
Canad. J. Math. Vol. 66 (3), 2014 pp. 525–565
http://dx.doi.org/10.4153/CJM-2013-013-0
c©Canadian Mathematical Society 2013

A Lift of the Schur and Hall–Littlewood
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Functions
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Abstract. We introduce a new basis of the algebra of non-commutative symmetric functions whose
images under the forgetful map are Schur functions when indexed by a partition. Dually, we build
a basis of the quasi-symmetric functions that expand positively in the fundamental quasi-symmetric
functions. We then use the basis to construct a non-commutative lift of the Hall–Littlewood symmetric
functions with similar properties to their commutative counterparts.

1 Introduction: Yet Another Schur-like Basis of NSym

The algebras of non-commutative symmetric functions NSym and quasi-symmetric
functions QSym are dual Hopf algebras. They have been of great importance to
algebraic combinatorics. As seen in [1], they are universal in the category of com-
binatorial Hopf algebras. They also represent the Grothendieck rings for the finitely
generated projective representations and the finite dimensional representation the-
ory of the 0-Hecke algebra. We will not attempt to summarize these notions in great
detail; the interested reader should see [21].

This paper is the result of an exploration of what a “Schur” analogue in the non-
commutative setting should look like. We focused on a minimal set of axioms that
define a basis of NSym whose image under the forgetful map is a Schur function
when the basis element is indexed by a partition.

The primary goal in this paper is to build a new basis, the “immaculate basis,” of
NSym and to develop its theory. This basis has many of the same properties as the
classical basis of Schur functions of the symmetric function algebra. The immaculate
basis has a positive right-Pieri rule (Theorem 3.5), a simple Jacobi–Trudi formula
(Theorem 3.27), and a creation operator construction (Definition 3.2). Furthermore,
under the forgetful map χ from the non-commutative symmetric functions to the
symmetric functions (Equation (2.1)) their image is a Jacobi-Trudi expression for a
Schur function (Corollary 3.30). Thus, immaculate functions map to Schur functions
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using a signed sorting action (Proposition 2.2). By duality, these functions give rise
to a basis of the quasi-symmetric function algebra and expand positively into the
monomial and fundamental bases of quasi-symmetric functions (Propositions 3.36
and 3.37). We also give a combinatorial expansion of the Schur functions (Theorem
3.38) in this basis.

In the commutative setting there are many characterizing properties of the Schur
functions (e.g., triangularity with other bases, a Pieri rule, uniquely determined by an
orthonormalization process). We immediately focused on the concept of a Jacobi–
Trudi identity defining a basis of NSym. The reader interested only in the definition
of our basis may wish to take the Jacobi–Trudi rule (Theorem 3.27) as the definition
of the immaculate basis. However, to simplify the proofs and provide a coherent
story, we started with the functions being defined through creation operators. Since
they are defined through the process of creation (applying certain creation operators
to the identity), we decided to name them the “immaculately conceived basis,” which
we have shortened to the immaculate basis.

Recently, many of NSym’s enthusiasts have developed bases for the algebra that
have various properties in common with different classical bases of Sym. The “im-
maculate” term within this paper is intended to be humorous; our basis shares many
of the properties of the Schur basis of Sym, but is in no way a perfect analogue of the
Schur basis (for instance, products of immaculate functions do not expand positively
in the immaculate basis). We have no supportive evidence to believe that any basis of
NSym will ever be a perfect analogue of the Schur basis.

It should be noted that this basis is not the non-commutative Schur basis (dual
to the quasi-symmetric Schur basis of [7, 13, 14]), even though they share several
similar properties. The non-commutative Schur basis has the property that the image
under the map χ of an element indexed by a composition is a Schur function indexed
by the parts of the composition sorted in decreasing order. The basis studied here
has the property that an element indexed by a composition is sent to a Jacobi–Trudi
determinant expression (Theorem 3.27 and Corollary 3.30). We have not developed
any connections at this point between the non-commutative Schur basis and our
immaculate basis.

Starting with the immaculate basis, we construct lifts of the Hall–Littlewood sym-
metric functions in the non-commutative symmetric function algebra. It should be
noted that many different versions of a non-commutative Hall–Littlewood symmet-
ric function already exist [5, 16, 23, 28, 35], but as far as we are aware, none of these
project for all partitions to the classical Hall–Littlewood functions (ours do!). Hav-
ing a basis of NSym that projects to the Hall–Littlewood basis could prove to be
a powerful tool towards their study; fundamental problems in the classical theory
of Hall–Littlewood symmetric functions, such as a combinatorial understanding of
their structure coefficients, remain open.

The results of this paper are mostly combinatorial and algebraic. In a forthcom-
ing paper we turn our attention to the representation theoretic interpretation of our
basis [2]. We construct indecomposable modules of the 0-Hecke algebra whose char-
acteristics, under the identification with elements of QSym, form the dual basis to
the immaculate basis.
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2 Background

2.1 Compositions and Combinatorics

A partition of a non-negative integer n is a tuple λ = [λ1, λ2, . . . , λm] of positive
integers satisfying λ1 ≥ λ2 ≥ · · · ≥ λm that sum to n; it is denoted λ ` n. Parti-
tions are of particular importance to algebraic combinatorics; among other things,
partitions of n index a basis for the symmetric functions of degree n, Symn, and the
character ring for the representations of the symmetric group. These concepts are in-
timately connected; we assume the reader is well versed in this area (see for instance
[29] for background details).

A composition of a non-negative integer n is a tuple α = [α1, α2, . . . , αm] of pos-
itive integers that sum to n, often written α |= n. The entries αi of the composition
are referred to as the parts of the composition. The size of the composition is the
sum of the parts and will be denoted |α| := n. The length of the composition is the
number of parts and will be denoted `(α) := m. In this paper we study dual graded
Hopf algebras whose bases at level n are indexed by compositions of n.

Compositions of n are in bijection with subsets of {1, 2, . . . , n − 1}. We will
follow the convention of identifying α = [α1, α2, . . . , αm] with the subset D(α) =
{α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · · + αm−1}.

If α and β are both compositions of n, we say that α ≤ β in refinement order if
D(β) ⊆ D(α). For instance, [1, 1, 2, 1, 3, 2, 1, 4, 2] ≤ [4, 4, 2, 7], since

D
(

[1, 1, 2, 1, 3, 2, 1, 4, 2]
)

= {1, 2, 4, 5, 8, 10, 11, 15}

and D
(

[4, 4, 2, 7]
)

= {4, 8, 10}.

We introduce a new notion that will arise in our Pieri rule (Theorem 3.5); we say
that α ⊂i β if:

(a) |β| = |α| + i,
(b) α j ≤ β j for all 1 ≤ j ≤ `(α),
(c) `(β) ≤ `(α) + 1.

For a composition α = [α1, α2, . . . , α`] and a positive integer m, we let [m, α] stand
for the composition [m, α1, α2, . . . , α`].

In this presentation, compositions will be represented as diagrams of left aligned
rows of cells. The combinatorics of the elements that we introduce will lead us to
represent our diagrams in this way rather than as a ribbon (as is the usual method for
representing compositions when working with the ribbon Schur and fundamental
bases). We will also use the matrix convention (“English” notation) that the first
row of the diagram is at the top and the last row is at the bottom. For example, the
composition [4, 1, 3, 1, 6, 2] is represented as

.
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Note that in examples and in a few formulas, compositions used as subscripts
indexing elements of an algebra will often be written without enclosing brackets.

2.2 Schur Functions and Creation Operators

We use the standard notation for the common bases of Sym: hλ for complete homo-
geneous; eλ for elementary; mλ for monomial; pλ for power sums; sλ for Schur. For
simplicity, we let hi , ei , mi , pi , and si denote the corresponding generators indexed by
the partition [i].

We next define a Schur function indexed by an arbitrary tuple of integers. The
family of symmetric functions indexed by partitions λ are the usual Schur basis of
the symmetric functions.

Definition 2.1 For an arbitrary integer tuple α = [α1, α2, . . . , α`] ∈ Z`, we define

sα := det


hα1 hα1+1 · · · hα1+`−1

hα2−1 hα2 · · · hα2+`−2
...

...
. . .

...
hα`−`+1 hα`−`+2 · · · hα`

 = det[hαi + j−i]1≤i, j≤`,

where we use the convention that h0 = 1 and h−m = 0 for m > 0.

With this definition, we notice that switching two adjacent rows of the defining
matrix has the effect of changing the sign of the determinant. Switching rows of the
matrix implies that we have the following equality:

sα1,α2,...,αr ,αr+1,...,α` = −sα1,α2,...,αr+1−1,αr+1,...,α` .

Two rows of the matrix are equal if αi − i = α j − j. This implies part of the
following well–known result.

Proposition 2.2 If α is a composition of n with length equal to k, then sα = 0 if and
only if there exists i, j ∈ {1, 2, . . . , k} with i 6= j such that αi − i = α j − j. If this is
not the case, then there is a unique permutation σ such that

[ασ1 + 1− σ1, ασ2 + 2− σ2, . . . , ασk + k− σk]

is a partition. In this case,

sα = (−1)σsασ1 +1−σ1,ασ2 +2−σ2,...,ασk
+k−σk

.

Sym is a self-dual Hopf algebra. It has a pairing (the Hall scalar product) defined
by

〈hλ,mµ〉 = 〈sλ, sµ〉 = δλ,µ.

An element f ∈ Sym gives rise to an operator f⊥ : Sym → Sym according to the
relation

〈 f g, h〉 = 〈g, f⊥h〉 for all g, h ∈ Sym.
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Using this as a definition, the action of the operator f⊥ can be calculated on another
symmetric function by the formula

f⊥(g) =
∑
λ

〈g, f aλ〉bλ,

where {aλ}λ and {bλ}λ are any two bases that are dual with respect to the pairing
〈 · , · 〉.

We define a “creation” operator Bm : Symn → Symm+n by

Bm :=
∑
i≥0

(−1)ihm+ie
⊥
i .

The following theorem, which states that creation operators construct Schur func-
tions, will become one of the motivations for our new basis of NSym (see Definition
3.2).

Theorem 2.3 (Bernstein [37, pp. 69–70]) For all tuples α ∈ Zm,

sα = Bα1 Bα2 · · ·Bαm (1).

Because of this result we shall refer to the Bm operators as either creation or Bern-
stein operators.

2.3 Non-commutative Symmetric Functions

The algebra of non-commutative symmetric functions NSym is a non-commutative
analogue of Sym that arises by considering an algebra with one non-commutative
generator at each positive degree. In addition to the relationship with the symmetric
functions, this algebra has links to Solomon’s descent algebra in type A [27], the
algebra of quasi-symmetric functions [27], and representation theory of the type A
Hecke algebra at q = 0 [21]. It is an example of a combinatorial Hopf algebra [1].
While we will follow the foundational results and definitions from references such as
[11, 27], we have chosen to use notation here that is suggestive of analogous results
in Sym.

We define NSym as the algebra with generators {H1,H2, . . . } and no relations.
Each generator Hi is defined to be of degree i, giving NSym the structure of a graded
algebra. We let NSymn denote the graded component of NSym of degree n. A basis
for NSymn are the complete homogeneous functions {Hα := Hα1 Hα2 · · ·Hαm}α�n in-
dexed by compositions of n. To make this convention consistent, some formulas will
use expressions that have H indexed by tuples of integers and we use the convention
that H0 = 1 and H−r = 0 for r > 0.

There exists a map (sometimes referred to as the forgetful map) that we shall also
denote χ : NSym → Sym, defined by sending the basis element Hα to the complete
homogeneous symmetric function

(2.1) χ(Hα) := hα1 hα2 · · · hα`(α) ∈ Sym
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and extended linearly to all of NSym. This map is a surjection onto Sym.
Similarly to the study of Sym and the ring of characters for the symmetric groups,

the ring of non-commutative symmetric functions is isomorphic to the Grothendieck
ring of finitely generated indecomposable projective representations of the 0-Hecke
algebra. We state this fact only as an analogy to Sym; we will not use it in this paper.
We refer the reader to [21] for details.

The element of NSym that corresponds to the indecomposable projective repre-
sentation indexed by α is here denoted Rα. The collection of Rα are a basis of NSym,
usually called the ribbon basis of NSym. They are defined through their expansion in
the complete homogeneous basis:

(2.2) Rα =
∑
β≥α

(−1)`(α)−`(β)Hβ or equivalently Hα =
∑
β≥α

Rβ .

The product expansion follows easily from the non-commutative product on the
generators

HαHβ = Hα1,...α`(α),β1,...β`(β) .

NSym has a coalgebra structure, which is defined on the generators by

∆(H j) =

j∑
i=0

Hi ⊗H j−i .

This determines the action of the coproduct on the basis Hα, since the coproduct is
an algebra morphism with respect to the product. Explicitly we have

∆(Hα) = ∆(Hα1 )∆(Hα2 ) · · ·∆(Hα`(α) ).

2.4 Quasi-symmetric Functions

The algebra of quasi-symmetric functions, QSym, was introduced in [10] (see also
subsequent references such as [12, 34]). This algebra has become a useful tool for
algebraic combinatorics, since it is an algebra that is dual to NSym and contains Sym
as a subalgebra.

As with the algebra NSym, the graded component QSymn is indexed by compo-
sitions of n. The algebra is most readily realized within the ring of power series of
bounded degree Q[[x1, x2, . . .]]. The monomial quasi-symmetric function indexed
by a composition α is defined as

Mα =
∑

i1<i2<···<im

xα1
i1

xα2
i2
· · · xαm

im
.

The algebra of quasi-symmetric functions, QSym, can then be defined as the algebra
with the monomial quasi-symmetric functions as a basis, whose multiplication is
inherited as a subalgebra of Q[[x1, x2, . . .]]. We define the coproduct on this basis as

∆(Mα) =
∑

S⊂{1,2,...,`(α)}

MαS ⊗MαSc ,
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where if S = {i1 < i2 < · · · < i|S|}, then αS = [αi1 , αi2 , . . . , αi|S|].
We view Sym as a subalgebra of QSym. In fact, the usual monomial symmetric

functions mλ ∈ Sym expand positively in the quasi-symmetric monomial functions

mλ =
∑

sort(α)=λ

Mα,

where sort(α) is the partition obtained by organizing the parts of α from the largest
to the smallest.

Similarly to NSym, the algebra QSym is isomorphic to the Grothendieck ring of
finite-dimensional representations of the 0-Hecke algebra. The irreducible represen-
tations of the 0-Hecke algebra form a basis for this ring, and under this isomorphism
the irreducible representation indexed by α is identified with an element of QSym,
the fundamental quasi-symmetric function, denoted Fα. The Fα, for α |= n, form a
basis of QSymn and are defined by their expansion in the monomial quasi-symmetric
basis:

Fα =
∑
β≤α

Mβ .

2.5 Identities Relating Non-commutative and Quasi-symmetric Functions

The algebras QSym and NSym form graded dual Hopf algebras. The monomial
basis of QSym is dual in this context to the complete homogeneous basis of NSym,
and the fundamental basis of QSym is dual to the ribbon basis of NSym. NSym and
QSym have a pairing 〈 · , · 〉 : NSym × QSym → Q , defined under this duality as
either 〈Hα,Mβ〉 = δα,β or 〈Rα, Fβ〉 = δα,β .

We will generalize the operation that is dual to multiplication by a quasi-symme-
tric function using this pairing. For F ∈ QSym, let F⊥ be the operator that acts
on elements H ∈ NSym according to the relation 〈H, FG〉 = 〈F⊥H,G〉. To ex-
pand F⊥(H), we take a basis {Aα}α of QSym and {Bα}α a basis of NSym such that
〈Bα,Aβ〉 = δαβ ; then

F⊥(H) =
∑
α

〈H, FAα〉Bα.

By the duality of the product and the coproduct structure of NSym and QSym,
we have for F,G ∈ QSym and H,K ∈ NSym, that the pairing satisfies 〈HK,G〉 =
〈H⊗K,∆(G)〉 and 〈H, FG〉 = 〈∆(H), F⊗G〉. As a consequence of the first of these
two identities, we have the following lemma.

Lemma 2.4 If G ∈ QSym and ∆(G) =
∑

i G(i) ⊗ G(i), then for H,K ∈ NSym,

G⊥(HK) =
∑

i

G(i)⊥(H)G⊥(i)(K).
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Proof Because of the duality of the Hopf algebra structure between NSym and
QSym,

G⊥(HK) =
∑
α

〈
G⊥(HK),Aα

〉
Bα =

∑
α

〈HK,GAα〉Bα

=
∑
α

〈H ⊗ K,∆(GAα)〉Bα =
∑
α

〈H ⊗ K,∆(G)∆(Aα)〉Bα

=
∑
α

∑
i

〈H ⊗ K, (G(i) ⊗ G(i))∆(Aα)〉Bα

=
∑
α

∑
i

〈G(i)⊥(H)G⊥(i)(K),Aα〉Bα.

Another way we can compute the action of M⊥α is by using the following lemma.

Lemma 2.5 For G ∈ NSym, if the coproduct on G has the expansion ∆(G) =∑
γ Hγ ⊗ G(γ), then M⊥α (G) = G(α).

Proof Let G be an element of NSym such that ∆(G) has the expansion
∑

γ Hγ⊗G(γ)

with the H-basis in the left tensor. A direct computation shows

M⊥α (G) =
∑
β

〈G,MαMβ〉Hβ =
∑
β

〈∆(G),Mα ⊗Mβ〉Hβ

=
∑
β

∑
γ

〈Hγ ⊗ G(γ),Mα ⊗Mβ〉Hβ =
∑
β

〈G(α),Mβ〉Hβ = G(α).

To develop some of the formulas for the immaculate basis we will need some alge-
braic identities on NSym and QSym. These are standard results that are analogous
to the corresponding formulas in Sym, but require some development of the algebra
to verify their correctness.

As a consequence of Lemma 2.4 we have the following relations.

Lemma 2.6 For i, j > 0 and for f ∈ NSym,

F⊥1i ( f H j) = F⊥1i ( f )H j + F⊥1i−1 ( f )H j−1(2.3)

F⊥i ( f H j) =

min(i, j)∑
k=0

F⊥i−k( f )H j−k.(2.4)

Proof Since Fi and F1i are, respectively, hi and ei in Sym, we know the coproduct

rule ∆(F1i ) =
∑i

k=0 F1i−k ⊗ F1k , and ∆(Fi) =
∑i

k=0 Fi−k⊗ Fk. From Lemma 2.5 and
the fact that F⊥r =

∑
α|=r M⊥α , we calculate that F⊥r (H j) =

∑
α|=r M⊥α (H j) = H j−r

for 1 ≤ r ≤ j. Another application of Lemma 2.5 with F⊥1r = M⊥1r shows that for
s > 1, F⊥1s (H j) = M⊥1s (H j) = 0. Equations (2.3) and (2.4) are a consequence of
Lemma 2.4.
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By applying the formulas in the previous lemma, the following expansions may be
shown by induction on the length of the composition.

Corollary 2.7 For all i ≥ 0 and all compositions α |= n such that `(α) = m,

F⊥1i (Hα) =
∑
β∈Nm

|β|=|α|−i
α j−1≤β j≤α j

Hβ , F⊥i (Hα) =
∑
γ∈Nm

|γ|=|α|−i
0≤γ j≤α j

Hγ .

In both sums we use the convention that parts of size 0 are deleted from the tuple when
it is re-expressed in the H-basis because H0 = 1.

Example 2.8 We compute F⊥11H2112 = H22 + 2H211 + 2H112 + H1111. This comes
from removing two boxes from [2, 1, 1, 2] in the following ways and not considering
parts of size 0:

[1, 1, 1, 1] [1, 1, 2] [1, 1, 2] [2, 1, 1] [2, 1, 1] [2, 2]

Example 2.9 We compute F⊥2 H2112 = H1111 + 3H112 + 3H211 + H22. This comes
from removing two boxes from [2, 1, 1, 2] in the following ways:

[1, 1, 1, 1] [1, 1, 2] [1, 1, 2] [1, 1, 2]

[2, 1, 1] [2, 1, 1] [2, 1, 1] [2, 2]

We call a linear ordering of variables (y1, y2, . . . ) an alphabet. Note that an alpha-
bet could be finite or countable.

For an alphabet Y , we define

Ω̃Y =
∑
α

Mα[Y ]Hα,

where Mα[Y ] is the monomial quasi-symmetric function indexed by α expanded
over an alphabet Y , and the monomial quasi-symmetric functions are allowed to
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commute with the non-commutative symmetric functions. In particular when Y is
an alphabet with a single variable,

Ω̃z =
∑
d≥0

zdHd.

If Y = (y1, y2, . . . ) is an alphabet and z is another variable not in Y , we let z,Y
denote the alphabet (z, y1, y2, . . . ). We notice that Ω̃zΩ̃Y = Ω̃z,Y by calculating

Ω̃z,Y =
∑
α

Mα[z,Y ]Hα =
∑
α

(
Mα[Y ] + zα1 Mα2,...,αm [Y ]

)
Hα

=
∑
α

Mα[Y ]Hα +
∑
α

zα1 Hα1 Mα2,...,αm [Y ]Hα2,...,αm

=
∑
α

Mα[Y ]Hα +
∑
d>0

zdHd

∑
β

Mβ[Y ]Hβ

=

(∑
d≥0

zdHd

)(∑
γ

Mγ[Y ]Hγ

)
= Ω̃zΩ̃Y .

We can then determine by induction that Ω̃ZΩ̃Y = Ω̃Z,Y for a finite alphabet Z.
For F ∈ QSym, F⊥ acts on the non-commutative symmetric functions and does

not affect the monomial quasi-symmetric function coefficients

F⊥Ω̃Y =
∑
α

Mα[Y ]F⊥(Hα) =
∑
α

Mα[Y ]
∑
β

〈Hα, FMβ〉Hβ

=
∑
β

∑
α

〈Hα, FMβ〉Mα[Y ]Hβ =
∑
β

F[Y ]Mβ[Y ]Hβ = F[Y ]Ω̃Y .

We also define the two operators with the parameter z as

E⊥z =
∑
i≥0

ziF⊥1i , and H⊥z =
∑
i≥0

ziF⊥i ,

then

E⊥z Ω̃Y =
∑
i≥0

ziF1i [Y ]Ω̃Y = Ω̃Y
∏

y∈Y
(1 + zy),

H⊥z Ω̃Y =
∑
i≥0

ziFi[Y ]Ω̃Y = Ω̃Y/
∏

y∈Y
(1− zy).
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3 A New Basis for NSym

We are now ready to introduce our new basis of NSym. These functions were dis-
covered while playing with a non-commutative analogue of the Jacobi–Trudi identity
(Theorem 3.27). They may also be defined as the unique functions in NSym that
satisfy a right-Pieri rule (Theorem 3.5 and Proposition 3.32). In order to stream-
line our proofs and extend our definitions to a Hall–Littlewood analogue, we start by
building our new basis using a non-commutative version of the Bernstein operators
(Theorem 2.3).

3.1 Non-commutative Immaculate Functions

We continue with the notation of the previous section: Hi is the complete homoge-
neous non-commutative symmetric function; Fα is the fundamental quasi-symme-
tric function indexed by the composition α; and F⊥α is the linear transformation of
NSym that is adjoint to multiplication by Fα in QSym.

Definition 3.1 We define the non-commutative Bernstein operators Bm as

Bm =
∑
i≥0

(−1)iHm+iF
⊥
1i .

Using the non-commutative Bernstein operators, we can inductively build func-
tions using creation operators similar to Bernstein’s formula (Theorem 2.3) for the
Schur functions.

Definition 3.2 For any α = [α1, α2, · · · , αm] ∈ Zm, the immaculate function Sα ∈
NSym is defined as the composition of the operators applied to 1 in the expression

Sα := Bα1 Bα2 · · ·Bαm (1).

Calculations in the next subsection will show that the elements {Sα}α|=n form a
basis for NSymn.

Example 3.3 If α = (a) has only one part, then Sa is just the complete homo-
geneous generator Ha. If α = [a, b] consists of two parts, then Sab = Ba(Hb) =
HaHb −Ha+1Hb−1.

3.2 The Right-Pieri Rule for Immaculate Functions

Lemma 3.4 For s ≥ 0 and m ∈ Z, and for f an element of NSym,

Bm( f )Hs = Bm+1( f )Hs−1 + Bm( f Hs).

Proof By definition,

Bm( f Hs) =
∑
i≥0

(−1)iHm+iF
⊥
1i ( f Hs).
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Using Lemma 2.6, one obtains

Bm( f Hs) =
∑
i≥0

(−1)iHm+i

(
F⊥1i−1 ( f )Hs−1 + F⊥1i ( f )Hs

)
,

which by associativity and reindexing gives

Bm( f Hs) = −Bm+1( f )Hs−1 + Bm( f )Hs.

Theorem 3.5 For a composition α, the Sα satisfy a multiplicity free right-Pieri rule
for multiplication by Hs,

SαHs =
∑
α⊂sβ

Sβ ,

where the notation⊂s is introduced in Section 2.1.

Proof Let m = α1 and let α = [α2, α3, . . . , αk] denote the composition with first
part removed. The proof will be by induction on s + `(α), the base case being trivial.
By definition, BmSα = Sα, so

SαHs = Bm(Sα)Hs

= Bm+1(Sα)Hs−1 + Bm(SαHs) by Lemma 3.4 ,

= S[m+1,α]Hs−1 + Bm(
∑
α⊂sη

Sη) by the Pieri rule on α and s,

=
∑

[m+1,α]⊂s−1γ

Sγ +
∑
α⊂sη

S[m,η] by the Pieri rule on [m + 1, α] and s− 1.

The first sum counts all γ that arise from adding boxes to α, adding at least one to the
first part of the composition, which are bounded in length by `(α) + 1. The second
sum counts all η that arise from adding boxes to α, without adding to the first part,
which are bounded in length by `(α)+1. The statement now follows from combining
the two sums.

Remark 3.6 Products of the form HmSα do not have as nice an expression as
SαHm, since they generally have negative signs in their expansion and there is no
obvious containment of resulting compositions. For example,

H1S13 = S113 −S221 −S32.

The reason for this is that left multiplication by Hm can be re-expressed as

Hm =
∑
i≥0

Bm+iF
⊥
i .

We will develop the algebra required to understand where the negative signs poten-
tially arise, but we will not give a satisfactory left Pieri rule. We conjecture that the
left Pieri rule is multiplicity free, up to sign.
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Conjecture 3.7

HmSα =
∑
β

(−1)sign(α,β)Sβ ,

where the sum is over some collection of compositions β of size |α| + m and sign is
some statistic that depends on α and β.

Example 3.8 The expansion of S23 multiplied on the right by H3 is done below,
along with corresponding pictures.

=

S23 ∗ H3 = S233 + S242 + S251

+ S26 + S332 + S341 + S35

+ S431 + S44 + S53

3.3 Relationship with the Classical Bases of NSym

We will now develop some relations between the classical bases of NSym and the im-
maculate basis. In particular, the first result will establish the fact that the immaculate
functions indexed by compositions do in fact form a graded basis of NSym. First, we
need the notion of an immaculate tableau.

3.3.1 Immaculate Tableaux

Definition 3.9 Let α and β be compositions. An immaculate tableau of shape α
and content β is a labelling of the boxes of the diagram of α by positive integers in
such a way that:

(a) the number of boxes labelled by i is βi ;
(b) the sequence of entries in each row, from left to right, is weakly increasing;
(c) the sequence of entries in the first column, from top to bottom, is increasing.

An immaculate tableau is said to be standard if it has content 1|α|.
Let Kα,β denote the number of immaculate tableaux of shape α and content β.

We reiterate that, aside from the elements in the first column, there is no relation
among the elements in the columns of an immaculate tableau.
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Example 3.10 There are five immaculate tableaux of shape [4, 2, 3] and content
[3, 1, 2, 3]:

1 1 1 3
2 3
4 4 4

1 1 1 3
2 4
3 4 4

1 1 1 4
2 3
3 4 4

1 1 1 4
2 4
3 3 4

1 1 1 2
3 3
4 4 4

.

Standard immaculate tableaux of size n can be identified with set partitions of
{1, 2, . . . , n} by ordering the parts in the partition by minimal elements. This re-
mark1 allows us to state a surprising enumeration formula for standard immaculate
tableaux that is analogous to the hook length formula for standard tableaux. In order
to state and prove this formula, we need to define the standardization of immaculate
tableaux and hooks of cells.

Definition 3.11 Given an immaculate tableau T of shape α and content β, we form
a standard immaculate tableau std(T) = S of shape α and content (1n) as follows. We
order the entries of the tableau T, reading first all entries valued 1, then 2, etc. Among
all entries with the same value, we first read all entries in the lowest row, starting at
the leftmost position and read first to the right and then up rows. The order of the
entries forms a standard immaculate tableau that we call the standardization of T.

Example 3.12 The following tableau has shape [6, 5, 7] and content [2, 3, 5, 1, 4, 3].

T =

1 1 2 2 3 4
2 3 3 3 3
5 5 5 5 6 6 6

.

The standardization of T is:

S =

1 2 4 5 10 11
3 6 7 8 9

12 13 14 15 16 17 18
.

Let c = (i, j) be a cell in row i and column j of the diagram for a composition α
(that is, 1 ≤ i ≤ `(α) and 1 ≤ j ≤ αi). If c = (i, 1), define the hook of c in α to
be hα(c) = αi + αi+1 + · · · + α`(α) (the number of cells below and to the right in the
diagram). If j > 1, then the hook of c in α is hα(c) = αi − j + 1 (the number of cells
weakly to the right in the same row).

Proposition 3.13 If α |= n, the number of standard immaculate tableaux of shape α
is equal to

(3.1) Kα,1n =
n!∏

c∈α hα(c)
,

where c ∈ α indicates c = (i, j) with 1 ≤ i ≤ `(α) and 1 ≤ j ≤ αi .

1Pointed out to us in a discussion with Martha Yip.
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Proof Consider a standard immaculate tableau of shape [k, α] |= n + k. The first
row contains 1 and a subset S of k − 1 other integers from {2, 3, . . . , n + k}. More-
over, if we standardize rows 2 through `(α) + 1 of this tableau, then we have a stan-
dard immaculate tableau of shape α. This gives us a bijection between standard im-
maculate tableaux of shape [k, α] and the set of pairs (S,T), where S is a subset of
{2, 3, . . . , n+k} of size k−1 and T is a standard immaculate tableau of shape α. This
is a bijective proof of the recursion

K[k,α],1n+k =

(
n + k− 1

k− 1

)
Kα,1n .

Now the hook length formula follows by an induction argument on the length
of the composition α. Assume that we know equation (3.1) holds for compositions
α of length `, then the hooks of the cells in the first row of [k, α] are (respectively)
n + k, k− 1, k− 2, . . . , 2, 1:

K[k,α],1n+k =

(
n + k− 1

k− 1

)
Kα,1n =

(
n + k− 1

k− 1

)
n!∏

c∈α hα(c)

=
(n + k− 1)(n + k− 2) · · · (n + 1)

(k− 1)!

n!∏
c∈α hα(c)

=
(n + k)(n + k− 1)(n + k− 2) · · · (n + 1)

(n + k)(k− 1)!

n!∏
c∈α hα(c)

=
(n + k)!∏

c∈[k,α] hα(c)
.

This shows that (3.1) holds for compositions of length ` + 1. The base case for ` = 0
holds trivially. Therefore the hook length formula (3.1) holds for all compositions.

Example 3.14 The hook length formula (3.1) says that since the hooks of [4, 2, 3]
are given by the entries in the diagram

9 3 2 1
5 1
3 2 1

,

The number of standard immaculate tableaux of shape [4, 2, 3] is equal to

9!

9 · 3 · 2 · 1 · 5 · 1 · 3 · 2 · 1
= 224.
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Proposition 3.15 Recall that Kα,β denote the number of immaculate tableaux of shape
α and content β. Then

(i) Kα,α = 1,
(ii) Kα,β = 0 unless α ≥` β,

where≥` represents the lexicographic order on compositions.

Proof The first fact follows from definition: there is only one tableau with shape and
content α; it consists of αi many i’s in row i. For the second statement, we argue by
contradiction. Suppose there is such a tableau and let i be the first integer such that
αi < βi (so that α j = β j for j < i). As above, one must place β j many j’s in row j,
for j < i, filling all positions in the rows above row i. Then one must place βi many
i’s into row i, which contains only αi spaces, a contradiction.

3.3.2 Expansion of the Homogeneous Basis

Proposition 3.16 The complete homogeneous basis Hα has a positive, uni-triangular
expansion in the immaculate functions indexed by compositions. Specifically,

Hβ =
∑
α≥`β

Kα,βSα.

Proof Follows from repeated application of the Pieri rule (Theorem 3.5). To see
this, start with Hβ1 = Sβ1 , which is clearly a sum over immaculate tableaux of shape
and content β1. Each time one multiplies by Hi , by the Pieri rule one adds to the
immaculate tableaux in the index of summation, a set of entries labelled i that satisfy
the conditions of the definition of an immaculate tableau. The reason that we need
only sum over α ≥` β is explained in Proposition 3.15.

Example 3.17 Continuing from Example 3.10, we see that

H3123 = · · · + 5S423 + · · · .

Corollary 3.18 The {Sα : α � n} form a basis of NSymn.

Proof These elements span NSymn by Proposition 3.16 and we have the correct
number of elements, so they form a basis.

Remark 3.19 We will now use the term “immaculate basis” to mean those immac-
ulate functions that are indexed by compositions.

3.3.3 Expansion of the Ribbon Basis

Next we will expand the ribbon functions in the immaculate basis. To do this, we first
need the notions of standardization and descent.

Definition 3.20 We say that a standard immaculate tableau T has a descent in po-
sition i if (i + 1) is in a row strictly lower than i in T. The symbol D(T) will represent
the set of descents in T and α(D(T)) will represent the corresponding composition.

https://doi.org/10.4153/CJM-2013-013-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-013-0


New Bases for the Non-commutative Symmetric Functions 541

Example 3.21 The standard immaculate tableau S of Example 3.12 has descents in
positions {2, 5, 11}. The descent composition of S is then [2, 3, 6, 7].

Remark 3.22 The content of an immaculate tableau T must be a refinement of the
descent composition α(D(std(T))). This follows from the definition of standardiza-
tion; the only places descents can happen in std(T) are the final occurrence of a given
content in T.

We let Lα,β denote the number of standard immaculate tableaux of shape α and
descent composition β.

Lemma 3.23
Kα,γ =

∑
β≥γ

Lα,β .

Proof Standardization provides a bijection between the set of immaculate tableaux
of shape α and content γ and the set of standard immaculate tableaux of shape α and
descent composition β ≥ γ. The result follows from this bijection.

Example 3.24 The five immaculate tableaux having shape [4, 2, 3] and content
[3, 1, 2, 3]

1 1 1 3
2 3
4 4 4

1 1 1 3
2 4
3 4 4

1 1 1 4
2 3
3 4 4

1 1 1 4
2 4
3 3 4

1 1 1 2
3 3
4 4 4

are bijected, under standardization, with the five standard immaculate tableaux of
shape [4, 2, 3] and descent composition β ≥ [3, 1, 2, 3] below:

1 2 3 6
4 5
7 8 9

1 2 3 6
4 9
5 7 8

1 2 3 9
4 6
5 7 8

1 2 3 9
4 8
5 6 7

1 2 3 4
5 6
7 8 9

[3, 3, 3] [3, 1, 2, 3] [3, 1, 2, 3] [3, 1, 5] [4, 2, 3].

Theorem 3.25 The ribbon function Rβ has a positive expansion in the immaculate
basis. Specifically,

Rβ =
∑
α≥`β

Lα,βSα.

Proof By Proposition 3.16, we know that Hγ =
∑

α Kα,γSα, and we can substitute
Lemma 3.23 and obtain

Hγ =
∑
α

Kα,γSα =
∑
α

∑
β≥γ

Lα,βSα =
∑
β≥γ

(∑
α

Lα,βSα

)
,

which is the defining relation for the ribbon basis (see equation (2.2)). We know that
Lα,β ≤ Kα,β , hence we need only sum over α ≥` β.
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Example 3.26 There are eight standard immaculate tableaux with descent compo-
sition [2, 2, 2], giving the expansion of R222 into the immaculate basis:

1 2
3 4
5 6

1 2
3 4 6
5

1 2 4
3
5 6

1 2 4
3 6
5

1 2 6
3 4
5

R222 = S222 + S231 + S312 + 2S321

1 2 4
3 5 6

1 2 4 6
3
5

1 2 4 6
3 5

+ S33 + S411 + S42

3.4 Jacobi–Trudi Rule for NSym

Another compelling reason to study the immaculate functions is that they have an
expansion in the Hα basis that makes them a clear analogue of the Jacobi–Trudi rule
of Definition 2.1.

Theorem 3.27 For α ∈ Zm,

(3.2) Sα =
∑
σ∈Sm

(−1)σHα1+σ1−1,α2+σ2−2,...,αm+σm−m,

where we have used the convention that H0 = 1 and H−m = 0 for m > 0.

Remark 3.28 This sum is a non-commutative analogue of the determinant of the
following matrix: 

Hα1 Hα1+1 · · · Hα1+`−1

Hα2−1 Hα2 · · · Hα2+`−2
...

...
. . .

...
Hα`−`+1 Hα`−`+2 · · · Hα`

 .
The non-commutative analogue of the determinant corresponds to expanding the
determinant of this matrix about the first row and multiplying those elements on the
left.

Remark 3.29 One might ask why one would naturally expand about the first row
rather than, say, the first column or the last row. What we considered to be the
natural analogue of expanding about the first column however is not a basis, since,
for instance, the matrix corresponding to α = [1, 2] would be 0 under this analogue.

Before we begin with the proof we introduce some notation that will prove use-
ful in our development of this identity. Let z be a single variable and define the
operator B(z) =

∑
r∈Z zrBr. We will show that the coefficient of zα1

1 zα2
2 · · · zαm

m in
B(z1)B(z2) · · ·B(zm)(1) is the right-hand side of (3.2).
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Using the notation developed in Section 2.5,

B(z) =
∑
m∈Z

zmBm =
∑
m∈Z

zm
∑
i≥0

(−1)iHm+iF
⊥
1i

=
∑
d≥0

∑
i≥0

zd−i(−1)iHdF⊥1i

=

(∑
d≥0

zdHd

)(∑
i≥0

(−1/z)iF⊥1i

)
= Ω̃zE

⊥
−1/z.

Hence, for every indeterminate zr and every alphabet Y of commuting indetermi-
nates that commute with zr but are distinct from zr, we have

B(zr)Ω̃Y = Ω̃zrE
⊥
−1/zr

Ω̃Y = Ω̃zr Ω̃Y
∏

y∈Y
(1− y/zr) = Ω̃zr ,Y

∏
y∈Y

(1− y/zr).(3.3)

Repeated application of (3.3) yields that for any alphabet Y of commuting inde-
terminates that commute with z1, z2, . . . , zr but are distinct from each of them, we
have

B(z1)B(z2) · · ·B(zm) Ω̃Y = Ω̃z1,z2,...,zm,Y

m∏
r=1

( ∏
y∈{zr+1,...zm}∪Y

(1− y/zr)
)
.(3.4)

Proof of Theorem 3.27 Taking Y = ∅ in (3.4), we obtain the identity

B(z1)B(z2) · · ·B(zm) 1 = Ω̃z1,z2,...,zm

∏
1≤i< j≤m

(1− z j/zi).(3.5)

Using the Vandermonde determinant identity,

∏
1≤i< j≤m

(zi − z j) =
∑
σ∈Sm

(−1)σzm−σ1
1 zm−σ2

2 · · · zm−σm
m ,

we can rewrite (3.5) as

B(z1)B(z2) · · ·B(zm) 1 = Ω̃z1,z2,...,zm

∏
1≤i< j≤m

(1− z j/zi)

= Ω̃z1,z2,...,zm z1−m
1 z2−m

2 · · · zm−m
m

∏
1≤i< j≤m

(zi − z j)

= Ω̃z1,z2,...,zm

∑
σ∈Sm

(−1)σz1−σ1
1 z2−σ2

2 · · · zm−σm
m .
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So the coefficient of zα1
1 zα2

2 · · · zαm
m in B(z1) · · ·B(zm)(1) is equal to

Sα = Bα1 Bα2 · · ·Bαm 1 = B(z1)B(z2) · · ·B(zm) 1
∣∣∣

z
α1
1 z

α2
2 ···z

αm
m

= Ω̃z1,z2,...,zm

∑
σ∈Sm

(−1)σz1−σ1
1 z2−σ2

2 · · · zm−σm
m

∣∣∣
z
α1
1 z

α2
2 ···z

αm
m

=
∑
σ∈Sm

(−1)σΩ̃z1,z2,...,zm

∣∣∣
z
α1+σ1−1
1 z

α2+σ2−2
2 ···zαm+σm−m

m

=
∑
σ∈Sm

(−1)σHα1+σ1−1,α2+σ2−2,··· ,αm+σm−m.

Of course, the original reason for considering this definition is the property that
they are a lift of the symmetric functions corresponding to the Jacobi–Trudi matrix.

Corollary 3.30 For any composition α, we have χ(Sα) = sα.

Proof This follows from Definition 2.1 of the Jacobi–Trudi rule and the fact that
χ(Hi) = hi .

3.5 A Pieri Rule for the Elementary Basis

Theorem 3.27 shows that in particular for the case of α = [1n] that S1n is the usual
analogue of the elementary generators of Sym. The elementary generators of NSym
are the elements Ei that satisfy that E0 = 1, and for n ≥ 1,

En :=
n∑

i=1

(−1)i−1HiEn−i .

The antipode map is both an algebra antimorphism and a coalgebra morphism, so
that S(Hn) = (−1)nEn.

Corollary 3.31 For n ≥ 0,

S1n =
∑
α|=n

(−1)n−`(α)Hα

and as a consequence, F⊥1r (S1n ) = S1n−r and for s > 1, F⊥s (S1n ) = 0.

Proof The expansion of S1n in terms of the complete homogeneous basis is a direct
consequence of Theorem 3.27. For n > 1, expand S1n in the leftmost occurrence of
H and group the rest of the terms together as

S1n =

n∑
i=1

∑
β|=n−i

(−1)n−`(β)−1HiHβ =

n∑
i=1

(−1)i−1HiS1n−i .
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This implies that S1n = En = (−1)nS(Hn) is the usual analogue of the elementary
generators of NSym. Because the antipode is a coalgebra morphism,

∆(S1n ) = (−1)n∆
(

S(Hn)
)

= (−1)n
n∑

i=0

S(Hn−i)⊗ S(Hi) =

n∑
i=0

S1n−i ⊗S1i .

By Lemma 2.5 we know that F⊥1r (S1n ) = M⊥1r (S1n ) = S1n−r . Also by Lemma 2.5, for
s > 1,

F⊥s (S1n ) =
∑
α|=s

M⊥α (S1n ) =
∑
α|=s

(−1)s−`(α)S1n−s = 0.

This allows us to give a right Pieri rule for S1r .

Proposition 3.32 For α a composition and s ≥ 0,

SαS1s =
∑

β|=|α|+s
αi≤βi≤αi +1

Sβ ,

where we use the convention that αi = 0 for i > `(α).

Proof By combining results in Lemma 2.4 and Corollary 3.31, we know that

F⊥1i (FS1s )− F⊥1i−1 (FS1s−1 ) =

i∑
j=0

F⊥1 j (F)F⊥1i− j (S1s )−
i−1∑
j=0

F⊥1 j (F)F⊥1i− j−1 (S1s−1 )

= F⊥1i (F)S1s .

Hence, we calculate directly that

Bm(F)S1s =
∑
i≥0

(−1)iHm+iF
⊥
1i (F)S1s

=
∑
i≥0

(−1)iHm+iF
⊥
1i (FS1s )−

∑
i≥0

(−1)iHm+iF
⊥
1i−1 (FS1s−1 )

=
∑
i≥0

(−1)iHm+iF
⊥
1i (FS1s )−

∑
i≥0

(−1)i+1Hm+i+1F⊥1i (FS1s−1 )

= Bm(FS1s ) + Bm+1(FS1s−1 ).

From this identity a proof of the right-Pieri rule follows by a straightforward induc-
tion on the length of the composition α, which we leave to the reader.

3.6 Pieri Rules for Skew Operators

The following development contains expressions that include integer tuples (as op-
posed to compositions). To ensure that the sets of integer tuples that we consider
are finite, we note that it is not necessary to consider more than a finite set once the
degree of the element is fixed.
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Lemma 3.33 For α ∈ Zm, if αi < i −m for some 1 ≤ i ≤ m, then Sα = 0. Also, if∑m
i=1 αi < 0, then Sα = 0.

Proof By Theorem 3.27,

Sα =
∑
σ∈Sm

(−1)σHα1+σ1−1,α2+σ2−2,...,αm+σm−m.

Thus, if αi < i − m for some i, then αi + σi − i < 0 for all σ ∈ Sm, and hence
Hαi +σi−i = 0. Note that Sα is an element of homogeneous degree

∑m
i=1 αi , so that if∑m

i=1 αi < 0, then Sα = 0.

From the expressions that we have thus far developed, we are able to describe the
action of F⊥1r and F⊥r on the immaculate basis.

Proposition 3.34 For r ≥ 0, and for α ∈ Zm,

(3.6) F⊥1r Sα =
∑
β∈Zm

αi−βi∈{0,1}
|β|=|α|−r

Sβ .

If r > `(α), then F⊥1r Sα = 0.

Proof Using the identities developed in Section 2.5, we calculate

E⊥z B(z1)B(z2) · · ·B(zm) 1 = E⊥z Ω̃z1,z2,...,zm

∏
1≤i< j≤m

(1− z j/zi)

= Ω̃z1,z2,...,zm

∏
1≤i< j≤m

(1− z j/zi)
m∏

i=1
(1 + zzi)

= B(z1)B(z2) · · ·B(zm) 1
m∏

i=1
(1 + zzi)

= B(z1)B(z2) · · ·B(zm) 1
∑

S⊆{1,2,...,m}

z|S|
∏
i∈S

zi .

Now by taking the coefficient of zrzα1
1 zα2

2 · · · zαm
m in both sides of the equation, on the

left we have F⊥1r Sα, and on the right we have∑
S⊆{1,2,...,m}
|S|=r

Sα1−δ1∈S,α2−δ2∈S,...,αm−δm∈S

(where δtrue = 1 and δfalse = 0), which is equivalent to the right-hand side of equa-
tion (3.6).

Proposition 3.35 For r ≥ 0 and for α ∈ Zm,

F⊥r Sα =
∑
β∈Zm

i−m≤βi≤αi
|β|=|α|−r

Sβ .
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Proof Again, using identities from Section 2.5,

H⊥z B(z1)B(z2) · · ·B(zm) 1 = H⊥z Ω̃z1,z2,...,zm

∏
1≤i< j≤m

(1− z j/zi)

= B(z1)B(z2) · · ·B(zm) 1
m∏

i=1
1/(1− zzi)

=
∑
r≥0

zr
∑
γ∈Nm

|γ|=r

zγ1
1 zγ2

2 · · · zγm
m B(z1)B(z2) · · ·B(zm) 1.

If we take the coefficient of zrzα1
1 zα2

2 · · · zαm
m and let βi = αi − γi , then we have that

F⊥r Sα =
∑
β∈Zm

βi≤αi
|β|=|α|−r

Sβ .

By Lemma 3.33 we may restrict our attention to the β ∈ Zm such that βi ≥ i−m.

3.7 The Dual Immaculate Basis

Every basis Xα of NSymn gives rise to a basis Yβ of QSymn defined by duality; Yβ is
the unique basis satisfying 〈Xα,Yβ〉 = δα,β . The dual basis to the immaculate basis
of NSym, denoted S∗α, have positive expansions in the monomial and fundamental
bases of QSym. Furthermore, Corollary 3.30 allows us to give an expansion of the
usual Schur functions of Sym (Theorem 3.38) in terms of these elements. All of these
results are dual statements to the statements earlier in this section and follow since
for a quasi-symmetric function G ∈ QSym,

G =
∑
β

〈Hβ ,G〉Mβ =
∑
β

〈Rβ ,G〉Fβ .

Proposition 3.36 The dual immaculate functions S∗α are monomial positive. Specif-
ically, they expand as

S∗α =
∑
β≤`α

Kα,βMβ .

Proof This statement will follow from Proposition 3.16 and duality. Specifically, the
coefficient of Mβ in S∗α is equal to

〈Hβ ,S∗α〉 =
〈∑

γ

Kγ,βSγ ,S∗α

〉
= Kα,β .

Proposition 3.37 The dual immaculate functions S∗α are fundamental positive.
Specifically, they expand as

S∗α =
∑
β≤`α

Lα,βFβ .
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Proof From Theorem 3.25, we have 〈Rβ ,S∗α〉 = Lαβ . By Lemma 3.23, Lαβ = 0
unless α ≥` β.

Duality will also yield an explicit expansion of the Schur functions into the dual
immaculate basis.

Theorem 3.38 The Schur function sλ with `(λ) = k expands into the dual immacu-
late basis as follows:

sλ =
∑
σ∈Sk

(−1)σS∗λσ1 +1−σ1,λσ2 +2−σ2,··· ,λσk
+k−σk

,

where the sum is over permutations σ such that λσi + i−σi > 0 for all i ∈ {1, 2, . . . , k}.

Proof Suppose sλ =
∑

α cαS∗α. Then

cβ =
〈

Sβ ,
∑
α

cαS∗α

〉
= 〈Sβ , sλ〉 =

〈
χ(Sβ), sλ

〉
=
〈

sβ , sλ
〉

= xβ,λ,

where xβ,λ is (−1)σ or 0 according to the conditions in Proposition 2.2.

Example 3.39 Let λ = [2, 2, 2, 1]. Then sλ ∈ Sym ⊆ QSym can be expanded in
the basis {S∗α}α:

s2221 = S∗2221 −S∗1321 −S∗2131 + S∗1141,

since only the permutations σ ∈ {1234, 2134, 1324, 2314} contribute to the sum in
the expansion of s2221. There are potentially 24 terms in this sum, but for the partition
[2, 2, 2, 1] it is easy to reason that σ4 = 4 and σ1 < 3.

These combinatorics arise in the paper of Egge, Loehr, and Warrington [8] when
they describe how to obtain a Schur expansion given a quasi-symmetric fundamental
expansion. In their language, these are called “special rim hook tableau”.

� �
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�
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�

�

�

�

�

�

�

�

Recall that by Proposition 2.2 we know that precisely one term in the right-hand
side of the expansion of Theorem 3.38 is equal to a partition, and we have the fol-
lowing procedure for going from the expansion of a symmetric function F in the S∗α
basis to the Schur expansion.

Corollary 3.40 If F is symmetric, and the S∗-expansion of F is
∑

cαS∗α, then the
Schur expansion of F is F =

∑
λ`n cλsλ, where the second sum is taken over all parti-

tions λ.
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Example 3.41 By Proposition 3.16, we have that the expansion of

h22 = S∗22 −S∗13 + S∗31 + S∗4 .

To recover the Schur expansion of h22 in terms of Schur functions we can throw away
all terms not indexed by partitions, and then h22 = s22 + s31 + s4.

3.7.1 Dual Immaculate Pieri Conjecture

Similarly to the left Pieri rule of the immaculate basis, we conjecture that the dual
immaculate basis has a multiplicity-free signed Pieri rule. Explicitly

FiS∗α =
∑
β

(−1)sign(α,β)S∗β ,

for some collection of β and some statistic sign.

Example 3.42 We let α = [2, 1, 2] and i = 2. Then

F2S∗212 = −S∗1312 −S∗142 + S∗2212 + S∗3112 + S∗322 + S∗412.

3.8 The Product of Immaculate Functions

In general, the product of two immaculate functions does not expand positively in
the immaculate basis. However, for certain products we have a positive expansion.

Conjecture 3.43 ([3]) If λ is a partition, then the coefficients cβα,λ appearing in

SαSλ =
∑
β

cβα,λSβ ,

are non-negative integers.

Example 3.44 We give an example of Theorem 3.43 withα = [1, 2] and λ = [3, 1]:

S12S31 = S1231 + S1321 + S133 + S1411 + S142 + S151 + S2221 + S223

+ S2311 + 2S232 + 2S241 + S25 + S3211 + S322 + 2S331 + S34 + S421 + S43.

Example 3.45 We need not look very far to find mixed negative signs in a product
of two immaculate functions when the right one is not indexed by a partition. For
instance,

S1S13 = S113 −S221 −S32.

But products of two immaculate functions indexed by two compositions can poten-
tially be much more complicated. For instance,

S11S1313 = S111313 −S122113 + S122221 + S122232 −S13213 −S212113 + S212221

+ S21232 −S221113 + S221221 + S22132 + S222121 −S22213 + S222211

+ S22222 + S22231 −S23113 + S23221 −S31213 −S32113 + S32221 −S3313.
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The image of the immaculate function indexed by [1, 3, 2, 1, 3] under the forgetful
map is χ(S13213) = s22222. We do not have a rule to predict its coefficient of −1 in
the above expansion. This example should indicate how surprising Theorem 3.43 is,
given that there are 11 positive terms and 9 negative terms in an example of a product
SαSβ when the immaculate function Sβ is not indexed by a partition.

3.9 The Immaculate Poset, Paths and Skew Immaculate Tableaux

We create a labelled poset on the set of all compositions, which we call the immaculate
poset P. We place an arrow from α to β if β ⊂1 α (equivalently, SβH1 expands in
the immaculate basis as SβH1 = Sα + · · · ). Such a cover implies that α and β differ
by a single box. We give a label of m to this cover, where m is the row containing said
box, and denote this by α

m−→β.

∅

1

12

13
2

2

1

4 3 2

1

3 2 1 3 2 1 2 1

Figure 1: The first few levels of P

Maximal chains on this poset from α to ∅ are equivalent to immaculate standard
tableaux and maximal chains on an interval from α to β are what we will call skew
immaculate tableaux of shape α/β. We can visualize a path

{α = β(0)
m1

−→ β(1)
m2

−→ · · ·
mk

−→ β(k) = β}
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as a labelled composition diagram of outer shape α by labeling a cell in row mi with
a k− i + 1. The cells representing β will not have a label and the labels must increase
from left to right in a row.

Example 3.46 Consider the example of a skew immaculate tableau of shape
[2, 2, 2]/[1, 2] given by the diagram below. We show the labelled composition on
the left and the corresponding representation as a path to the right.

2

1 3
←→ {[2, 2, 2]

3−→ [2, 2, 1]
1−→ [1, 2, 1]

3−→ [1, 2]}.

A path P = {α = β(0)
m1

−→ β(1)
m2

−→ · · ·
mk

−→ β(k) = β} in P will be called
a horizontal k-strip if m1 ≤ m2 ≤ · · · ≤ mk. The Pieri rule for the immaculate
functions from Theorem 3.5 says that there is a horizontal k-strip from α to β if and
only if Sα appears in the expansion of SβHk.

The descent composition of a word `1, `2, . . . , `n is the composition

[i1, i2 − i1, . . . , i j − i j−1, n− i j],

where i1 < i2 < · · · < i j are the descents of the word; that is, the elements in
{1, . . . , n − 1} such that `ia > `ia+1. For example, the descent composition of the
word 3, 2, 1, 1, 4, 1 is [1, 1, 3, 1]. For a path

P = {β0

m1

−→ β1

m2

−→ · · ·
mn

−→ βn},

the descent composition α(D(P)) associated with P is the reverse of the descent com-
position of the word m1,m2, . . . ,mn. When P is a standard tableau of shape [∅, α],
this notion of descent set is equivalent to the definition of descent from Defini-
tion 3.20. Equivalently, the descent composition describes how P can be decomposed
into horizontal k-strips of maximal lengths.

3.10 Skew Dual Immaculate Quasi-symmetric Functions

Following notions in [6], since there is a positive right Pieri rule on the immaculate
basis of NSym, there is a natural way of constructing skew dual immaculate elements
of QSym. For an interval {γ : β ⊆ γ ⊆ α} ⊆ P, we then define the skew dual
immaculate function as

S∗α/β =
∑
γ

〈SβHγ ,S∗α〉Mγ .

By Theorem 3.5 and the notion of standardization from Definition 3.11, the coeffi-
cient 〈SαHγ ,S∗α〉 is equal to the number of skew standard immaculate tableaux of
shape α/β with descent composition coarser than γ.
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Right multiplication by Hr on an element Sβ is a Pieri operator [6] on the poset
of compositions defined in the previous section. By [6, Theorem 2.3] we have an
expansion of these elements into other bases by the use of the dual pairing between
NSym and QSym.

Proposition 3.47 For {γ : β ⊆ γ ⊆ α} an interval of P,

S∗α/β =
∑
γ

〈SβRγ ,S∗α〉Fγ =
∑
γ

〈SβSγ ,S∗α〉S∗γ .

The coefficients cαβ,γ = 〈SβSγ ,S∗α〉 are those that appear in the expansion

SβSγ =
∑
α

cαβ,γSα.

Theorem 3.43 states that certain of these coefficients will be positive, but they are not
positive in general.

The expansion of these elements in the fundamental and monomial bases are pos-
itive. An argument similar to that given for Theorem 3.25 and Proposition 3.37 shows
that the skew immaculate tableaux can be used to give a combinatorial expansion of
these elements in the fundamental basis.

Proposition 3.48 Let {γ : β ⊆ γ ⊆ α} be an interval of P, then

S∗α/β =
∑

P

Fα(D(P))

where the sum is over all paths P in P from α to β (alternatively, skew standard immac-
ulate tableaux of shape α/β).

Proof Let Kα/β,γ = 〈SβHγ ,S∗α〉, which we have already noted is equal to the num-
ber of skew immaculate tableaux of shape α/β whose descent composition is coarser
than γ. Let Lα/β,τ to be the number of skew immaculate tableaux of shape α/β
whose descent composition is equal to τ . Clearly we have Kα/β,γ =

∑
τ≥γ Lα/β,τ ,

and by Möbius inversion this is equivalent to
∑

γ≥τ (−1)`(τ )−`(γ)Kα/β,γ = Lα/β,τ .

〈Rτ ,S∗α/β〉 = 〈SβRτ ,S∗α〉 =
∑
γ≥τ

(−1)`(τ )−`(γ)〈SβHγ ,S∗α〉

=
∑
γ≥τ

(−1)`(τ )−`(γ)Kα/β,γ = Lα/β,τ .

Example 3.49 There are 6 paths from [1, 3, 2] to [1, 1]. We give their representation
as a tableau diagram in the table below. Below each of the diagrams we also give the
descent composition of the path:
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1 2
3 4

1 3
2 4

1 4
2 3

[4] [2, 2] [3, 1]

2 3
1 4

2 4
1 3

3 4
1 2

[1, 3] [1, 2, 1] [2, 2].

The fundamental expansion of this element is positive and is the sum of 6 terms
corresponding to these tableaux, but the expansion in the dual immaculate basis is
not positive in this case:

S∗132/11 = F121 + F13 + 2F22 + F31 + F4 = −S∗13 + S∗22 + S∗31 + S∗4 .

4 Hall–Littlewood Basis for NSym

As an application and demonstration of the power of the immaculate basis, we use
this section to build lifts of Hall–Littlewood functions inside NSym. We begin by
reminding the reader of a definition of Hall–Littlewood symmetric functions inside
Sym defined by creation (or vertex) operators.

4.1 Hall–Littlewood Symmetric Functions

The Hall–Littlewood symmetric functions Pλ, first studied by Hall, are symmetric
functions with a parameter q (i.e., elements of Sym[q] := Q(q)[h1, h2, . . . ]). They
generically (q not specialized) form a basis for Sym[q]. When q = 0, they specialize
to monomial symmetric functions, and at q = 1 they specialize to Schur functions.
We are interested in the corresponding dual basis elements Q ′µ, which have the prop-
erty that 〈Pλ,Q ′µ〉 = δλ,µ. The elements Q ′µ have the expansion in the Schur basis

Q ′µ =
∑
λ

Kλµ(q)sλ

where Kλµ(q) are the q-Kostka polynomials. At q = 0 the Q ′λ specialize to Schur
functions sλ, and at q = 1 they specialize to homogeneous complete functions hλ.

We define an operator B̃m : Sym[q]n → Sym[q]n+m by

B̃m :=
∑
i≥0

qiBm+ih
⊥
i .

Theorem 4.1 (Jing [18], cf. also [25, pp. 237–238]) If m ≥ λ1, then B̃mQ ′λ = Q ′(m,λ).

Definition 4.2 One may define, for any integer tupleα ∈ Zm, a symmetric function

Q ′α := B̃α1 · · · B̃αm (1).
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Remark 4.3 The B̃m operators generalize the Bm operators of Bernstein [37] and
are due to Jing [18] who studied them as a “vertex operator” definition of the algebra
of Hall–Littlewood polynomials Qλ. Garsia [9] used a modified version as creation
operators for the symmetric functions Q ′λ. Specializations of these operators can be
used to create P and Q-Schur functions (see for instance [17,19,25]). The commuta-
tion relations of these operators make it natural to consider the symmetric functions
for all compositions or integer tuples, but only the Q ′λ for λ a partition are known
to be positive when expanded in the Schur basis. Generalizations were considered
for Macdonald symmetric functions [20, 22] as well as a technique for proving the
polynomiality of the Macdonald–Kostka coefficients. Shimozono and Zabrocki [32]
considered compositions of these operators that were indexed by tuples of integers.
These functions were recently studied further in [15] where it was shown that

(4.1)
∑
α|=n

(−q)n−`(α)Q ′α = en[X].

In that case, Hall–Littlewood functions indexed by compositions were used to un-
derstand the action of the operator ∇ introduced in [4] on a spanning set of the
symmetric functions.

4.2 A New Hall–Littlewood Basis for NSym

We start by building operators B̃m : NSym[q]→ NSym[q], defined for m ∈ Z by

(4.2) B̃m( f ) =
∑
i≥0

qi Bm+iF
⊥
i ( f ).

We may now define our new basis of NSym; they are the result of applying suc-
cessive B̃m operators.

Definition 4.4 If α = [α1, α2, . . . , αm] ∈ Zm, then we define

Q ′α = B̃α1 B̃α2 · · · B̃αm (1).

Example 4.5 We will calculate Q ′4,2 and expand this in the S-basis. First note that

Q ′2 = B̃2(1) = B2(1) = S2. Next we apply B̃4:

Q ′42 = B̃4S2 = B4S2 + qB5F⊥1 (S2) + q2B6F⊥2 (S2) = S42 + qS51 + q2S6.

It is worth presenting a further example that seems to give a convincing reason
why the immaculate basis and the basis Q ′α merit further study. By definition, we
have the property that χ(Q ′α) = Q ′α. We know that for a partition λ, the Q ′λ form a
basis of Sym and are Schur positive. It seems (see Conjecture 4.16) that the elements
Q ′λ are immaculate positive. What is surprising is that there are more terms in the
expansion of Q ′λ ∈ NSym than in the expansion of Q ′λ ∈ Sym, and so through
surjection under χ, many of the positive terms of Q ′λ cancel.
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Example 4.6 The basis element Q ′1111 ∈ NSym has the following expansion in the
immaculate basis:

Q ′1111 = S1111 + qS112 + (q + q2)S121 + q3S13 + (q + q2 + q3)S211

+ (q2 + q3 + q4)S22 + (q3 + q4 + q5)S31 + q6S4.

The image of χ on this element is the Hall–Littlewood symmetric function:

Q ′1111 = s1111 + (q + q2 + q3)s211 + (q2 + q4)s22 + (q3 + q4 + q5)s31 + q6s4.

For any partition λ, χ(Sλ) = sλ. For the other immaculate basis elements of NSym,
χ(S112) = χ(S121) = 0 and χ(S13) = −s22.

4.3 A Right-Pieri Type Rule on the Non-commutative Hall–Littlewood Basis

We start this section by developing a Pieri rule for the Q ′-basis of NSym[q].
In the same way that we derived Lemma 3.4 from Lemma 2.6, we can also derive

the following result.

Lemma 4.7 For f ∈ NSym and s,m ≥ 0,

B̃m( f Hs) =

s∑
k=0

qkB̃m+k( f )Hs−k −
s−1∑
k=0

qkB̃m+k+1( f )Hs−k−1.

Proof We explicitly calculate the left-hand side and apply Lemma 2.6 (where F j = 0
for j < 0)

B̃m( f Hs) =
∑
i≥0

qi Bm+iF
⊥
i ( f Hs) =

∑
i≥0

qi Bm+i

( s∑
k=0

F⊥i−k( f )Hs−k

)

=

s∑
k=0

∑
i≥0

qi Bm+i

(
(F⊥i−k( f ))Hs−k

)
.

Now by Lemma 3.4 this last expression is equal to

=

s∑
k=0

∑
i≥0

qi
(

Bm+iF
⊥
i−k( f )Hs−k − Bm+i+1F⊥i−k( f )Hs−k−1

)
.

If we let j = i − k and shift the indices of the sum, we have

=

s∑
k=0

qk
∑
j≥0

q j
(

Bm+k+ jF
⊥
j ( f )Hs−k − Bm+k+1+ jF

⊥
j ( f )Hs−k−1

)

=

s∑
k=0

qkB̃m+k( f )Hs−k −
s−1∑
k=0

qkB̃m+k+1( f )Hs−k−1.

The second sum in the last equation terminates at k = s−1, since for k = s, Hs−k−1 =
H−1 = 0.
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For two compositions α, β, with αi ≤ βi for all i, we let n(α, β) denote the num-
ber of rows of α that are strictly shorter than the same row of β (i.e., n(α, β) =
|{i : αi < βi}|).

Theorem 4.8 The Q ′α have a right-Pieri type rule given by

Q ′αHs =
∑
α⊂sβ

(1− q)n(α,β)Q ′β .

Proof We will prove this using a double induction. First we use induction on s. The
case s = 0 is trivially true as H0 = 1. We now assume it is true for all j < s and prove
it for s. For a given s we make a second inductive hypothesis on the length of the
composition α. Again, for compositions of length 0 it is trivially true, so we assume
it to hold for length ` ≤ `(α) and prove it for `(α) + 1. We apply Lemma 4.7 to yield

Q ′[m,α]Hs = [B̃m(Q ′α)]Hs

= B̃m(Q ′αHs)−
s∑

k=1

qkB̃m+k(Q ′α)Hs−k +
s−1∑
k=0

qkB̃m+k+1(Q ′α)Hs−k−1.

(4.3)

When we apply the inductive hypotheses, (4.3) becomes:

(4.4) =
∑
α⊂sβ

(1− q)n(α,β)Q ′[m,β] −
s∑

k=1

∑
[m+k,α]⊂s−kγ

qk(1− q)n([m+k,α],γ)Q ′γ

+
s−1∑
k=0

∑
[m+k+1,α]⊂s−k−1δ

qk(1− q)n([m+k+1,α],δ)Q ′δ.

We need to show that the coefficient of a term Q ′η is (1− q)n([m,α],η). If η = [m, ζ],
then the only coefficient in (4.4) will come from the first sum; forcing β = ζ yields
(1− q)n(α,ζ) = (1− q)n([m,α],η).

If η = [m + a, ζ] with s ≥ a ≥ 1, then the contribution to Q ′η will come from
the second and third summands in (4.4). The coefficient coming from the second
summand is

−
a∑

k=1

qk(1− q)n([m+k,α],η)

= −
a−1∑
k=1

qk(1− q)1+n(α,ζ) − qa(1− q)n(α,ζ)

= −(1− q)n(α,ζ)

(( a−1∑
k=1

qk(1− q)

)
+ qa

)
= −q(1− q)n(α,ζ).
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The coefficient coming from the third summand is

a−1∑
k=0

qk(1− q)n([m+k+1,α],η)

=

a−2∑
k=0

qk(1− q)1+n(α,ζ) − qa−1(1− q)n(α,ζ)

= (1− q)n(α,ζ)

(( a−2∑
k=0

qk(1− q)

)
+ qa−1

)
= (1− q)n(α,ζ).

Combining these coefficients gives (1− q)n(α,ζ)+1 = (1− q)n([m,α],η).

Example 4.9 Similar to Example 3.8, we compute

Q ′23H3 = Q ′233 + (1− q)Q ′242 + (1− q)Q ′251 + (1− q)Q ′26 + (1− q)Q ′332

+ (1− q)2Q ′341 + (1− q)2Q ′35 + (1− q)Q ′431 + (1− q)2Q ′44 + (1− q)Q ′53.

As an immediate corollary, repeated application of our Pieri rule gives an ex-
plicit formula for the expansion of the H basis. For an immaculate tableau T, we

let n(T) =
∑`(sh(T))

j=0 d j(T) − 1, where d j(T) is the number of distinct entries in row
j. Equivalently, n(T) counts the number of times that a distinct letter l exists in a row
that does not start with l.

Theorem 4.10 For a composition β,

Hβ =
∑

T

(1− q)n(T)Q ′shape(T),

the sum over all immaculate tableaux of content β.

Proof This follows from repeated application of Theorem 4.8.

Example 4.11 The five immaculate tableaux with shape [4, 2, 3] and content
[3, 1, 2, 3] from Example 3.10 have n(T) = 2, 3, 3, 3, 1 respectively:

1 1 1 3
2 3
4 4 4

1 1 1 3
2 4
3 4 4

1 1 1 4
2 3
3 4 4

1 1 1 4
2 4
3 3 4

1 1 1 2
3 3
4 4 4

.

Therefore,

H3123 = · · · +
(

(1− q) + (1− q)2 + 3(1− q)3
)
Q ′423 + · · · .
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Theorem 4.12 For generic q, the Q ′α form a basis of NSym[q]. When α is a partition,
χ(Q ′α) = Q ′α. Moreover, the Q ′α interpolate between the complete homogeneous basis
(at specialization q = 1) and the immaculate basis (at specialization q = 0).

Proof It is easy to see that the Q ′α expand into the immaculate basis upper unitri-
angularly with respect to lexicographic ordering. The second statement follows from
Theorem 4.1 and the fact that χ ◦ B̃m = B̃m ◦ χ, which follows from the fact that
χ ◦Bm = Bm ◦χ, which is easy to check on the immaculate basis. The only immacu-
late tableau T that has n(T) = 0 and content β is the tableau with βi many i’s in row
i. Substituting q = 1 in Theorem 4.10 then proves that Q ′β is Hβ . Finally, substituting
q = 0 into the definition of B̃m shows that B̃m = Bm in this case.

Equation (4.2) defines B̃m in terms of the Bn operators. We can also give a similar
expression for the Bn operators in terms of B̃m.

Proposition 4.13 For m ∈ Z,

Bm =
∑
i≥0

(−q)i B̃m+iF
⊥
1i .

Proof Our calculations below will use the identity that
∑n

i=0(−1)iFn−iF1i = 0 for
n > 0 (see for instance Stanley [33], where Fn−i = hn−i and F1i = ei). We begin with
the left-hand side of the expression and then group terms together with i + j = n∑

i≥0

(−q)i B̃m+iF
⊥
1i =

∑
i, j≥0

(−q)iq j Bm+i+ jF
⊥
j F⊥1i

=
∑
n≥0

n∑
i=0

(−1)iqnBm+nF⊥n−iF
⊥
1i = Bm.

This formula potentially gives us a recursive means of computing an element of the
immaculate basis in terms of the Q ′-basis. Although it is not obvious how this should
be done for all compositions, for certain compositions there are remarkably simple
expressions. In particular, the analogue of equation (4.1) also holds for our lifted
Hall–Littlewood functions, and they are proved here using roughly the analogous
proof to that provided in [15].

Proposition 4.14 For n ≥ 1, S1n =
∑

α|=n(−q)n−`(α)Q ′α. More generally, for 1 ≤
k ≤ n,

Sk,1n−k =
∑
α|=n
α1≥k

(−q)n−k+1−`(α)Q ′α.

Proof For the first statement we proceed by induction on n. The base case is that
Sn = Hn = Q ′n, which has already been established. Then

S1n = B1S1n−1 =
∑
i≥0

(−q)i B̃1+iF
⊥
1i S1n−1 =

∑
i≥0

(−q)i B̃1+iS1n−i−1 ,
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since F⊥1i S1n−1 = S1n−1−i by Corollary 3.31. Next we apply the inductive hypothesis:∑
i≥0

(−q)i B̃1+iS1n−i−1 =
∑
i≥0

∑
β|=n−i−1

(−q)i(−q)n−i−1−`(β)B̃1+iQ
′
β

=
∑
α|=n

(−q)n−`(α)Q ′α.

The second expression follows by applying Bk to the expression just derived and
again applying Corollary 3.31:

Sk,1n−k = BkS1n−k

=
∑
i≥0

(−q)i B̃k+iF
⊥
1i S1n−k =

∑
i≥0

(−q)i B̃k+iS1n−k−i

=
∑
i≥0

∑
β|=n−k−i

(−q)i(−q)n−k−i−`(β)B̃k+iQ
′
β =

∑
α|=n
α1≥k

(−q)n−k+1−`(α)Q ′α.

We let {Pα} denote the basis of QSym that is dual to the {Q ′α} basis of NSym.
Then by duality, the Pα are monomial positive in the variable (1− q).

Theorem 4.15 For a composition α,

Pα =
∑

T

(1− q)n(T)Mcontent(T),

the sum being over all immaculate tableaux of shape α. Moreover, Pα interpolates be-
tween the monomial basis of QSym (at q = 1) and the dual immaculate basis (at
q = 0).

It is a fundamental combinatorial result of Lascoux and Schützenberger [24] that
the function Q ′λ expands positively in the Schur basis,

Q ′λ =
∑

T

qcharge(T)sshape(T),

the sum being over all standard Young tableaux of content λ. We end our paper
with a similar conjectured expansion of our new lifted Hall-Littlewood basis into the
immaculate basis.

Conjecture 4.16 If λ is a partition, then Q ′λ expands in the immaculate basis Sβ

with coefficients that are positive polynomials in q. More explicitly,

Q ′λ =
∑

T

qst(T)Sshape(T),

for some statistic st, over all immaculate tableaux of content λ.
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Example 4.17 For λ = [3, 3, 1], the expansion of Q ′λ corresponds to the number
of immaculate tableaux of content λ.

1 1 1
2 2 2
3

1 1 1
2 2 2 3

1 1 1 2
2 2
3

1 1 1 2
2 2 3

1 1 1 3
2 2 2

Q ′331 = S331 +qS34 +qS421 +(q2 + q)S43

1 1 1 2 2
2
3

1 1 1 2 2
2 3

1 1 1 2 3
2 2

+q2S511 +(q3 + q2)S52

1 1 1 2 2 2
3

1 1 1 2 2 3
2

1 1 1 2 2 2 3

+(q4 + q3)S61 +q5S7

Remark 4.18 The conjecture has been checked for partitions of size n ≤ 11. The
statement is not true for compositions. The first such example is α = [1, 1, 3]:

Q ′113 = S113 + qS122 + q2S131 + q2S14 + q2S212 + (q3 + q2 − q)S221

+ (q4 + q3)S23 + q2S311 + (q5 + q4 + q3 − q2)S32 + (q6 + q5)S41 + q7S5.

This example should be compared to the image χ(Q ′113) = Q ′113 that may be calcu-
lated either by applying the forgetful map to the right-hand side or from Definition
4.2:

Q ′113 = (q3 − q)s221 + q4s311 + (q5 + q4 − q2)s32 + (q6 + q5)s41 + q7s5.

Remark 4.19 The immaculate and the dual immaculate bases are now available in
the latest version of Sage. The first, third, and fifth authors, with the help of Flo-
rent Hivert and Nicolas Thiéry, have put the non-commutative and quasi-symmetric
functions into Sage.

A Appendix: Matrices for n = 4

In this appendix we show some examples of the transition matrices. M(A,B) denotes
the transition matrix between bases A and B. The rows and columns are indexed
by compositions of 4 in lexicographic order (i.e., [1, 1, 1, 1] is the top row and the
leftmost column). In the matrix M(s,S∗), the rows are indexed by partitions of 4,
again in lexicographic order.
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M(H,S) =



1 1 2 1 3 3 3 1
0 1 1 1 1 2 2 1
0 0 1 1 1 2 2 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 2 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1



M(S,H) =



1 −1 −1 1 −1 1 1 −1
0 1 −1 0 0 0 0 0
0 0 1 −1 −1 0 1 0
0 0 0 1 0 −1 0 0
0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1



M(R,S) =



1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 1 1 0 0
0 0 0 1 0 1 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



M(S,R) =



1 0 0 0 0 0 0 0
0 1 −1 0 0 1 −1 0
0 0 1 0 −1 −1 1 0
0 0 0 1 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



M(Q ′,S) =



1 q q2 + q q3 q3 + q2 + q q4 + q3 + q2 q5 + q4 + q3 q6

0 1 q q2 q2 q3 + q2 q4 + q3 q5

0 0 1 q q q2 + q q3 + q2 q4

0 0 0 1 0 q q2 q3

0 0 0 0 1 q q2 + q q3

0 0 0 0 0 1 q q2

0 0 0 0 0 0 1 q
0 0 0 0 0 0 0 1
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M(S,Q ′) =



1 −q −q q2 −q q2 q2 −q3

0 1 −q 0 0 0 0 0
0 0 1 −q −q q2 − q q2 0
0 0 0 1 0 −q 0 0
0 0 0 0 1 −q −q q2

0 0 0 0 0 1 −q 0
0 0 0 0 0 0 1 −q
0 0 0 0 0 0 0 1



M(Q ′,R) =



1 q q2 q3 q3 q4 q5 q6

0 1 q− 1 q2 q2 − q q3 − q + 1 q4 − q2 + q− 1 q5

0 0 1 q q− 1 q2 − 1 q3 − q + 1 q4

0 0 0 1 0 q− 1 q2 − q q3

0 0 0 0 1 q q2 q3

0 0 0 0 0 1 q− 1 q2

0 0 0 0 0 0 1 q
0 0 0 0 0 0 0 1



M(R,Q ′) =



1 −q −q q2 −q q2 q2 −q3

0 1 −q + 1 −q −q + 1 q2 − 2q q2 − q q2

0 0 1 −q −q + 1 q2 − 2q + 1 q2 − 2q q2

0 0 0 1 0 −q + 1 −q + 1 −q
0 0 0 0 1 −q −q q2

0 0 0 0 0 1 −q + 1 −q
0 0 0 0 0 0 1 −q
0 0 0 0 0 0 0 1



M(s,S∗) =


1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
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M
(Q
′ ,

H
)

=

           1
q
−

1
q2
−

1
q3
−

q2
−

q
+

1
q3
−

1
q4
−

q3
−

q
+

1
q5
−

q3
−

q2
+

1
q6
−

q5
−

q4
+

q2
+

q
−

1
0

1
q
−

1
q2
−

q
q2
−

q
q3
−

q2
q4
−

2q
2

+
q

q5
−

q4
−

q3
+

q2

0
0

1
q
−

1
q
−

1
q2
−

q
q3
−

2q
+

1
q4
−

q3
−

q2
+

q
0

0
0

1
0

q
−

1
q2
−

q
q3
−

q2

0
0

0
0

1
q
−

1
q2
−

1
q3
−

q2
−

q
+

1
0

0
0

0
0

1
q
−

1
q2
−

q
0

0
0

0
0

0
1

q
−

1
0

0
0

0
0

0
0

1

           

M
(H
,Q
′ )

=

           1
−

q
+

1
−

2q
+

2
q2
−

2q
+

1
−

3q
+

3
3q

2
−

6q
+

3
3q

2
−

6q
+

3
−

q3
+

3q
2
−

3q
+

1
0

1
−

q
+

1
−

q
+

1
−

q
+

1
q2
−

3q
+

2
q2
−

3q
+

2
q2
−

2q
+

1
0

0
1

−
q

+
1

−
q

+
1

q2
−

3q
+

2
q2
−

3q
+

2
q2
−

2q
+

1
0

0
0

1
0

−
q

+
1

−
q

+
1

−
q

+
1

0
0

0
0

1
−

q
+

1
−

2q
+

2
q2
−

2q
+

1
0

0
0

0
0

1
−

q
+

1
−

q
+

1
0

0
0

0
0

0
1

−
q

+
1

0
0

0
0

0
0

0
1
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