Adv. Appl. Prob. **15,** 688–690 Printed in N. Ireland © Applied Probability Trust 1983

MORE TRANSIENT RESULTS FOR GENERALISED STATE-DEPENDENT ERLANGIAN QUEUES

B. W. CONOLLY,* Chelsea College, London

STATE-DEPENDENT QUEUES; GENERALIZED BIRTH AND DEATH PROCES-SES; TIME-DEPENDENT RESULTS

Setting examination questions is often a nuisance, but occasionally it can be a productive exercise. Recently it enabled some gaps in Conolly (1975) to be filled. In that paper single-server queueing systems driven by (λ_n, μ_n) arrival and service mechanisms were discussed. These basically exponential mechanisms fluctuate with system state n. Three models were considered.

Model A, having $\lambda_n = \lambda$, $\mu_n = \mu n$ ($\lambda, \mu > 0$), embodies the notion of server cooperation and it possesses compound Poisson state probabilities

$$p_n(t) = e^{-\rho \Lambda(t)} \{\rho \Lambda(t)\}^n / n!,$$

where $\rho = \lambda/\mu$, $\Lambda(t) = 1 - e^{-\mu t}$, for all non-negative state sizes *n*, given that $p_0(0) = 1$. This system mimics $M/M/\infty$.

Model B has $\lambda_n = \lambda/(n+1)$, $\mu_n = \mu$ ($\lambda, \mu > 0$). This embodies customer reluctance or discouragement. Although the asymptotic form of $p_n(t)$ as $t \to \infty$ is identical with that of Model A, the time-dependent behaviour is less elegant (Natvig (1974), Van Doorn (1981)).

Model C incorporates the mechanisms of A and B. Thus $\lambda_n = \lambda/(n+1)$, $\mu_n = \mu n(\lambda, \mu > 0)$. Service is cooperative and customers reluctant. The asymptotic form of the state probabilities is easily obtained, namely, as $t \to \infty$, $p_n(t) \to \bar{p}_n$, where

$$\bar{p}_n = \frac{\rho^n}{n! \, n! \, I_0(2\rho^{\frac{1}{2}})}.$$

Here and in the following

$$I_n(x) = \sum_{j=0}^{\infty} \frac{(x/2)^{n+2j}}{j! (j+n)!} \quad (n \text{ integer})$$

is the modified Bessel function of the first kind with argument x and order n. It satisfies the differential equation

$$x^2y'' + xy' - (x^2 + n^2) = 0.$$

The examination exercises referred to enable it to be stated that $p_n(t)$, with initial

Received 18 April 1983; revision received 22 June 1983.

^{*} Postal address: Department of Mathematics, Chelsea College, University of London, 552 Kings Road, London SW10 0UA.

Letters to the editor

value $p_0(0) = 1$, is generated by $P(x, t) = \sum x^n p_n(t)$, where

(1)
$$P(x,t) = \frac{I_0(2(\rho x)^{\frac{1}{2}})}{I_0[2\{\rho(1+(x-1)e^{-\mu t})\}^{\frac{1}{2}}]}$$

This result is obtained by showing in the usual way that P(x, t) satisfies

$$x\frac{\partial P(x,t)}{\partial t} + \mu x(x-1)\frac{\partial P(x,t)}{\partial x} = \lambda(x-1)G(x,t)$$

where

$$G(\mathbf{x},t)=\int_0^x P(\mathbf{y},t)\,d\mathbf{y},$$

and using Lagrange's method to obtain the first obvious integral $u = (x-1)e^{-\mu t}$ of the characteristics. The other pair of equations can be written as

$$\frac{\partial^2 G(x,t)}{\partial x^2} - \frac{\rho G(x,t)}{x} = 0,$$

which, by transformation of the Bessel function differential equation, can be seen to be satisfied by

$$G(x, t) = x^{\frac{1}{2}} I_1(2(\rho x)^{\frac{1}{2}}).$$

This gives for the second integral

$$\frac{P(x,t)}{v} = \frac{d}{dx} \left[x^{\frac{1}{2}} I_1(2(\rho x)^{\frac{1}{2}}) \right],$$

where v is the integration constant. Since $I_1(x) = I_0'(x)$, and by use of the fundamental differential equation, we can express the general solution v = F(u) in the form

$$P(x, t) = \rho^{\frac{1}{2}} I_0(2(\rho x)^{\frac{1}{2}}) F[(x-1)e^{-\mu t}],$$

where F is a function whose form is revealed by the initial condition P(x, 0) = 1. Thus

$$F(x) = [\rho^{\frac{1}{2}}I_0\{2(\rho(x+1))^{\frac{1}{2}}\}]^{-1},$$

and (1) follows.

In particular,

(2)
$$p_{0}(t) = \frac{1}{I_{0}(2(\rho\Lambda(t))^{\frac{1}{2}})},$$
$$p_{1}(t) = \frac{\rho}{I_{0}(2(\rho\Lambda(t))^{\frac{1}{2}})} \left[\Lambda(t) + e^{-\mu t} \frac{I_{2}(2(\rho\Lambda(t))^{\frac{1}{2}})}{I_{0}(2(\rho\Lambda(t))^{\frac{1}{2}})} \right]$$

and, for the record, the mean m(t) is

(3)
$$m(t) = \frac{\rho^{\frac{1}{2}} I_1(2\rho^{\frac{1}{2}})}{I_0(2\rho^{\frac{1}{2}})} \Lambda(t).$$

Conolly (1975) mentions an even more efficient mechanism than Model C. This is characterised by $\lambda_n = \lambda/(2n+1)$, $\mu_n = 2\mu n$ ($\lambda, \mu > 0$) and, under the same initial condition $p_0(0) = 1$, this can be dealt with similarly. A specimen result is

(4)
$$p_0(t) = \frac{1}{\cosh(\rho(1 - e^{-2\mu t}))^{\frac{1}{2}}}$$

No doubt future generations of students will produce others.

References

CONOLLY, B. W. (1975) Generalized state-dependent Erlangian queues: speculations about calculating measures of effectiveness. J. Appl. Prob. 12, 358-363.

NATVIG, B. (1974) On the transient state probabilities for a queueing model where potential customers are discouraged by queue length. J. Appl. Prob. 11, 345-354.

VAN DOORN, E. A. (1981) The transient state probabilities for a queueing model where potential customers are discouraged by queue length. J. Appl. Prob. 18, 499-506.

690