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Abstract

We show that a sequence of generalized eigenfunctions of a one-dimensional linear thermo-
elastic system with Dirichlet-Dirichlet boundary conditions forms a Riesz basis for the state
Hilbert space. This develops a parallel result for the same system with Dirichlet-Neumann
or Neumann-Dirichlet boundary conditions.

1. Introduction

In the past two decades, much effort has been concentrated on the heat equation which
incorporates the effect of thermomechanical coupling and inertia. In this paper, we
study the following one-dimensional linear model for longitudinal vibration within a
thermoelastic rod with Dirichlet-Dirichlet boundary conditions (see [2,3,5,6,8] and
the references therein):

u,,(x, t) — uxx(x, t) + yOx(x, 0 = 0, 0 < x < 1, / > 0,

6,(x,t) + yuxl(x,t)-k9xx(x,t) = 0, 0<x <l, t>0, (1)

u(i,t) = 0(i,t) = 0, i = 0, 1, t > 0 ,

where u = u(x, t) represents displacement, 6 = 6{x, t) represents absolute temper-
ature and k > 0 the thermal conductivity. The coupling constant y > 0 which is a
measure of the mechanical-thermal coupling present in the system is generally much
smaller than 1. The following results were collected from [3,6].
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450 Bao Zhu Guo [2]

THEOREM 1. (i) The system (1) associates with a solution of a Co-semigroup
of contractions t(t) = eAl on the state Hilbert space Jif = //O'(O, 1) x (L2(0, I))2,
where A : D(A) —*• Jff is given by

/0 1 0
A = I D2 0 -yD

\0 -yD kD2

with D = d/dx, D(A) = (H2 x //„' x (#„' n H2)) n Jff.
(ii) A"1 exists and is compact on J4f. Hence o-(A) = op(A) consists of iso-

lated eigenvalues only. We have that X € op(A) if and only if k ^ 0 satisfies the
characteristic equation

+ [ea'-"2 + e"2'"'] (kk + y2 + 1 + 2yfkk\ (l -

- [ea<+°2 + e-a'-"2] (kX + y2 + 1 - 2>/Ju) (l + Vkk^j = 0 (2)

where

= J^- [kk[ u + y2 + 1 + y/(kX + y2+ I)2 - 4kk\, a2= . (3)
L J a\

(iii) The eigenvalues of A consist of a real sequence [on] and a sequence of
conjugate pairs [kn, kn] with the asymptotic properties:

+ y/k + 0(n),

\kn = -y2/Qk) + inn + ^(n'1),

where n is a large positive integer.

Many other important properties of (1) have been discovered in recent years. It
is shown in [6], for example, by a frequency domain criteria for the stability of
infinite dimensional linear systems, that the semigroup eAl is uniformly exponentially
stable. In [5], it is proved that the asymptote of the complex eigenvalues of A,
—y2/(2k), is also the essential spectral bound of A. From the well-known fact that
co(A) = max{S(A), a>ess(A)} and (4), where a>(A), S(A) and coess(A) denote the
growth order of the semigroup eAl, the spectral bound and essential spectral bound
of A, respectively, we see that the spectrum-determined growth condition

io(A) = S(A)

is always true of system (1). A significant result on the eigenvalues of A was reported
in [2], namely that system (1) has at least one real eigenvalue which is greater than the
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[3] Results for a thermoelastic equation with Dirichlet-Dirichlet BCs 451

first eigenvalue — kn2 of the "pure" heat equation with the same boundary conditions
(y = 0 in (1)), which, together with an earlier result that CD{A) < max{S(A), —kn2]
(see [8]), gives again the spectrum-determined growth condition.

On the other hand, it was shown in [4] that for the same thermoelastic system with
Dirichlet-Neumann or Neumann-Dirichlet boundary conditions, there is a sequence of
generalized eigenfunctions of the system which forms a Riesz basis for the state Hilbert
space. The success in obtaining this result lies in the simplicity of the corresponding
characteristic equation as well as the explicit structure of the eigenfunctions. However,
for system (1), the characteristic equation (2) is a complicated transcend equation, and
the eigenfunctions satisfy a fourth-order ordinary differential equation. The method
used in [4] is not practically applicable to this case. In this paper, we shall overcome
this difficulty in a different way. By use of an abstract result of the Riesz basis
perturbation in Hilbert space which was reported in [1], we are able to develop the
Riesz basis property of system (1). Meanwhile, our approach can also be easily used
to treat other boundary conditions particularly those such as the natural boundary
conditions considered in [4].

2. Approximate normalized eigenfunctions

It is known from [3] that X e cr(A) (as Re A. < 0) if and only if there exists
(<p, f) ^0 such that

0,

[ i ) = X(kX + y2W(i) - k<f>'"(i) = 0 , i = 0, 1,

and

= kd>'"(x) - X(kX + y2)4>'(x). (6)

Moreover, X is geometrically simple and an associated eigenfunction is (</>, X(f>, xjr).
The characteristic equation of (5) is

ka4-X(kX + y2 + I)a2 + A.3 = 0 (7)

which has four different roots a\, a2, —at, —a2, where a,, a2 depend on X and are
defined as in (3). For any X,

= (g2s\nha\ — g, sinha2)(coshtf|jc — cosha2*)

— (cosher — cosh<22)(g2sinha|jt — gi s inh^x)

= g2sinhai(l - x) + g, sinha2(l - x)

+ g2 cosh a2 sinh atx + gt cosh a\ sinh a2x

— g2 sinh a\ cosh a2x — g\ sinh a2 cosh atx (8)
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satisfies

\k<t>\x) - k(kk + y2 + l)<P"(x) + A30to = 0,

\(f>(i) = k(kk + y2)<p'(0) - £0'"(O) = 0 , i = 0, 1,

where

gi=ai(kk2 + y2k-ka2)^0, i = 1,2. (10)

To make <p(x) (as defined by (8)) be a solution of (5), a necessary and sufficient
condition is that 0 satisfies the last boundary condition k(kk + y2)cj>'(\) — k(p'"(l) = 0
which leads to the deduction that

+ 2[g2 + g^sinha, sinha2

(gi - g2)
2 cosh(a, + a2) - (gi + g2)

2 cosh(a, - a2). (11)

We obtain once again the characteristic equation derived in [3].
By (6) and (8), we can explicitly write the expression

Ux) = Ar4>'"(x) ~ -(kX+y2)<t>'(x)
yk y

= r[-gig2coshai(l - x) - gig2 cosha2(l - x)
/A

— g2 sinh a2 sinh aix — g\ sinh ax sinh a2x

+ g\g2 cosha{ cosha2^ + gig2 cosha2 cosha\X~\. (12)

Equations (8) and (12) are our basis for the estimate of the eigenfunctions. We
therefore need the following asymptotic expressions of a,-, i = 1,2, which also
appeared in [3,7] (note that there is a typing error in the original equation (20) in [3],
we modify it here):

k+ +
Jk v2 1 ( 1 3 )

^ + ^ ( | A | - 3 / 2 ) |A|

and hence

Jg, = adkk2 + y2k - ka\) = -{y2/k)k [l + 0Qk\71)] ,
\g2 = a2(kk2 + y2k - ka\) = Vkk2Vk[l + ff(\k\~1)]
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Therefore

LEMMA 1. The eigenfunctions {(</>„, an <f>n, \frn)} associated with the real eigenvalues
[an] of A take the following asymptotic expression:

,,(*.M\ ( ° \
-2yan— an<pn{x) = 0 + Fn(x) with \\Fn\\^ = ^(n~l)

82 \ fn(x) ) \i sinnnxj

which holds pointwise uniformly for x 6 [0, 1].
PROOF. It follows from (4) that the real eigenvalue an satisfies

for large positive integer n, hence ^/a^/^/k = inn + &{n~x). By (15),

sinha2x = i sin nnx + tfin'1), cosh a2x — cos nnx + 0(n~x). (16)

— e"[X + (— ) sinha2e
a'll-x) + s'mha2x + —

82 XgiJ gi

Note that gx/g2 = -y2/(ky2an^/b^) + 0(\on\-
1). We have, by referring to (12) and

(16), that

fn() = - — e"[ (
g2

+ — ()
gi

= sinhaj-x: + <?(""') = i sin nnx + ^(n~l). (17)

Furthermore, by (8)

<j)'n(x) = — aig2coshal(l — x) — a2g\ cosha2(l — x) + atg2cosha2coshatx

+ a2g\ coshai cosna2x — a2g2 si

We have

2^4>'n(x) = -al/g2e
a'x +ai/g2 cosha2e

a'(l-x) +a2gl/g
2
2 cosha2x

62

+ a2/g2sinha2x+a,gx/g
2
2sinha2e

at{{-x) + 0{e~cM)
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where c > 0 is a constant independent of an. Hence

or

,-j-01,00 = <?{\on\-') = &(n~ '). (18)
82

Similarly,

-2yon
e—on<$>n(x.) = 0(n~]). (19)

Combining (17)—(19) gives

-2Yon"— I on4>n{x) 1 = 1 0 | + Fn{x) with | |FJ | ^ = ^(n"1).
2̂ \ ,/f /'v.̂  / \is\nnnx,

This gives the required result.

LEMMA 2. 77ie eigenfunctions {(<pn, Xn(pn, rj/n), (0n, Xn0n, i^n)} associated with the
complex conjugate eigenvalue pairs {Xn, Xn] of A take the following asymptotic ex-
pression:

Xn<pn(x) I = I is'innnx \ + Fn(x)

which holds pointwise uniformly for x € [0, 1], where f ^(x) = cos nnx + &{n~x),

\\Fn\\je =

PROOF. For the complex conjugate eigenvalue pairs {A.n, Xn} of A, it holds that

Xn = -y2/(2k) + inn + ^(/T1) (20)

for large positive integer n and hence cosh a,* = cosnxx + &(n~l) and si
isinnnx + tfin-1). Moreover, */X~n = ^fTfl{\ + i)^nn[l + 0(n~1)]. By (8), (15)
and (20)

= - — e-a>x
Cosha,e-

a^~x)

sinhae-"2(l-x) - — si
gi
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Notice again that gl/g2 = -(y2/k"2XnVK)[l + 0(\K\-l)],a2/al = (
^( l^ l - 1 ) ] . We have thus that a2gl/(aig2) = -(y2/ k2X2

n)[l + &(\Xn\~
1)] = 0(n~2).

Therefore

Similarly,

2e~a-
tp'Jx) = cosha,* + fin'1) = cosnnx + <?{n~x). (21)

e-">x + s i nha* + A.B —
«i axg2

- < ? ( « ) • (22)

Also

• . g2 .svcma\X ~

+ —cosha^"02'1-^ + —cosha,* + ffie''^") = <?(«"') (23)
ai a, V / J

where c > 0 is a constant independent of Xn. Combining (21)—(23) gives

where /'(•«) = cos TUT* + ^"(n"1), | | F n | | ^ = G(n~l), proving Lemma 2.

Summarizing, we have obtained estimates for the approximate normalized eigen-
functions which are referred to in the following theorem.

THEOREM 2. There are two families of approximate normalized eigenfunctions
of operator A: one family {<$>„}, <!>„ = {<t>n,Xn<pn,\jfn), associated with the real
eigenvalues an takes the following asymptotic expression:

( / 0 \
<J>n = 0n<t>n(.x) = 0 + Fin(x) with \\Fln\U = 0{nrx)\

\ J \is\nnnxj

the other family {*„, *„}, * n = (0B) xn0n, f n ) , * n = (4>n, Xn4>n, f n ) , corresponding
to the complex conjugate eigenvalue pairs {Xn,Xn}, takes the following asymptotic
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expression:

( fnix) \
K4>n(x) = i sin nnx + F2n(x)

) 0 /

where \\Fln\\^ = ^(n"1), /„'(*) = COSHTTJC +

3. Riesz basis property

Let Ao denote the operator A with y = 0, that is, there is no coupling between
the wave and heat equations in (1). It is well-known that Ao is a self-adjoint operator
in Jf with compact resolvent. There are two families of eigenvalues of Ao: the
real eigenvalues Xn0 = — k(nn)2 for n a positive integer, associated with the nor-
malized eigenfunctions (0, 0, i sin nnx), and the complex conjugate pairs {kn0, A.n0},
Xn0 = inn for n a positive integer, associated with the normalized eigenfunctions
(sin nix x / (nx), ism nnx, 0). Denote

( 0 \ /sinnjr;c/(n7r)\

0 , *n 0 = I i sin nnx . (24)
i sin nnx) \ 0 /

Then {<t>n0, *no, ̂ nolf is the set of all eigenfunctions (up to a scalar) of Ao, which
forms an orthonormal basis for JF. By Theorem 2, there is an N > 0 such that

[ - * , o l l ^ + ll*« " *»0l l^ + II *n " * n o l l ^ ] < OO. (25)
n>N

We now introduce a perturbation result for a Riesz basis in Hilbert space which has
been recently reported in [1].

THEOREM 3. Let A be a densely defined discrete operator in a Hilbert space H. Let
{<pn}^° be a Riesz basis for H. If there exists an N > 0 and a sequence of generalized
eigenvectors {VU^+i of A such that £~ + l \\<pn - \jrn\\

2 < oo then

(i) There exists a constant M > N and generalized eigenvectors {̂ 0,0}̂  of A
such that {1/0.0}̂  U {^n}^+l forms a Riesz basis for H;

(ii) Let {fno)1? U {^JM+I correspond to eigenvalues {an)f of A. Then a (A) =
{an}^°, where an is counted according to its algebraic multiplicity;

(iii) If there is an Mo > 0 such that an ^ am for all m, n > Mo, then there is an
No > MQ such that all on are algebraically simple ifn> NQ.
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By Theorem 3 and (25), we obtain the main result of this paper.

THEOREM 4. Let A be the operator associated with thermoelastic system (1) by
Theorem 1. Then

(a) There is a sequence of generalized eigenfunctions of A, which forms a Riesz
basis for the state space Jif;
(b) All X € a (A) with sufficiently large modulus are algebraically simple.

Therefore, for the semigroup T(t) generated by A, the spectrum-determined growth
condition holds for any y > 0.

4. Application to other boundary conditions

To further demonstrate our approach, we consider, in this section, the following
thermoelastic equation with natural boundary conditions (see [4]):

u,,(x, t) - uxx(x, t) + y9x{x, t) = 0, 0 < x < 1, t > 0,

6,(x,t) + yuxl(x,t)-k0xx(x,t) = O, 0 <x < l,t >0, (26)

M,(0, /) = u(\, t) = 0(0, t) = 0,(1, r) = 0, t > 0.

Let H = He'(0, 1) x L2(0, 1) x Z.2(0, 1), //f '(0, 1) = [u e Hl | w(l) = 0}. As
with (1), we can write (26) as an evolutionary equation in H:

^ (27)

with w(t) = (M(-, 0 , «/(•, 0 , 0(-, t))T, where the operator B : D(B) -» H is defined
in the following way:

JB(u, v, 6) = (v, uxx -y0x, k6xx -yvx).

) = u(l)=d(0) = e'(l) = v(l) = 0}.

The following lemma is trivially verified.

LEMMA 3. Let B be defined by (28). Then B~[ is compact on H and hence a(B)
consists of isolated eigenvalues only.

As for (5)-(6), we find that for any X € o(B), there is a unique eigenfunction
(f< V» S) corresponding to A., where / satisfies

kf""(x) - X(kX + y2 + l)f"(x) + k'fix) = 0,

0, /"'(0) = 0, /"(l) = 0
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and ykg(x) = kf'"(x) - k(kk + y2)f'(x). Therefore, the eigenvalue problem for
operator B is equivalent to finding a pair (k,f) e C x //4(0, 1) such that/ jL 0 and
(29) is fulfilled.

The general solution of

j*/""(*) - k(kk + y2 + l)f"(x) + k3f(x) = 0,
{/'(0)=/"'(0) = 0

is

f(x) = ci (<?"" + e""*) + c2(e"2X + g""*) (30)

where at, i — 1, 2, are defined by (3) and c,-, / = 1, 2, are arbitrary constants. In
order that / defined by (30) be a solution of (29), the other boundary conditions
/ (1) = / " ( I ) at x = 1 should be satisfied. This gives

+ 1) = 0 . (31)

PROPOSITION 1. It holds that X eo(B) if and only ifk is a root of (31).

THEOREM 5. Asymptotically, the solutions of (31) consist of a real sequence [an]
and a sequence of conjugate pairs {Xn, kn] with

an = -k«n - 1/2)JT)2 + y2/k + &(n~2),

kn = -y
2/(2k) + (n- \/2)ni + ^(n~l)

where n is a large positive integer.

PROOF. Equation (31) can be decomposed into

e2"' = - 1 or e2"2 = - 1 . (33)

Choosing e2"' = —1 implies that there is an integer n such that a\ = (n — \/2)ni.
By (13),

k = (n - 1/2)TTI - y2/(2k) - (4y2 - y4)/(Sk)

i - Y
2/(2k) + &(\n\-]).

This is the first part. Secondly, e2"2 = - 1 implies that a2 = (n — \/2)ni for some
integern. It follows from (13) that k = -k((n - \/2)n)2 + y2/k + Gin.-2). Since for
large n, both positive and negative n give the same asymptotic expression, Lemma 3
is proved.
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Starting from (30), we find a solution / of (29) being

f (x) = cosh a2 cosh <2IJC — cosh^ cosha2*- (34)

Hence

ykg(x) = kf"\x) - X(kX + y2)f'(x)
= k{a\ cosha2 sinhaijc — a\ cosher sinha2;c)*l ^uau w2 aiiiu «i-* — 1*2 '

— kX2(ax cosh a2 sinh axx — a2 cosh ax sinh a2*)

— y2X(ax sinh a2 cosh axx — a2coshai sinha2;c)

= ka2(X
2 — a^coshai sinha2jc + kax(a

2 — A.2) cosha2 sinha^

— y2A.(ai sinh a2 cosh axx — a2 cosh ax sinh a2x).

When A, = -k((n - l/2)n)2 + y2/k + ^(n~2), similar to (16), we have

sinha2;c = i'sin(« — l/2)7rx + <?(«"'). (35)

It then follows from (13) that

sinh a2x

•ax/a2X~2{a] - X2)2e"' s inha^cosh^
kXa2

— y2X~l(ai/a22e"1 cosh axx sinha2 — 2eai coshai sinha2x)

= sinha^ + <?(|A.r'/2)'= J sin(n - l/2)^x + <?(«-'). (36)

Similarly .

Therefore

2\8(x)J \ism(n-l/2)nx.

When X = -y2/(2k) + i(n - l/2)n + &(n~l), ^/Xjk = JTj2{\ + /)V(« - l/2)n.
It follows from (13) that

(2/A.) e~"2kf (x) = 2e~"2 cosh a2 cosh axx - e~"2 cosh a2 cosh a,

= cosha,j: + 0(n~x) = cos(n - \/2)nx + ^(n'1),

(2/X)e-"2f'(x) = (l/X)ai2e~"2 cosh a2 sinh axx - (2/A.) ̂ a2a2sinha2x cosh a,

+ &(n~l) = /sin(n — \/2)izx + (?(n~l),
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Therefore

As for (24)

2
2— e 2

A

and (25),

//'(*) \
V (*)

V g(x) )
we have,

Bao Zhu Guo

/cos(n
= 1 i sin (/i

by virtue of

-1 /2 )TTJC\

(37) and (38), that

[12]

(38)

n>N

where N > 0 is some integer, Fn and {Gn, Gn) are eigenfunctions corresponding to
an and {An, kn) which are determined by Theorem 5, respectively. Thus

sin(n - l/2)n-jf/((« - l /2);r)

G n 0 = isin(n-l/2)7rjc (40)

\ 0

and {Fn0, Gn0, Gn0}^° is the set of all eigenfunctions (up to a scalar) of the oper-
ator B with y = 0 which is self-adjoint with compact resolvent in H. The set
{Fn0, Gno, Gn0}^° forms an orthonormal basis for H. By Theorem 2, we obtain again
the Riesz basis property for system (26) obtained in [4].

THEOREM 6. Let B be the operator defined in (27). Then

(i) There is a sequence of generalized eigenfunctions of B, which forms a Riesz
basis for the state space J>^;

(ii) All X 6 o(B) with sufficiently large modulus are algebraically simple.

Therefore, for the semigroup eBt generated by B, the spectrum-determined growth
condition holds for any y > 0.

We have seen earlier in this section that the case of natural boundary conditions
is much simpler than the case of Dirichlet-Dirichlet boundary conditions, discussed
in previous sections. The reason for this is that the characteristic equation (31) and
expression of eigenfunctions (34) for natural boundary conditions have much simpler
forms than the corresponding forms (2) and (8) for Dirichlet-Dirichlet boundary
conditions. On the other hand, our approach is based on Theorem 2 which allows
us to treat "high frequency" cases only. This is the main difference between our
approach and that available in the literature. Recall an earlier result due to Bari for
Riesz basis generation in Hilbert space that if {0n}~ is a Riesz basis in a Hilbert
space H and another cu-linearly independent sequence {^n}^° in H is quadratically
close to {0n}~ in the sense that J27=i H0» ~ ^"H2 < °°> m e n {WT IS a Riesz basis
itself for H. In order to use Bari's theorem, we have to arrange the eigenfunctions

https://doi.org/10.1017/S1446181100012621 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012621


[13] Results for a thermoelastic equation with Dirichlet-Dirichlet BCs 461

corresponding to "low eigenfrequencies". From the characteristic equation (2), this
is relatively difficult to carry out for (1). However, for the case of natural boundary
conditions, this had already been done in [4]. For example, our success in estimating
the "low eigenfrequencies" for (26) is due to the following result which shows that
the characteristic equation (31) actually consists of a sequence of cubic polynomials.

PROPOSITION 2. For any solution k of (33), there is an integer n > 1 such that

pn(X) = k' + k/xn\
2 + (y2 + \)pLnX + kfi2

n=O (41)

where \xn = (n — \/2)2n2. Moreover, for each n > 0, (41) admits a real solution an

and one conjugate pair solution {kn, kn}.

PROOF. Obviously, any solution k of e2"' — — 1 or e2"2 = — 1 must satisfy a\ =
(n — \/2)ni or a2 = (n — \/2)ni for some integer n, that is,

^ - \k
2k L

\kk + y2 + l + J(kk + y2 + I)2 - 4kk = -(n - 1/2) V
Z.K

or

kk + y2 + 1 - VOtA. + y2 + I)2 - 4 U I = - ( n - l ^ ) 2 ^ 2 .

Rearranging terms yields

±—y/(kk + y2 + l)2-4kk =? - ( n - 1/2)2TT2 - ^-(ikA. + y2 + 1

or
l 3 i_ i , / / M i / ' - ) \ 2 W 2 \ 2 _\_ \ / u \ _ L - , 2 _ i i \ / M _ i / O \ 2 _ r 2k3 + k((n - \/2)2n2)2 + k(kk + y2 + l)(n - 1/2)2TT2 = 0.

This is (41).
When k2fin - 3(y2 + 1) < 0, p'n(k) > 0 for all real k. Therefore there is a unique

real solution A.n to pn(k) = 0 since p(±oo) = ±oo. When k2\xn — 3(y2 + 1) > 0,
p'n(k) = 3k2 + 2kn,nk + (y2 + l)/xn = 0 has real roots

m,2 = ~\kHn ± y#nl ~ 2>(Y2 + DUn > -kfln- (42)

Since

9pn(m.2) = -2[k2fM2
n - 3(y2 + l)nn]m.i + *(8 - Y2){*1 > 0

and p'n(k) = 3(k - r]2)(k - r?i), we see that p'n(k) > 0 for all A. > r)x or A. < n2.
Therefore there is a unique real solution A.n to pn(k) = 0 with kn < r)2.

Proposition 2 is similar to [7, Lemma 6.42]. By this result, we can arrange
the eigenfunctions corresponding to "low eigenfrequencies" to use Bari's theorem.
Because the result is already known in [4], we omit the details here.
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