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FOR THE MINIMAL SURFACE EQUATION, THE SET OF
SOLVABLE BOUNDARY VALUES NEED NOT BE CONVEX

FRANK MORGAN

One might think that if the minimal surface equation had a solution on a smooth
domain D C R™ with boundary values ¢, it would have a solution with boundary
values typ for all 0 <t < 1. We give a counterexample in R?.

We show by example that the minimal surface equation can have a solution on
a smooth nonconvex domain D C R? with smooth boundary values ¢, but not with
boundary values /2. Thus the set of solvable smooth boundary values need not be
convex or star-shaped about 0.

Although a number of friends recall seeing and hearing this problem, I have been
unable to locate the source.

For a convex domain, the minimal surface equation has a unique solution for any
continuous boundary values. For any smooth domain, the minimal surface equation has
a solution for small boundary values of Lipschitz constant at most 1 [6].

THEOREM. There are a smooth planar domain D and a smooth function ¢ on
8D such that the minimal surface equation has a solution with boundary values typ for
t=1 but not for t =1/2.

ProoF: Take two minimal surfaces {z = fi(z, y)}, {z = fa(=, y)} over a smooth
domain D about the origin such that

f2|6D = 2f1|8D but fz(O) 3,6 2f1 (0).

An easy explicit example is provided by two pieces of catenoids over an annulus, but
almost any prescribed boundary values on a convex domain probably will work. We
may assume D contains the unit disc B(0, 1).

Consider a sequence 1 > €; > €2 > ... — 0 and domains D, = D — B(0, &;).
The function f;|D has a nice minimal graph. We claim that for k large, there is no
minimal surface My = {z = ui(z, y)} with ui|0Dy = (1/2)f2|6D;.
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Otherwise (replacing ux with a subsequence if necessary) we may assume the u;
converge to a function ue on D — {0}, uniformly on each Dj, which satisfies the
minimal surface equation and uw|0D = f1|0D (see [3, Chapters 12, 13]). Since a
solution to the minimal surface equation cannot have an isolated singularity ([1], or see
[5, p.98]), uoo extends to all of D. By uniqueness, 1o = f; .

Let A = max{[|fillc1, Ifeller» 1}, @ = min{| (1/2) £2(0) — f1(0)| /4, 1}. By

replacing uj with a subsequence if necessary, we may assume

(1) e2<6 < a
and
(2) lua(z) — fa(2)| € -la for |z| 2 ;.

Choose p = (zo, u2(zo)) with €2 < |zo| < €1 and

wr(e) = (10) + 32(0) /2.

We claim that B3*(p, .1a) does not intersect &M,. The height of the inside boundary
differs from (1/2)f,(0) by at most

Aez /2 < Aa/2 < ‘%fz(o) _ fl(o)’ /2,

while the height of p differs from f,(0) by at most |(1/2)f2(0) — f1(0)| /2. The hori-
zontal coordinate gets nowhere near the outside boundary. Therefore B3(p, .1a) does
not intersect dM,. Hence by monotonicity [4, 9.3],

(3) area (M; N B3(p, .1a)) > w(.1a)’.
Next we claim that
(4) M, N B3(p, .1a) C B¥(0,¢;) x R.
Otherwise there is some

(z, ua(z)) € B3(p, .1a) — B%(0,¢;) x R.
Since (z, u2(z)) € B3(p, .1a), therefore |z| < &1 +.1a < .2a and

[u2(z) — f1(0)| = [u2(zo) — f1(0)] — .1a > .54a — .1a > .4Aa.
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(3] Solvable boundary values n

Since (z, u2(z)) ¢ B?(0, ;1) x R, therefore €; < |z| < .2a and
fua(e) — Fi(0)] < fua(2) — ful2) |+ f(e) — /1(0)] < 1a + (:20)4 < 3ad,

by (2). This contradiction establishes (4).
By (3) and (4),

(5) area (M; N B?(0, ;) x R) > =(.1a)’.

On the other hand, since M, minimises area among graphs [4, 6.1], area
(M2 N B?%(0, €1) x R) is less than the area of B2(0, £;) x {(1/2)f2(0)}, plus the area
of a cylinder of radius €, and height at most (1/2)||fz|lc1 €2 < .5Aa, plus the area of
a cylinder of radius €; and height at most

1
‘Efz(()) - fl(O)’ + "fl”Cl €1 € Aa + Ae; € 24a.

Thus
(6) area (M2 N B?(0, €,) x R) < me? + 2mez(.54a) + 27e1(24a).

Now (5) and (6) contradict hypothesis (1), proving the theorem.

REMARK 1. We conjucture there are wildly oscillating smooth boundary values ¢ on
the unit disc "D such that the solutions u; to the minimal surface equation with bound-
ary values ¢y have the property that u:(0) intersects a linear function M for arbitrarily
many values t, ..., t; and that for small § > 0 the set of £ for which the minimal
surface equation has a solution on D — B(0, §) with boundary values ¢ on 0D and At
on 0B(0, §) has k components. To obtain these solutions it may be helpful to choose
¢ even, so that Du,(0) = 0.

REMARK 2. Since our argument depends on deleting a small disc to obtain our domain,
the conjecture remains open for simply connected planar domains. Our argument does
extend to smooth nonconvex balls in R™ (n > 3), where we can delete a thin finger
instead of a small disc. Then the limiting argument produces a solution of the minimal
surface equation with a curve of possible singularities, which are removable for n > 3
([2], or see [3, Theorem 16.9]). 1]

ADDED IN PROOF. Fred Almgren has given a simplified counterexample for simply

connected planar domains.
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