
BULL. AUSTRAL. MATH. SOC. 49QO5

VOL. 53 (1996) [369-372]

FOR THE MINIMAL SURFACE EQUATION, THE SET OF
SOLVABLE BOUNDARY VALUES NEED NOT BE CONVEX

FRANK MORGAN

One might think that if the minimal surface equation had a solution on a smooth
domain D C R.n with boundary values ip, it would have a solution with boundary
values tip for all 0 SC t ^ 1. We give a counterexample in R3.

We show by example that the minimal surface equation can have a solution on
a smooth nonconvex domain D C R2 with smooth boundary values tp, but not with
boundary values <p/2. Thus the set of solvable smooth boundary values need not be
convex or star-shaped about 0.

Although a number of friends recall seeing and hearing this problem, I have been
unable to locate the source.

For a convex domain, the minimal surface equation has a unique solution for any
continuous boundary values. For any smooth domain, the minimal surface equation has
a solution for small boundary values of Lipschitz constant at most 1 [6].

THEOREM. There are a smooth planar domain D and a smooth function <p on
dD such that the minimal surface equation has a solution with boundary values tip for
t = l but not for t = 1/2.

PROOF: Take two minimal surfaces {z = fi(x, y)}, {z = /2(x, y)} over a smooth
domain D about the origin such that

f2\3D = 2h\dD but /2(0) ^ 2/,(0).

An easy explicit example is provided by two pieces of catenoids over an annulus, but
almost any prescribed boundary values on a convex domain probably will work. We
may assume D contains the unit disc B(0, 1).

Consider a sequence 1 ^ ei > £2 > . . .—• 0 and domains Dk — D — B(0, e*).
The function f2\Dk has a nice minimal graph. We claim that for k large, there is no
minimal surface M*. = {z = ujt(a:, y)} with Uk\dDk — (l/2)/2|9Z)j..

Received 22 June 1995
I would like to thank Klaus Ecker and Graham Williams for inspiration, and the Australian National
University and Melbourne University for hospitality. This work was partially supported by a National
Science Foundation grant.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 SA2.00+0.00.

369

https://doi.org/10.1017/S0004972700017123 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017123


370 F. Morgan [2]

Otherwise (replacing Uk with a subsequence if necessary) we may assume the u*
converge to a function ««, on D — {0}, uniformly on each D*, which satisfies the
minimal surface equation and u^dD = f\\dD (see [3, Chapters 12, 13]). Since a
solution to the minimal surface equation cannot have an isolated singularity ([1], or see
[5, p.98]), Uoo extends to all of D. By uniqueness, ««, = / i .

Let A = m a x d l / i l l o L l l / a l l o L l } , a = min{| (1/2) / 2 (0) - / i (0 ) | /A, 1}. By
replacing Uk with a subsequence if necessary, we may assume

(1) e 2 < £ i < a

and

(2) | « 2 ( * ) - / i ( * ) | ^ . l a f o r | x | ^ £ l .

Choose p — (xo, u2(xo)) w ^ ^ e2 < |aso| < £i and

We claim that B3(p, . la) does not intersect dM2 . The height of the inside boundary
differs from (l /2)/2(O) by at most

Ae2/2 < Aa/2 i

while the height of p differs from /i(0) by at most |(l/2)/2(O) - / i (0) | /2. The hori-
zontal coordinate gets nowhere near the outside boundary. Therefore B3(p, .la) does
not intersect dM2. Hence by monotonicity [4, 9.3],

(3) area (M2 n B3(p, .la)) ^ 7r(.la)2.

Next we claim that

(4) M2 n B3(p, .la) c B2(0, e , ) x R .

Otherwise there is some

{x, u2(x)) £ B3(p, .la) - B2(0, £ l ) x R.

Since (a;, u2(x)) £ B3(p, . l a ) , therefore \x\ < d + . la < .2a and

\u2(x) - / ! ( 0 ) | > |u2(a:o) - / i (0) | - .la ^ .5Aa - . la ^ AAa.
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Since (x, 1*2(2)) ^ B2(0, ei) x R , therefore ei < |x| < .2a and

\u2(x) - h{x) |+|/i(x) - /i(0)| ^ .la + {.2a)A ^ .3aA,

by (2). This contradiction establishes (4).

By (3) and (4),

(5) area (M2 (~l B
2(0, £ , ) x R ) ^ 7r(.la)2.

On the other hand, since M2 minimises area among graphs [4, 6.1], area
(M2 n B2(0, a) x R ) is less than the area of B2(0, d ) x {( l /2) / 2 (O)}, plus the area
of a cylinder of radius e2 and height at most (1/2) ||/2||ci £2 ^ -5Aa, plus the area of
a cylinder of radius ei and height at most

0/2(0)- + ||/i | |ci ei < Aa + Ae! ^ 2Aa.
2J

Thus

(6) area (M2 n B2(0, ex) x R) ^ TTE2 + 2we2(-5Aa) + 27T£i(2i4a).

Now (5) and (6) contradict hypothesis (1), proving the theorem.

REMARK 1. We conjucture there are wildly oscillating smooth boundary values <p on
the unit disc 'D such that the solutions Ut to the minimal surface equation with bound-
ary values tip have the property that Uj(O) intersects a linear function Xt for arbitrarily
many values ti, ..., tk and that for small 6 > 0 the set of t for which the minimal
surface equation has a solution on D — B(0, 6) with boundary values tip on 3D and Xt
on 9B(0, 6) has k components. To obtain these solutions it may be helpful to choose
(p even, so that £)ut(0) = 0.

REMARK 2. Since our argument depends on deleting a small disc to obtain our domain,
the conjecture remains open for simply connected planar domains. Our argument does
extend to smooth nonconvex balls in Rn (n ^ 3), where we can delete a thin finger
instead of a small disc. Then the limiting argument produces a solution of the minimal
surface equation with a curve of possible singularities, which are removable for n ^ 3
([2], or see [3, Theorem 16.9]). D

ADDED IN PROOF. Fred Almgren has given a simplified counterexample for simply
connected planar domains.
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