is injected at the
flow rate Qi through a tube submerged in a uniaxial extensional flow (−Gr/z, 0, Gz). We
analyse the flow stability as Qi decreases. Our main conclusion is that infinitely thin jets
can be stably produced for a sufficiently large outer viscosity, independently of the jet
viscosity and the outer flow intensity G.

To analyse the microjetting stability in the limit Qi → 0, we also study the stability and
breakup of a droplet in a uniaxial extensional flow with its equator pinned to an infinitely
thin ring. This problem is practically the same as that described above for Qi = 0. The
response of a suspended droplet to a linear flow has been the subject of study in numerous
works. For this reason, considering the pinned droplet problem not only allows us to
discuss the limit Qi → 0 of the microjetting mode but also is interesting in itself. Our
analysis will show how the pinning of the droplet equator drastically affects the droplet
stability and breakup.

The paper is organized as follows. In § 2, we present the governing equations and
formulate the two related problems solved in this work: (i) the stability of a closed droplet
pinned to the feeding capillary and deformed by the outer uniaxial extensional flow, and (ii)
the stability of the microjetting mode produced when the inner disperse phase is injected
across the feeding capillary at a constant flow rate. The global stability analysis and the
numerical method are also briefly described in this section. The results for the closed
droplet are shown in § 3, while the analysis of the microjetting mode stability is presented
in § 4. In this section, we also discuss the relationship between these two problems. The
paper closes with some conclusions and final remarks in § 5.

2. Governing equations

Consider a cylindrical capillary of radius a placed in a linear uniaxial extensional flow
given by the equations

u(o) = −Gr/2, w(o) = Gz, (2.1a,b)
where u(o) and w(o) are the radial and axial components of the velocity field, and G is the
flow intensity. The centre of the capillary exit is located at the origin of the cylindrical
coordinate system (r, z). The density and viscosity of the outer fluid are ρo and μo,
respectively.

In the first problem analysed in this work, a droplet of volume V , density ρi and viscosity
μi is pinned to the edge of the capillary (figure 1). The pinning condition implies that the
triple contact line does not move because it remains anchored to the capillary edge. This
case corresponds to a closed droplet submerged in an extensional flow with its equator
pinned to an infinitely thin ring. We will refer to this problem as the case Qi = 0, which
alludes to the fact that the inner phase does not need to be injected to sustain the steady
flow in the droplet.

The second problem studied in this work considers the microjetting mode achieved when
the inner phase is injected at the constant flow rate Qi through the capillary (figure 2).
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Figure 1. Sketch of the fluid domain for the closed droplet (Qi = 0). The blue line is the shape of the droplet
stretched by the outer flow. The interface is pinned to the sharp capillary edge, as indicated in the sketch. The
dashed lines indicate the borders of the computational domain. The velocity field (2.1a,b) is prescribed at the
upper and right-hand borders. The left-hand border is a symmetry plane. The lower border is a symmetry axis.
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Figure 2. Sketch of the fluid domain for the microjetting mode (Qi > 0). The blue line is the interface location.
The interface is pinned to the sharp capillary edge, as indicated in the sketch. The dashed lines indicate the
borders of the computational domain. The velocity field (2.1a,b) is prescribed at the upper and right-hand
borders. The left-hand border is a symmetry plane. The lower border is a symmetry axis. The parabolic velocity
profile is prescribed at a distance L0 from the exit of the feeding capillary.

In this case, the inner phase forms a cone-like tapering meniscus that ejects a very thin
jet from its tip. The issued fluid volume is replaced by that injected across the capillary so
that the system can adopt a steady flow. We will refer to this problem as the case Qi > 0.

Hereafter, all the variables are made dimensionless with the characteristic length a,
velocity σ/μo, time μoa/σ and stress σ/a, where σ is the surface tension. In this section,
we present the equations in cylindrical coordinates. This coordinate system is used to
analyse the stability of the microjetting mode. The equations in intrinsic coordinates for
the closed droplet can be found elsewhere (Herrada, Yu & Stone 2023).

The dimensionless, axisymmetric, incompressible Navier–Stokes equations for the
velocity and pressure fields are

[ru(k)]r + rw(k)
z = 0, (2.2)

(λ2)δik Rek[u(k)
t + u(k)u(k)

r + w(k)u(k)
z ] = −p(k)

r + λδik [u(k)
rr + (u(k)/r)r + u(k)

zz ], (2.3)

(λ2)δik Rek[w(k)
t + u(k)w(k)

r + w(k)w(k)
z ] = −p(k)

z + λδik [w(k)
rr + w(k)

r /r + w(k)
zz ], (2.4)

where u(k) (w(k)) is the radial (axial) velocity component, p(k) is the pressure field,
Rek = ρkσa/μ2

k is the Reynolds number (the inverse of the Ohnesorge number) of phase
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k, λ = μi/μo is the viscosity ratio and δij is the Kronecker delta. In the above equations and
henceforth, the subscripts and superscripts k = i and o refer to the inner and outer phases,
respectively, and the subscripts t, r and z denote the partial derivatives with respect to the
corresponding variables. The action of the gravitational field has been neglected due to
the smallness of the fluid configuration.

The kinematic compatibility condition at the interface reads

Ft + Fzw(i) − u(i) = 0, (2.5)

where r = F(z, t) is the distance of an interface element to the symmetry axis z. We
consider the continuity of the velocity field and tangential stress at the interface, as well as
the normal stress jump due to the capillary pressure,

‖v(k)‖ = 0, ‖τ (k)
t ‖ = 0, ‖τ (k)

n ‖ = κ, (2.6a–c)

where ‖A(k)‖ denotes the difference A(i) − A(o) between the values taken by the quantity A
on the two sides of the interface, v(k)(r, z; t), τ (k)

t and τ
(k)
n represent the velocity field and

tangential and normal stress, respectively, and κ is the local mean curvature.
The triple contact line anchorage condition, F = 1, is set at the capillary edge (the triple

contact line is pinned to the capillary edge). We impose the velocity field u(o) = −Cr/2
and w(o) = Cz (see (2.1a,b)) at the two boundaries of the computational domain indicated
in figures 1 and 2, where C = Gaμo/σ is the capillary number. The outer uniaxial
extensional flow is symmetric with respect to the plane z = 0; i.e. du(o)/dz = w(o) = 0.
The lower boundary corresponds to a symmetry axis.

The above equations and boundary conditions apply to the two problems Qi = 0 and
Qi > 0 considered in this work. In the case Qi = 0, the flow in the droplet is also
symmetric with respect to the plane z = 0; i.e. du(i)/dz = w(i) = 0 at z = 0 (figure 1).
In this way, we simulate one of the two halves of a droplet whose equator is pinned to
an infinitely thin ring. This is not strictly equivalent to imposing Qi = 0 at the feeding
capillary exit. However, it is expected to have negligible influence on the linear stability of
the microjetting realizations analysed in this paper, which is essentially determined by the
flow in the meniscus–jet transition region.

For Qi = 0, the droplet volume

V = 2π

∫ Λ

0
F2 dz, (2.7)

is prescribed to calculate the base flow in the linear stability analysis and as an initial
condition in the transient simulations. Here, Λ is the length of half the drop (F(Λ) = 0).

For Qi > 0, the symmetry plane condition is only considered on the left-hand side of
the outer computational domain, as indicated in figure 2. The parabolic velocity profile
corresponding to the dimensionless flow rate Q = Qi/(πa2σ/μo) is imposed inside the
feeding capillary at a distance L0 from its exit (L0 = 5 in the simulations unless otherwise
stated). Finally, the outflow boundary conditions Fz = u(i)

z = w(i)
z = 0 are prescribed in

the jet outlet cross-section.
Different sets of parameters characterize the problems for Q = 0 and Q > 0. For Q = 0,

the problem is formulated in terms of the dimensionless numbers {Rei, Reo, λ, C, V}.
For a fixed value of L0, the problem with Q > 0 is characterized by the parameters
{Rei, Reo, λ, C, Q}, which reduce to {λ, C, Q} when inertia is neglected. We will consider
this approximation in most of our analysis.
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The viscosity ratio and Reynolds numbers are defined in terms of the material properties
and the capillary radius, which allows fixing their values in an experimental run in which
the strain rate (the capillary number) and injected flow rate are changed. These two
variables are the experimental operational parameters.

To calculate the linear global modes of the steady solution, we assume the temporal
dependence

U = U0 + δU e−iωt + c.c. (|δU| � |U|), (2.8)

where U represents any unknowns of the problem, and U0 and δU stand for the
corresponding base flow (steady) solution and the spatial dependence of the eigenmode,
respectively.

For Q = 0, the interface location is defined in terms of intrinsic coordinates. In this case,
we assume the temporal dependence

(rs, zs) = (rs0, zs0) + (δrs, δzs) e−iωt + c.c. (|δrs| � rs0, |δzs| � zs0), (2.9)

where (rs0, zs0) is the droplet shape in the base flow, and (δrs, δzs) is the perturbation. For
Q > 0, we assume the temporal dependence for the interface location

F = F0 + δF e−iωt + c.c. (|δF| � F0), (2.10)

where F0 denotes the interface position in the base flow, and δF is the perturbation. In
the above equations, ω = ωr + iωi is the eigenfrequency characterizing the perturbation
evolution. If the growth rate ω∗

i of the dominant mode (i.e. that with the largest ωi) is
positive, then the base flow is asymptotically unstable under small-amplitude perturbations
(Theofilis 2011).

We used a boundary-fitted spectral method (Herrada & Montanero 2016) to solve
the theoretical model described above. Here, we summarize the main characteristics
of this method. The inner and outer fluid domains are mapped onto two quadrangular
domains through non-singular mapping. A quasielliptic transformation (Dimakopoulos
& Tsamopoulos 2003) is applied in the outer bath. All the derivatives appearing in the
governing equations are expressed in terms of the spatial coordinates resulting from the
mapping. These equations are discretized in the mapped radial direction with Chebyshev
spectral collocation points (Khorrami, Malik & Ash 1989). We use fourth-order finite
differences with equally spaced points to discretize the mapped axial direction for Q > 0.
Details of the discretization used with intrinsic coordinates for Q = 0 can be found
elsewhere (Herrada et al. 2023). The MATLAB eigs function is applied to find the
eigenfrequencies around a reference value ω0. This process is repeated for several values
of ω0.

We conduct transient (direct) numerical simulations for both Q = 0 and Q > 0. These
simulations allow us to determine the breakup mode adopted by the closed droplet for
supercritical conditions. They also enable us to study the response of the microjetting
mode to an initial perturbation. Second-order backward finite differences are used to
discretize the time domain. For Q = 0, the time step is adapted in the course of the
simulation according to the formula 	t = 	t0/vtip, where 	t0 is the time step at the
initial instant, and vtip is the droplet tip velocity. For Q > 0, the time step is constant.
The time-dependent mapping of the physical domain does not allow the algorithm to go
beyond the interface pinch-off. Therefore, the evolution of the emitted droplet cannot be
analysed using the present code.

The numerical method for studying the stability of the microjetting mode has been
extensively used and validated from comparison with experiments (Cruz-Mazo et al. 2017;
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Ponce-Torres et al. 2018; López et al. 2022). The adaptation of this method to the stability
analysis of a closed droplet was validated by Herrada et al. (2022) from comparison with
other numerical approaches and asymptotic analyses.

The next two sections present the results for the two problems described above:
the closed droplet (Q = 0) and the microjetting mode (Q > 0). First, we analyse the
deformation and stability of a closed droplet pinned to the capillary edge. As shown below,
the solution to this problem is intimately related to that of the microjetting mode in the
limit Q → 0. We also show the fundamental differences between the results previously
obtained for an unpinned droplet and those for the pinned case.

In § 4, we focus on the most interesting case of the microjetting mode adopted by the
system for Q > 0. We determine the stability limits and discuss the system behaviour in
the limit Q → 0. We establish the connection between the behaviour of a closed droplet
(Q = 0) and microjetting for Q → 0. Transient simulations are conducted to relate the
global stability analysis to the system behaviour close to the stability limit. We discuss the
mechanisms that can explain the stability of the microjetting regime for arbitrarily small
values of Q. The effect of inertia is shown in the last part of this section.

3. Results for Q = 0

We start this section by summarizing previous results for the classical problem of an
unpinned droplet suspended in an extensional uniaxial flow. The viscous force exerted
by the outer fluid deforms the droplet, which adopts an oblate shape. The magnitude of
this deformation increases with the capillary number. The droplet apex sharpens in the
direction of the outer flow as λ decreases. The viscosity force drives a steady recirculation
flow inside the droplet (Herrada et al. 2022).

For sufficiently large values of the capillary number, the flow becomes unstable at a
saddle-node bifurcation (Eggers & Courrech du Pont 2009). This bifurcation corresponds
to a turning point when the droplet deformation D = (â − b̂)/(â + b̂) (â and b̂ are the
half-length and half-breadth of the cross-sectional shape, respectively) is plotted against
the capillary number (Taylor 1964; Acrivos & Lo 1978). As shown below, both the real
and imaginary parts of the critical eigenfrequency vanish at the bifurcation. The critical
non-oscillatory eigenmode produces a thinning of the droplet equator (Herrada et al.
2022). This thinning increases in magnitude until the interface pinches, giving rise to two
droplets equal in size (the so-called central pinching mode or end-pinching mechanism
(Gallino, Schneider & Gallaire 2018)). The Taylor (1964) slender body theory predicts
the critical capillary number 0.0745λ−1/6 for λ→ 0. For λ = 0.0125, this theory predicts
the value 0.155, while the solution of the full hydrodynamic equations leads to the value
0.242. Thus, while slender body theory predicts the correct type of transition, it only yields
semiquantitative results, and full numerical simulations are needed.

The simulations conducted in this work for Q = 0 correspond to the problem described
above except for a fundamental difference: the droplet equator is a triple contact line
pinned to the feeding capillary edge in the present study. Figure 3 shows the droplet
deformation D and growth rate of the dominant mode, ω∗

i , versus the capillary number C
for a pinned droplet. For the sake of comparison, we also show the results corresponding
to the unpinned droplet (Herrada et al. 2022). In both cases, the solution reaches a
saddle-node bifurcation, which corresponds to a turning point of the curve D(C). The
solution for the unstable branch beyond the turning point is calculated by imposing the
droplet interface length and calculating the corresponding capillary number (Herrada
et al. 2023). The pinning condition suppresses the central pinching mode, considerably
increasing the critical capillary number.
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Figure 3. (a) Droplet deformation D and (b) growth rate of the dominant mode, ω∗
i , versus the capillary

number C. The results were calculated as a function of the capillary number C for Rei = Reo = 0, λ = 0.1 and
V = 4π/3. The circles (squares) correspond to the pinned (unpinned) droplet. The dotted lines indicate the
critical capillary numbers. The solid symbols show the crossover of two modes.

–1 0 1 2

–8

–6

–4

–2

0

D = 0.32 
D = 0.33

–0.1 0.10

0

0.1

ωr

ωi

Figure 4. Eigenvalues around ω0 = 0.1 for a pinned droplet with D = 0.32 (red symbols) and 0.33 (black
symbols). In addition, Rei = Reo = 0, λ = 0.1, C = 0.3 and V = 4π/3.

Figure 4 shows the spectrum of eigenvalues around ω0 = 0.1 for two solutions next to
the saddle-node bifurcation. At marginal stability, both the frequency and damping rate
(the growth rate with the sign reversed) of the dominant eigenvalue vanish. This means
that the flow becomes unstable under stationary (non-oscillatory) linear perturbations.

The interface displacement due to the growth of the critical eigenmode at the
quasimarginally stable is analysed in figure 5. This displacement corresponds to the
interface deformation at the initial (linear) phase of the droplet breakup. We compare
the results with those obtained for the unpinned droplet at the corresponding marginal
stability (Herrada et al. 2022). In this case, the perturbation affects most of the interface,
not only the droplet tip. The nonlinear growth of this perturbation gives rise to the central
pinching mode (figure 6). When the interface is pinned, the mode containing a uniform
extension (and thus a shrinking equator) is suppressed, and the drop is no longer pulled
apart. Instead, the critical perturbation is localized in the droplet tip (figure 5). The growth
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Figure 5. Droplet shape in the base flow, (rs0, zs0) (shaded area), and interface displacement due to the critical
linear eigenmode, (rs, zs) = (rs0, zs0) + φ(Re[δrs], Re[δzs]) (dashed lines), for λ = 0.1 and C = 0.17 (a),
λ = 0.1 and C = 0.30 (b), λ = 0.0125 and C = 0.25 (c) and λ = 0.0125 and C = 0.55 (d). In the two cases,
Rei = Reo = 0, and V = 4π/3. The value of the arbitrary constant φ in the linear analysis has been chosen to
appreciate the interface deformation.
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for Rei = Reo = 0, λ = 0.0125, C = 0.26 and V = 4π/3. The colour scale indicates the magnitude of the
interface velocity relative to the magnitude of the imposed external flow at that point. The inner phase moves
towards the droplet apex. Since the droplet equator is not pinned, the equator interface radius decreases until
the interface pinches.
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Figure 7. Droplet shape right before the breakup for Rei = Reo = 0 and V = 4π/3. The images correspond to
λ = 0.1 (a) and λ = 0.0125 (b), and their respective critical capillary numbers C = 0.31 and 0.56. The colour
scale indicates the magnitude of the interface velocity relative to the magnitude of the imposed external flow
at that point. The triple contact line is pinned to the capillary edge.

of this perturbation gives rise to microdripping (figure 7) instead of the central pinching
mode.

The critical capillary number increases as λ decreases. Consequently, the droplet
stretches at the stability limit, the outer velocity around the droplet tip considerably
increases and the tip curvature grows. For small values of λ, the microdripping mode
produces tiny droplets much smaller than the mother drop (figure 7). The effect of
the contact line pinning is somewhat similar to covering the droplet with a surfactant
monolayer (Eggleton, Tsai & Stebe 2001; Herrada et al. 2022). This effect has also been
considered in other microfluidic configurations (Dewandre et al. 2020).

4. Results for Q > 0

We now focus on the more interesting case Q > 0, where a fluid is injected at a constant
rate Q through the feeding capillary placed in the extensional flow. As a result, a steady
state can be maintained while continuously producing microdroplets. We first consider
flows dominated by viscosity (Rei = Reo = 0), characterized only by the viscosity ratio λ,
the capillary number C and the injected flow rate Q. The effect of inertia will be analysed
at the end of this section.

4.1. Stability limit
Figure 8 shows the evolution of the spectrum of eigenvalues when the capillary number
decreases below the critical value. In all the cases for Q > 0 considered in this work,
ω∗

r /= 0, which means that the flow becomes unstable due to an oscillatory supercritical
Hopf bifurcation linked to the presence of the jet. The jet convects capillary modes, which
translates into an oscillatory behaviour in the Eulerian frame of reference. In fact, this
oscillatory instability has been observed in the microjetting mode of practically all the
configurations analysed so far (Montanero & Gañán-Calvo 2020). Non-oscillatory critical
modes are expected when the instability is confined in a region of the fluid domain.
This is not the behaviour observed in our simulations, as seen in figure 9. Instead, the
unstable mode extends significantly to the jet. In the case of the smaller λ, the unstable
mode is concentrated mostly in the jet. Gordillo et al. (2014) found both oscillatory and
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Figure 8. Eigenvalues around ω0 = 0.5 for Rei = Reo = 0, λ = 0.0125, Q = 0.00126 and C = 0.131 (black
circles) and 0.132 (red circles).
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Figure 9. Interface contour (red solid line) and magnitude of the interface perturbation, |δF| (black
dotted line), for (λ = 0.1, C = 0.425, Q = 0.00126) (a) and (λ = 0.0125, C = 0.130, Q = 0.00126) (b). The
magnitude of the interface perturbation has been normalized with its maximum value |δF|max. In the two
cases, Rei = Reo = 0.

non-oscillatory critical modes in the coflow configuration. However, they claimed that the
oscillatory instability dominates over the steady one within the ranges of viscosity and
flow rate ratios explored in their analysis.

The magnitude of the critical interface perturbation is plotted in figure 9 for λ = 0.1
and 0.0125, and the same flow rate Q = 0.00126. For λ = 0.1, the meniscus contour is
perturbed in front of its tip, while |δF| � 0 in the cone for λ = 0.0125. The result for
λ = 0.0125 is similar to that obtained in the coflow configuration (Gordillo et al. 2014).
The growth of the interface oscillation eventually produces the interface pinching (see
§ 4.3), and the system evolves from steady microjetting towards some type of dripping.

Figure 10(a) shows the stability map in the parameter plane (C, Q) for several values
of the viscosity ratio λ. We could not conduct simulations for Q � 10−4 because of the
sharp increase in the computing time caused by the much smaller flow scales generated as
Q decreases. The symbols correspond to marginally stable cases for which ω∗

i = 0.
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Figure 10. (a) Stability map for viscosity-dominated flow (Rei = Reo = 0). The symbols correspond to
marginally stable (ω∗

i = 0) microjetting realizations. (b) Fitting (4.1) to the stability limits shown in graph (a).
The solid lines are splines through the simulation data, and the dashed lines correspond to (4.1) with
Q∗ = 0.0314, C∗ = 0.142, a1 = 6.71, λ∗ = 0.0161 and c3 = 0.015.

The results reveal an interesting dependence of the critical capillary number on λ for
a fixed flow rate. All the stability curves approximately intersect at Q = Q∗ � 0.031 and
C = C∗ � 0.15. For Q � 0.031, the critical capillary number decreases as λ increases,
while the opposite occurs for Q � 0.031. We conclude that the inner viscosity stabilizes
the flow for Q � 0.031 but destabilizes it for sufficiently small flow rates. Increasing the
capillary number always stabilizes the jet, which shows the stabilizing effect of the outer
flow intensity.

Two types of asymptotic behaviour of the stability limit Q(C) can be observed in
figure 10(a) as Q → 0. For λ ≥ 0.02, Q ∼ Cα with α < 0, which implies that, for any
value of C, there is a finite value of Q below which the steady flow becomes unstable.
This is the expected behaviour because it corresponds to what has been observed in all tip
streaming configurations (Montanero & Gañán-Calvo 2020). In contrast, Q(C) seems to
approach a vertical asymptote C = 0.131 for λ = 0.0125. This means that the flow remains
stable for infinitely small values of Q provided that C ≥ 0.131. This result constitutes the
central finding of this work.

The above conclusion has obvious practical consequences. As explained in the
Introduction, the jet diameter scales as Q1/2 at a fixed distance from the feeding capillary,
and hence fluid jets with vanishing diameters can be steadily emitted as Q → 0. As the
outer viscosity increases at a fixed jet viscosity and outer flow intensity, λ decreases and C
increases. For λ < λ∗ and C sufficiently large, one is in the stable regime of figure 10(a),
and arbitrarily thin jets can be realized. We conclude that jets with vanishing diameters
can be produced for a large enough outer viscosity, independently of the jet viscosity and
outer flow intensity. For a fixed outer viscosity, infinitely thin jets can also be produced
if the jet viscosity (the viscosity ratio λ) is sufficiently small and the flow intensity (the
capillary number C) is large enough.

As mentioned above, there is a critical flow rate Q∗ � 0.031 for which the critical
number C∗ � 0.15 is practically independent of λ. In order to bring out the universal
character of the behaviour change that takes place as λ is varied, we perform an expansion
around the invariant point (Q∗, C∗), where Q∗ = 0.031 is a critical flow rate, and
C∗ = 0.15 is the corresponding capillary number. This suggests introducing the relative
parameters Q̄ = log10 Q − log10 Q∗ and C̄ = log10 C − log10 C∗, where the logarithmic
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Figure 11. (a) Critical capillary number Cc as a function of the flow rate Q for viscosity-dominated flow
(Rei = Reo = 0) and λ = 0.0125 (blue triangles). The red circles indicate the critical capillary Cc0 for the
onset of instability for a droplet with the same volume as that of the meniscus of the corresponding microjetting
realization, as indicated by the arrows. (b) Sketch of a closed droplet and its microjetting counterpart.

scale was chosen for convenience. Note that in figure 10(b), we have written C̄ as a function
of Q̄ to write all curves as graphs.

For a critical viscosity ratio λ = λ∗, the above transition implies ∂C̄/∂Q̄ = 0 at C̄ =
Q̄ = 0, and thus a linear description C̄ = a1(λ− λ∗)Q̄ in the immediate neighbourhood
of the bifurcation. Expanding to higher order in powers of Q̄, a quadratic term would
result in a local maximum for both λ < λ∗ and λ > λ∗, and thus would not be describing
a transition. This suggests retaining a cubic term, resulting in the local normal form

C̄ = a1(λ− λ∗)Q̄ − c3Q̄3. (4.1)

This expresses concisely the transition from λ > λ∗, for which instability always occurs
for sufficiently small Q, to the unconditional jetting region λ < λ∗, for which there is a
local maximum of the C̄(Q̄) curve.

The simple, universal form of the description (4.1) could be a starting point for a
future, more systematic bifurcation analysis based on the equations of motion. In addition,
on a purely descriptive level, fitting (4.1) to the numerical simulations leads to Q∗ =
0.0314, C∗ = 0.142, a1 = 6.71, λ∗ = 0.0161 and c3 = 0.015. As seen in figure 10(b), this
results in a good quantitative description of the entire family of curves with a single set of
parameters.

4.2. Comparison with the case Q = 0
We now show that for small λ, microjetting solutions have a counterpart in the pinned
drop at Q = 0, such that the meniscus shape at finite Q closely resembles the shape of the
drop. To this end, we analyse the case λ = 0.0125 in more detail in figure 11. This figure
compares the critical capillary number Cc(Q) for microjetting with the value Cc0 obtained
for a pinned droplet (Q = 0) (see § 3) with the same volume as that of the microjetting
meniscus (red circles in figure 11). The meniscus volume is calculated as that delimited by
the end of the feeding capillary and the stagnation point in front of the jet. This volume
hardly changes for λ = 0.0125 and Q < 0.05. For this reason, Cc0 is practically constant in
all the cases considered. As explained above, microjetting becomes unstable for C < Cc,
while the droplet becomes unstable for C > Cc0.
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In all the cases considered in figure 11, Cc0 < Cc(Q). This can be interpreted as follows.
Consider a pinned drop of a given (arbitrary) volume submerged in an extensional flow
characterized by the capillary number C. At the critical capillary number C = Cc0, the
drop destabilizes and ejects a tiny droplet. However, the capillary number is not large
enough to maintain the liquid ejection (i.e. to produce stable microjetting) even if the
ejected volume were replaced through the capillary. This occurs because Cc0 is lower than
the microjetting stability threshold Cc(Q). Therefore, the steady microjetting mode cannot
be established.

Suppose the capillary number is further increased to C = Cc(Q), and the disperse phase
is injected at the flow rate Q. Then, a marginally stable microjetting realization would
be produced with a meniscus volume equal to that of the pinned drop. The meniscus–jet
transition region becomes vanishing small as Q → 0. Therefore, it is natural to hypothesize
that the additional stress in the jet does not contribute to changing the meniscus shape
(figure 11b). In this sense, each marginally stable pinned drop has its marginally stable
‘microjetting counterpart’.

Neither the drop nor its microjetting counterpart is stable in the interval Cc0 < C <

Cc(Q). This interval is expected to correspond to some type of dripping. The interval
Cc0 < C < Cc(Q) decreases in size as Q decreases because the size of the critical cone–jet
transition region (the region marked with a circle in figure 11b) decreases as Q decreases.
We calculated the oscillation frequency ω∗

r of the critical eigenmode for Q > 0 and
verified that ω∗

r → 0 for Q → 0. However, this oscillatory Hopf bifurcation becomes
a non-oscillatory saddle-node bifurcation (ω∗

r = 0) only at Q = 0 due to the system
‘discontinuous’ topological change from jetting to a closed droplet at Q = 0.

The transition from the oscillatory Hopf bifurcation for Q > 0 to the non-oscillatory
saddle-node bifurcation for Q = 0 has nothing to do with the symmetry plane imposed
at z = 0 for Q = 0. A turning point also arises if one solves the problem Q = 0 using a
feeding capillary with zero flow rate.

The flow in the meniscus of the microjetting mode approaches that of the corresponding
closed droplet as Q → 0 only for a sufficiently small viscosity ratio. For this reason, Cc(Q)

for Q → 0 approximately equals Cc0 for λ = 0.0125 (figure 11) but not for λ = 0.1.

4.3. Transient simulations close to the stability limit
This subsection analyses the temporal evolution of a small perturbation introduced into a
base flow to interpret correctly our linear stability analysis in terms of its physical outcome.
The perturbation consists of the deformation of the free surface (the velocity and pressure
fields are not perturbed) at t = 0 given by the function

F(z, 0) − F0(z) = β e−(z−z0)
2/	z2

, (4.2)

where β indicates the maximum deformation, while z0 and 	z are the impulse location
and width, respectively. A small amplitude (β = 0.001) deformation is introduced next to
the feeding capillary (z0 = 0.5) with a small width (	z = 0.5 while the meniscus length
is greater than 10).

Figure 12 shows the evolution of the free surface displacement, F(z, t) − F0(z), at
the meniscus tip, as indicated in the figure. The parameter conditions correspond to a
stable flow close to the stability limit. The perturbation (4.2) triggers a train of capillary
waves that propagate downstream, producing a significant oscillation of the interface
position in the meniscus tip. For sufficiently large t, the oscillation amplitude is sufficiently
small for the nonlinear terms in the capillary pressure to become negligible. In addition,
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Figure 12. Evolution of the free surface displacement, F(z, t) − F0(z), at the meniscus tip (z = 10.19, F0(z) =
0.0174) calculated from the transient simulation for Rei = Reo = 0, λ = 0.0125, C = 0.135 and Q = 0.00126
(solid line). The dashed line is the global stability analysis’s prediction (4.3) (a0 = 0.019, t0 = 7.1, ωi =
−0.011 and ωr = 0.165). The arrow in the inset shows the analysed interface point.

the contribution of subdominant eigenmodes becomes negligible, and the dominant mode
essentially governs the system’s linear dynamics. The comparison with the prediction

F − F0 = a0 eωi(t−t0) cos[ωr(t − t0)], (4.3)

of the global stability analysis shows excellent agreement (figure 12). Here, a0 and t0 are
fitting parameters, and ωi and ωr are the damping rate and frequency of the dominant
mode. The interface deformation at t = 200.1 and 216.1 is shown in figure 13. The
comparison with the deformation

F − F0 = Re[δF e−iω(t−t0)], (4.4)

caused by the dominant mode shows remarkable agreement as well. Here, δF and
ω = ωr + iωi are the deformation amplitude and eigenfrequency of the dominant mode,
respectively.

Figure 14 shows the evolution of the free surface displacement F(z, t) − F0(z) at
the meniscus tip for parameter conditions corresponding to an unstable flow close to
the stability limit. The interface deformation grows while oscillating until the interface
pinches. The interface pinches at z = 9.6, close to the point z = 10.19 analysed in figure 14.
In both the stable (figure 12) and unstable (figure 14) flows, the oscillation amplitude is
much greater than that of the perturbation (4.2) introduced at the initial instant next to the
capillary. Therefore, the tapering meniscus amplifies that initial perturbation in the two
cases. However, this amplification is much more intense in the unstable flow (figure 14).
The oscillation amplitude measured in terms of the unperturbed interface radius F0 sharply
increases at the critical cone–jet transition region. The nonlinear terms in the capillary
pressure and the interaction among modes are expected to be relevant over the oscillations
observed in figure 14 because the amplitude is commensurate with F0 (e.g. F0 = 0.0188
at z = 10.19). Therefore, the linear global stability analysis cannot accurately predict the
interface evolution leading to the interface breakup.
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Figure 13. Free surface displacement, F(z, t) − F0(z), at t = 200.1 (blue solid line) and 216.1 (red solid line)
calculated from the transient simulation for Rei = Reo = 0, λ = 0.0125, C = 0.135 and Q = 0.00126. The
dashed lines are the deformation (4.4) corresponding to the dominant mode (t0 = 7.1 and ω = 0.165 − 0.011i).
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Figure 14. Evolution of the free surface displacement F(z, t) − F0(z) at three locations calculated from the
transient simulation for Rei = Reo = 0, λ = 0.0125, C = 0.128 and Q = 0.00126. The arrows in the inset show
the analysed interface points.

4.4. Meniscus shape and recirculation cells
The dominant flow feature inside the conical meniscus consists of two recirculation cells.
By investigating the coupling of these cells with the flow inside the injection tube, we
are able to extract a mechanism for instability. As explained above, the viscosity ratio
λ essentially determines the fate of the microjetting mode as the flow rate decreases. In
the limit Q → 0, the microjetting mode remains stable for sufficiently small values of λ
and destabilizes otherwise. Figure 15 shows how the tapering meniscus shape changes
when the flow rate is reduced by a factor of 100. For λ = 0.1, the entire meniscus shrinks.
Conversely, most of the cone keeps the same shape for λ = 0.0125. Only the cone–jet
transition region collapses.
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Figure 15. (a) Meniscus shape for λ = 0.1, C = 0.425, and Q = 0.126 (blue lines) and Q = 0.00126
(marginally stable flow) (red lines). (b) Meniscus shape for λ = 0.0125, C = 0.132, and Q = 0.126 (blue lines)
and Q = 0.00126 (marginally stable flow) (red lines). In all the simulations, Rei = Reo = 0.
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Figure 16. Streamlines of the marginally stable base flow for (λ = 0.1, C = 0.425, Q = 0.00126) (a) and
(λ = 0.0125, C = 0.130, Q = 0.00126) (b). In the two cases, Rei = Reo = 0. For sufficiently small λ, the
recirculating cells do not enter the feeding tube.

As explained above, for a fixed and sufficiently small flow rate, the critical capillary
number decreases as λ decreases (figure 10). Figure 16 shows the streamlines of the
marginally stable base flow for λ = 0.1 and 0.0125 and the same flow rate Q = 0.00126.
For λ = 0.1, the inner viscosity enhances the diffusion of axial momentum from the
interface towards the tapering meniscus, the inner fluid accelerates, the meniscus shrinks,
adopting a funnel-like shape and the recirculation cells enter the feeding tube. For λ =
0.0125, the tapering meniscus stretches and adopts a slender quasiconical shape predicted
by the slender body theory (Taylor 1964; Acrivos & Lo 1978). In this case, the recirculation
cell hardly enters the feeding tube.

Figure 17 shows the increase of the recirculation cell size as the injected flow rate
decreases. The recirculation cell size Sr is determined as the distance between the front
and rear stagnation points on the symmetry axis. In the two cases analysed, Sr becomes
approximately constant as Q decreases for values of the injected flow rate much larger
than the critical one. This behaviour differs substantially from that observed in other tip
streaming configurations, such as gaseous flow focusing, where Sr is a linear function of
Q below a threshold value of the flow rate (Herrada et al. 2008). For λ = 0.0125 and
C = 0.130, the recirculation cell remains practically at the same position as Q decreases,
while it slightly displaces backwards for λ = 0.1 and C = 0.425. As shown below, the
penetration of the recirculating cell into the tube may be a destabilizing factor.

It has been hypothesized that the microjetting mode of configurations such as gaseous
flow focusing (Gañán-Calvo 1998) becomes unstable at the minimum flow rate stability
limit because the recirculation cells enter the feeding tube, limiting the flow rate that
can recirculate in the tapering meniscus and, therefore, setting a minimum value for the
injected flow rate (Herrada et al. 2008). To investigate this possibility, we conducted
numerical simulations for the distance L0 = 0 of the inlet boundary condition to the tube
exit, i.e. imposing the inlet boundary condition at the tube exit to expel the recirculation
cells. Figure 18 shows the streamlines of the marginally stable flows for λ = 0.1 and
L0 = 0 and 5 defined in figure 2.
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Figure 17. Size of the recirculation cell, Sr, as a function of the flow rate Q for (λ = 0.1, C = 0.425) (squares)
and (λ = 0.0125, C = 0.130) (circles). In the two cases, Rei = Reo = 0. The insets show the streamlines for
the marginally stable cases (figure 10).
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Figure 18. Streamlines of the marginally stable base flow for (λ = 0.1, Q = 0.00126, Rei = 0, Reo = 0).
Panel (a) corresponds to L0 = 5 and C = 0.42, and panel (b) corresponds to L0 = 0 and C = 0.38.

For λ = 0.0125, the stability limit was practically the same, which indicates that the
penetration of the recirculation had a negligible effect on the microjetting stability.
This is consistent with the idea that the conditions at the cone–jet transition region
essentially determine the flow stability for λ = 0.0125. The same approximation has been
considered to predict the minimum flow rate stability limit of electrospray (Gañán-Calvo,
Rebollo-Muñoz & Montanero 2013). For λ = 0.1, expelling the recirculation cells from
the tube displaces the front stagnation point downstream and stabilizes the microjetting
mode so that the critical capillary number decreases from C = 0.42 to 0.38 (figure 18).
It is worth mentioning that the meniscus funnel-like shape for λ = 0.1 resembles that of
gaseous flow focusing (Montanero & Gañán-Calvo 2020).

The results discussed above indicate that the coupling between the recirculation and
the flow in the feeding capillary is a destabilizing factor. This coupling can be quantified
through the wall shear stress averaged over the capillary inner surface. We define τw as that
stress normalized with the value corresponding to the (unperturbed) Poiseuille flow. The
destabilizing interaction between the recirculation and the flow in the feeding capillary is
much more intense for λ = 0.1 (figure 19). In this case, the penetration of the recirculation
cells into the tube produces an increase in the friction with the wall by two orders of
magnitude. This increase is localized near the feeding capillary edge, where the shear rate
peaks. This effect is much less noticeable for λ = 0.0125.
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Figure 19. Wall stress τw as a function of the flow rate Q for (λ = 0.0125, C = 0.130) (open symbols) and
(λ = 0.1, C = 0.425) (solid symbols). In the two cases, Rei = Reo = 0.
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Figure 20. Capillary number ratio Ctip/C as a function of the flow rate Q for (λ = 0.0125, C = 0.130) (open
symbols) and (λ = 0.1, C = 0.425) (solid symbols). In the two cases, Rei = Reo = 0.

4.5. The cone–jet transition region: a mechanism for stability at small λ
The accelerated convective flow at the cone–jet transition region for small values of λ is
expected to stabilize the flow. This mechanism can be quantified by the ratio Ctip/C, where
Ctip = v

(o)
tip μo/σ is the capillary number at the tip, and v

(o)
tip is the uniaxial extensional flow

velocity (2.1a,b) at the front stagnation point. The ratio Ctip/C measures the increased
strength of the outer flow in the tip due to the meniscus stretching. Figure 20 shows
the dependence of Ctip/C and τw on the injected flow rate Q for fixed values of the
capillary number. For λ = 0.0125, the cone sharply stretches as the flow rate decreases
and reaches an approximately constant size for Q � 10−1. This stabilizing effect is much
less noticeable in the case λ = 0.1.

The above results suggest that the flow in the cone–jet transition for λ = 0.0125 is
practically decoupled from that in the rest of the cone, while the flow in the tip of the
funnel-like meniscus for λ = 0.1 is affected by the inner fluid motion upstream. This is
consistent with the spatial dependence of the perturbation of the interface contour, δF,
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Figure 21. Stability limit for λ = 0.0125 and Reo = 0.
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Figure 22. Streamlines of the marginally stable base flow for (λ = 0.0125, C = 0.13, Q = 0.00126, Rei =
160, Reo = 0). Panels (a) and (b) correspond to L0 = 5 and 0, respectively (for L0 = 0, the parabolic velocity
profile is imposed at z = 0).

obtained in these two cases (figure 9). While |δF| � 0 in the cone for λ = 0.0125, the
meniscus contour is perturbed in front of its tip for λ = 0.1.

The stabilizing mechanism proposed here somehow aligns with those described by
Gañán-Calvo (2008) and Gordillo et al. (2014), who attributed the emitted jet stability
to the interface velocity and jet acceleration (non-parallel terms in the base flow),
respectively.

4.6. Effect of the inner fluid inertia
All the previous results were obtained for Rei = Reo = 0. Figure 21 shows the effect
of the inner fluid inertia on the stability map. We did not study the influence of the
outer fluid inertia because the numerical method did not converge to the solution for
large values of Reo. The behaviour for Q → 0 is not significantly affected by inertia for
Rei = 80. However, the extrapolation of the stability curve for Rei = 160 indicates that,
for any capillary number, there is a minimum flow rate below which microjetting becomes
unstable, as occurs for larger values of λ. This is also the behaviour observed in most tip
streaming configurations (Montanero & Gañán-Calvo 2020).

The inner fluid inertia makes the recirculation cells enter the feeding capillary
(figure 22). When the cells are expelled from the capillary, the front stagnation point does
not move, and the critical capillary number hardly changes, which confirms that instability
is linked to the flow in the tiny cone–jet transition region.
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5. Conclusions

We have studied the flow obtained when a fluid is injected through a tube submerged in
a linear extensional flow. The simulations for zero injected flow rate show that a droplet
attached to a feeding capillary produces microdripping. The size of the ejected droplet
becomes extremely small for low values of the viscosity ratio. This occurs because the
pinning of the triple contact line suppresses the central pinching mode, enabling the
stretching of the droplet and the increase of the droplet tip curvature at the stability limit.

We have shown that the linear extensional flow can produce jets with arbitrarily small
diameters, provided that the viscosity of the outer fluid is sufficiently high. In this
case, a slender conical meniscus forms attached to the feeding capillary. The cone–jet
transition region becomes vanishingly small as the flow rate (the jet diameter) decreases.
The disparity between the size of this region and that of the meniscus suggests that
the microjetting stability is determined by the flow in the cone–jet transition region.
These results constitute the first theoretical evidence that fluid jets with arbitrarily small
diameters can be stably produced via tip streaming.

Two mechanisms have been proposed to explain the effect of the viscosity ratio on the
flow stability: (i) the convective motion at the cone–jet transition region, which stabilizes
the flow for small values of λ, and (ii) the coupling between the recirculation and the flow
in the feeding capillary, which may destabilize the flow for sufficiently large values of λ.
Other destabilizing mechanisms linked to the recirculation have been proposed to explain
the instability of tip streaming in other configurations. Cabezas et al. (2021) hypothesized
that instability of liquid–liquid flow focusing may be caused by the displacement towards
the interface of the recirculation cell, which narrows the stream tube across which the
injected liquid leaves the meniscus. This and similar effects may also contribute to the
instability of the flow analysed in the present work for sufficiently large values of λ.

The velocity of the imposed extensional flow along the symmetry axis increases with
the distance from the feeding capillary. This peculiarity seems to play a critical role in the
microjetting stability. For sufficiently small values of the viscosity ratio, the meniscus
stretches as the flow rate decreases. Therefore, the meniscus tip is exposed to larger
outer fluid velocities as the flow rate decreases. This seems to stabilize the flow in the
cone–jet transition region. We hope the present theoretical study will be a useful guide for
experimentalists in their search for new microjetting techniques.

In the double flow focusing configuration, an outer gaseous current drives the flow
of an intermediate liquid phase injected at a constant flow rate. This phase surrounds
an innermost liquid meniscus that emits a tiny jet from its tip. The viscous liquid flow
around the innermost meniscus tip resembles the uniaxial extensional flow analysed in
the present work. Gañán-Calvo et al. (2007) showed that practically invisible jets could
be produced with the double flow focusing configuration. Our analysis may constitute
theoretical support for that experimental result.

Our study reveals the importance of conducting the stability analysis of the tip streaming
base flows. In fact, our numerical method finds the solution to the steady governing
equations regardless of whether the flow is linearly stable or unstable, which typically
occurs when a Hopf bifurcation causes the instability.
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