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SMALL COMPACT ACTIONS ON CHAINABLE 
CONTINUA 

JUAN A. TOLEDO 

1. Introduction. In 1931, Newman [9] showed that a connected manifold 
cannot accept arbitrarily small period-^ homeomorphisms, for any n > 1. 
In this paper we are concerned with the existence of chainable continua 
with arbitrarily small homeomorphisms. 

For a long time the only known periodic homeomorphisms of chainable 
continua had periods 1, 2 or 4 [4]. Recently, Wayne Lewis [8] showed that 
the pseudo-arc admits periodic homeomorphisms of every order, as well as 
p-adic cantor group actions. We will see that such homeomorphisms can 
be made arbitrarily small. 

In Section 4, a different chainable indecomposable continuum accepting 
arbitrarily small period-2 homeomorphisms is constructed. 
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2. Preliminaries. A continuum is a compact connected metric space. A 
chain D covering a continuum Jfis a collection of open sets {dj}"=], called 
links, such that dt D d^ ¥= 0 if and only if |/' — j \ ^ 1 and such that 

X c u dr 
i = \ l 

A chain D c-covers X if and only if every link of D contains a point of X 
not in the closure of any other link of D. An c-chain D is a chain such 
that 

diam(J/) < e for all / = 1, . . . , n. 

A continuum is chainable if and only if for every e > 0, it can be covered 
by an 6-chain. The pseudo-arc (for a definition see [2] ) is a chainable 
continuum. We will use n to denote the set {1, 2, 3, . . . , n). A function 

j\n —> m is a chain function if and only if \i — j \ = 1 implies 

1/(0 - f(j)\ ^ 1-
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The set H(X) of all homeomorphisms of a continuum X is a topological 
group when provided with the compact-open topology. Since X is 
compact, this topology coincides with the "sup" topology defined for any 
given metric for X (see [5], p. 168). A topological subgroup G of H(X) is 
called an action on X. The set 

Oc(x) = {g(x) \g e G) 

is called the orbit of x e X under G and the set of orbits 

XIG = {0G(x) \x G X) 

endowed with the quotient topology is called the orbit space of X under G. 
We say that G is small if and only if diam(06(x) ) is small for every 
x e X. Let N€(x) denote the set 

{y E X\p(x,y) < € } , 

where p is the metric for X. 

3. Compact actions on the pseudo-arc. In this section we will prove that 

any compact action on the pseudo-arc can be made arbitrarily small. 

Throughout this section G will denote an action on a continuum X. Let 

7T:X —> XIG be the natural projection. If U c X is an open set then 

<JT~l7r(U) = U g(U) 

is open. Therefore, IT is an open map. 

THEOREM 3.1. If G is compact then XIG is metric. 

Proof. If G is compact then G is equicontinuous ( [7], p. 233). Let us give 
X an equivalent metric which makes G a group of isometries ( [1], p. 604). 
We want to show that {Oc(x) \x G X) is an upper semicontinuous 
decomposition. To this effect, let x0 e X and let U c X be an open set 
such that OG(x0) c U. Since G is compact, 0G(xQ) is closed. Let 

€ = dist(0c(jco), X - l/). 

Then 

Ne/2(x0) n(X- U) = 6 

and also 

[g(tft/2(*o) ) = Nf/2ig(x0) ) ] n (X - {/) = 0 for any g G G. 

Therefore, the open set 

K = U g(JVt/2(x0)) 

satisfies 
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OG(x0) c K c [/. 

Furthermore, 

Thus {0G(x)\x G X} is an upper semicontinuous decomposition. Then 
XIG is Hausdorff and being the continuous image (under 77) of a compact 
metric space, it is metric. 

THEOREM 3.2. [10] If there is an open map from the pseudo-arc onto a 
metric space X then X is also a pseudo-arc. 

As a consequence of the last two theorems we have: 

COROLLARY 3.3. If G is a compact action on the pseudo-arc P then PIG is 
also a pseudo-arc. 

Now we quote the following useful result. 

THEOREM 3.4. ( [3], p. 179). Let 

D = {dtyi=x and E = { ^ i 

be chains c-covering the pseudo-arcs Q and P, respectively. Let h:n —» in be 
an onto chain function. Then there exists a homeomorphism (f>:Q —» P such 
that <M4) c eh{l). 

We are now ready to prove the main result of this section. 

THEOREM 3.5. Any compact action on the pseudo-arc can be made 
arbitrarily small. More precisely, let P be the pseudo-arc, let G be a compact 
action on P, and let e > 0. Then there exists a homeomorphism <j>:P —* P 
such that (pG(j> lies in the ^-neighborhood of the identity. 

Proof. Let P and Q be fixed embeddings of the pseudo-arc in the plane. 
Let G be a compact action on Q. By Corollary 3.3, QIG is a pseudo-arc. 
Let € > 0 and let 

E = kKt, 
be an €-chain c-covering P. Let F = {fj}"=\ be any chain c-covering QIG 
with n > m. Set 

D = {d,} = {«-'imu 
where TT.Q —» QIG is the natural projection, to obtain a chain c-covering Q 
with the property that if x G Q then Oc(x) c dl for some /. 

Let h\n —» m be any onto chain function. By Theorem 3.4, there exists a 
homeomorphism 4>:Q —> P such that <K ,̂) c £/,(/)• For each g G G, 
define a homeomorphism g' on P by gr = <f>g^_1. Let 

G( = {g'\g e G}. 
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Then Ge = §G<$>~ . Since it is defined through conjugation, Ge is a group 

of homeomorphisms topologically and algebraically equivalent to G. 

Now, if i G ? then x e et for some /', and thus <f>~ (x) G dp with 

h(j) = i. Thus 

0G(4>-\x)) c dj. 

This, together with 

g'(x) = «Kg* - 1 **) ) , 

gives us 

0 C e (x) = (g ' (x) \g' e G J 

= { « g * _ , ( x ) ) | g e G} 

= <KOG(4>-\x))) c e r 

Since E is an e-chain, 

diam 0G(x) < diam e, < €. 

Notice that if 0 = P, then ^ is a homeomorphism of P onto itself and 
<f>Gcj)~l = G€ is €-close to the identity. This concludes the proof. 

Lewis [8] proved that for an n > 1 there exists a period-^ 
homeomorphism on the pseudo-arc. Since a periodic homeomorphism 
generates a finite and therefore compact group, we have the following. 

C O R O L L A R Y 3.6. There exist arbitrarily small periodic homeomorphisms 
of every finite order on the pseudo-arc. 

Question 3.7. Is this property characteristic of the pseudo-arc among 
indecomposable tree-like continua? 

4. A different example. In this section we will construct an example of a 
chainable cont inuum different from the pseudo-arc admitt ing arbitrarily 
small period-2 homeomorphisms. 

Let / = [— 1, 1]. Recall that a metric cont inuum is chainable if and only 
if it is the inverse limit of arcs. 

Let X be the inverse limit of the inverse sequence 

of continua with onto bonding maps. For i > y , \ti fl-\Xi —> X- be defined 
by 

Jj = Jj+\ ' ' ' Ji-\Jf 

Let Tif.X —> Xt denote the /-th projection, / = 0, 1, . . . . 
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We state without proof the following: 

LEMMA 4.1. For each i ~ 0, there exists a positive number at such that 

diam mi (x) < ai for every x E X^ 

These numbers have the property that al —> 0 when i —> oo. 

Now we prove the following lemma that will be used in the proof of 
Theorem 4.13. 

LEMMA 4.2. Let n be a positive integer. Let {bj}^Z0 be a strictly increas
ing sequence of non-negative integers. Let 

ho:Xb0 - * xb0 

be the identity map and for each i > 0, let 

^li:Xbi ~^ Xb, 

be a period-n homeomorphism such that 

Then the sequence {/Î/J^Q induces a period-n homeomorphism h:X —> X 
with the property that 

diam(0^(x) ) < ah for all x e X. 

Proof For x = (xh x2, . . . ) e X define h(x) to be the point y = 
(J>J, y2, • . . ) ^ X such that j ^ = hj(xh). Because of the commutativity of 
the /z/s with the bonding maps, h is well defined. Since each hf is a period-^ 
homeomorphism, so is h. Since h0 is the identity, 

hk(x) = {A%hk
0(xb() ), fh

2%hk
0(xh()) ) , . . . , 4(XhJ, . . . , h\(xh), . . . ) 

= (x,, x2, . . . , . x v . . . , h\{xh), . . . ), 

for all x e X and A: = 1, . . . , n. Therefore 

hk(x) G ^o\xh) 

ÎOY k = 1, . . . , « SO 

Oh(X) c ^ ' ( V 
By Lemma 4.1, 

diam O^Z) < « v 

Definition 4.3. A map / : / —> / is piecewise linear if and only if 
there exists a partition { — 1 = ax < a2 < . . . < an = 1} of / such 
that the restriction fl, n , is linear for all / = 1, . . . , n — 1. We denote 
the restriction f\\aa i by f \ There is always a partition P having a 
minimal number of elements such that f is linear on each subinterval 
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determined by P. We call this partition the partition of/and we denote it 
by Pj, 

Remark. A piecewise linear map / is completely determined by its 
partition Pj and the set { (ah f(at) ) \at e Pj). It is easy to prove that the 
composition of piecewise linear maps is piecewise linear. 

Definition 4.4. A map / : / —> / is p-onto if and only if it is piecewise 
linear and there exists an /, 1 ^ i < n, such t h a t / is onto; i.e., such that 
f(a,) = ( -1 )* and f(a1 + ]) = ( - 1 )* + 1 for some integer k. We call 
[ah ai + ]] a p-onto interval for / . 

LEMMA 4.5. The composition of p-onto maps is p-onto. 

Proof Let / a n d g be /?-onto maps with partitions Pr and P and /?-onto 
intervals \a-, Û- + 1 ] and [bh bk+]], respectively. As remarked above, fg is a 
piecewise linear map with partition Pr of fg. Let 

c\ = S\k\aj) a n d c2 = g\k\aj+\) 

and assume that cx < c2. Then 

fg(c\) = f(<*j) and /g(c2) = / t y - + 1 ) . 

It is easy to see that c1? c2 are consecutive elements of i^, so /g|^. ^ is 
linear and onto and therefore fg is /?-onto. 

For any / e (— 1, 1), let §t.I —> / be the piecewise linear map defined 
by 

^ = {-ht, 1 } , ^ ( - 1 ) = 1,*,(0 = f and<f>,(l) = - 1 . 

It is easy to check that (j>0(x) = — x and we denote this map by <f>. 
For all / e (—1, 1) it is easy to see that $t is a period-2 

homeomorphism. 

Definition 4.6. Let s,t e ( — 1, 1). A map / : / —> / is s — t symmetric if and 
only if f<f>s = <f>tf. An s — ̂ -symmetric map is called s-symmetric and a 
O-symmetric map is called symmetric. 

We prove now our key tool, stated in a greater generality than 
needed. 

THEOREM 4.7. Let f be a p-onto map and t, s two numbers in ( —1, 1). 
Then, given ax < a2, two numbers both in [— 1, s) or both in (s, 1], /}] = ± 1 
and fi2 = — )Sj, //iere exists a p-onto map g with p-onto interval [a^ a2] such 
that 

g(«l) = #1, g(«2> = &> 

aA?J swc/z that f g is an s — t-symmetric p-onto map. 
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Proof. Let 

Pf={-\=a]<a2<...<a„=\} 

be the partition o f / a n d [ah ak + l], 1 ^ k < n, a/?-onto interval f o r / Let 
us assume that 

( i) f\k(ak)= -\,f\k(ak + l)= 1. 

(ii) a,, a2
 G (— U •*) a n d 

(iii) 0, = - 1 . 

The proof for the other cases is similar (see Figure 4.1). 

-1 t 1 - 1 t 1 

Figure 4.1 

Let us define 

g : [ - l , * ] - > [ - l , 1] 

piecewise linearly by letting 

p- = { -1 < b < a{ < a2 < s} 

where b e ( — 1, a}), and by 

g ( - l ) = - 1 , K * ) = a2,g(ax) = - l , g ( a 2 ) = 1 

and 

m =f\k\t). 

Now we want to define 

g:[s, l ] - > [ - l , 1]. 

If we want fg to be s —/-symmetric we must have 
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<t>Jg(x) = fg$s(x) for every x e [5, 1], 

or, remembering that <J>, is of period 2, we want 

/#(*) = <t>tfg<t>Ax)-

Now, the fact that 

f\k:[ak,ak + i]->[-\,l] 

is a homeomorphism allows us to define 

g:[s, l]->[aA., aA + 1] 

by 

g(x) = /|A~VsW*)-
Now, simply set 

x e [ - 1 , J ] = fmu-
l SU) if. g U ) l g U ) i f * G [5, 1]. 

Since 

«W =f\k\fè(s) = f\k\ff\k\t) 
= A _ 1 */(0 = A _ 1 ( 0 = #(*), 

g is a well-defined p-onto map with [al9 a2] as/?-onto interval. Therefore, 
by Lemma 4.5 / g is also p-onto. 

Let us verify that fg is s —/-symmetric. Observe first that from the 
definition of g we get 

<t>J\g(x) = /#M*X 

so if x e [s, 1] then <i>s(x) e [ —1, s] and therefore 

/g* ,U) = / I (<M*) ) = *tf\k&x) 

= <>tf\kS(x) = 4>Jg(x). 

Also, if x e [— 1, 5] then <|>y(.x) e [s, 1] and thus 

M - 0 0 = MtsM ) = fflk^tf&Aix) 

= (ff\k%fg(x) = 4>Jg(x). 

Therefore/g is s —/-symmetric and this concludes the proof. 

We state now the particular case of the theorem that we need. 

COROLLARY 4.8. Let f be a p-onto map. Then there exists ap-onto map g 
such that f g is symmetric. 

Definition 4.9. Let / , , . . . , fn be p-onto maps and let P{fx, /2 , . . . , 
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fn-b fn) denote the p-onto map guaranteed by Corollary 4.8 for 

J\J2 • • • Jn-\hr 
T h e n / j / 2 . . • fnP(f\->hi • • • > /„) is symmetric. The statement / = P(<f>) 

means only that / is symmetric. 

We can start now the construction of the example. Let a:I --» / 
be the /?-onto map with partition Pa = { — 1, 0, 1} and such that 
a(-\) = a(\) = 1 and a(0) = - 1 . Then a(x) = a(-x), for all x e 1. 

Let {an}™=0 be the sequence defined by 

n{n + 1 ) v • 

We have the trivial 

LEMMA 4.10. For all n ^ 0, 

at1 + (« + 1) = û„ + 1. 

For <z// « = 1, 

*„ ~ n = an-V 

Definition 4.11. An integer / = 0 is in standard form if and only if 
/ = ÛW + A: with 0 ^ k < n + 1, w ^ 0. 

Let {A",-, ^ + 1}°^0 be the inverse sequence where 

Xl = /, / ^ 0 

and where ./̂ A -̂ —* A^.j is defined inductively as follows. Write / in 
standard form, say, / = an + k. Then define 

f2 = any symmetric /?-onto map 

f - f - ia lik = °\ ^ i 

Notice t h a t / is a/?-onto map for every /' ^ 1. 
Our example X is now defined by 

X=\im{X„fl+]}Zo-

THEOREM 4.12. X is a chainable indecomposable continuum distinct from 
the pseudo-arc. 

Proof. Since Xl = / for all i = 0, X is chainable. Since a is a two-to-one 
map occurring cofinally as a bonding map, the Ingram-Cook [6] criterion 
shows that X is indecomposable. Since each /• is /?-onto, given an arc 
J c Xh there exists an arc J' c Af/+| that maps homeomorphically onto J 
under f + \. Therefore X contains an arc and thus it cannot be 
homeomorphic to the pseudo-arc. 
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Before proceeding to the next theorem let us consider the intuitive idea 
behind the construction (see Figure 4.2). 

We can think of the factor spaces Xt as if they were colored (different 
colors represented by different patterns in the picture). Each time we 
introduce a factor space of a new color we insert the map a as the bonding 
map to the previous space. 

Then we introduce a factor space for each color that we already have 
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(including the very last one) in the same order in which they were 
originally introduced. 

Each time a factor space of an old color is introduced we place as the 
bonding map to the previous space, a map that makes the composition of 
all the bonding maps up to the previous space of the same color, to 
commute with the flip <J>. 

Then introduce a new color, repeat all the old colors, introduce another 
new color and so on. 

In this way we end up with a sequence such that each subsequence 
formed by factor spaces of the same color has the property that its 
bonding maps (compositions of original bonding maps) commute with 
flips (see Figure 4.2). 

This allows us to define a period-2 homeomorphism on X for each color 
that we have. Since the bonding map out of the first element of each 
single-colored subsequence is a, a "v" map, the size of the period-2 
homeomorphism defined on such a subsequence is controlled by the "size" 
of the previous space (see Figure 4.2(b) ). 

Since each color starts deeper in the sequence, the size of the period-2 
homeomorphisms goes to zero. 

Now we have the main result of this section. 

THEOREM 4.13. The continuum X admits arbitrarily small period-2 
homeomorphisms. 

Proof. Let e > 0. We want to construct a period-2 homeomorphism 
he:X —> X with the property that 

diam(0/7 (x) ) < e for all x e X. 

To that effect, choose n = 1 so large that aa _x < c (Lemma 4.1). Let 
{A }/*io b e t n e sequence defined by 

b0 = a„ ~ 1 

bi = <*n + i-2 + "' * > °-

Recall that for i ^ 1, 

is defined by 

Jh', i = A i + i •' * Jbi-\Jbi-

By Lemma 4.10, bx = an_x + n = atv so 

fhbx = « • 

If / > 1, then n < (n + / — 2) + 1 and therefore bl = <z,î + /_2 + n is in 
standard form so we have, by the definition of fh, that 
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Jhl ~Jan,l2 + n — ^(A,--(n + /-2) + l> • • • ' A , - l ) 

= P(fbt , + l> ' • • ' //>,--l)-

This last equality follows from the definition of bi and Lemma 4.10 as 
follows: 

bt:-(« + / - 2) + 1 = K + 7 - 2 + « ) - ( « + / - 2 ) + 1 

= (*w+/-2 " (« + 1 - 2 ) ) + /I + 1 

= tf,? + ( / - l ) - 2 + W + 1 

= * i - l + 1-

Then, from definition 4.9, fh + 1 . . . fh_xfh is symmetric so / / ; is 
symmetric, for /' > 1. 

Define ht:Xhj^ ^ by 

/z() = id 

/?, = </>, / > 0. 

Then 

Kfly) = /t>(x) = «(*) 
= a ( - x ) = a<>(x) = fh

b\h\(x) 

and since / ^ is symmetric for /' > 1 we have 

Observe that since /z/ = <J>, /z, is a period-2 homeomorphism for / > 1. 
Then, the sequence {/*/}°̂ o satisfies the conditions of Lemma 4.2 so it 

induces a period-2 homeomorphism he:X -» A' with the property that 

diam(0/7 (x) ) < ah for all x G X. 

But A0 = A/7 — 1 so, by our choice of n, ab < e. Then 

diam(0 /7(x) ) < € for all x e X. 

Since € was arbitrary, this concludes the proof. 

Question AAA. Does there exist a chainable continuum, other than the 
pseudo-arc, admitting arbitrarily small period-/? homeomorphisms for 
some n > 2? 

Remark 4.15. The technique used in the proof of Theorem 4.7 allows 
variations. Observe then that the use of different variations of this 
technique may lead to different examples with the desired property. 
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