THE APPLICATION OF ICELS SYSTEMS FOR RADIOCARBON DATING

Konrad Tudyka¹,² • Anna Pazdur¹ • Páll Theodórsson³ • Adam Michczyński¹ • Jacek Pawlyta¹

ABSTRACT. Liquid scintillation counting (LSC) for radiocarbon dating is a less expensive method than accelerator mass spectrometry (AMS), provides a high degree of accuracy, and is less prone to contamination due to the larger sample sizes. However, to obtain high precision, a long counting time is needed. The Gliwice Radiocarbon Laboratory is seeking to obtain an increased counting capacity with 2–3 mL benzene samples than we presently can achieve with our 2 Quantulus systems. We are therefore investigating the possibility of using a simple, single-phototube LS system (ICELS) for dating samples younger than 5000 yr. We present the first results of this investigation, including the measurement of 3 VIRI and 3 FIRI inter-comparison samples.

INTRODUCTION

Quantulus 1220™ is a sophisticated liquid scintillation counting (LSC) system designed in the 1980s for the measurement of a variety of low-radioactivity radiocarbon samples. The ICELS system was designed a few years ago specifically for ¹⁴C dating with an emphasis on simplicity. It has been thoroughly tested using elevated ¹⁴C-activity samples, and its high stability has been verified (Theodórsson 2005). Here, results of measurements using the Quantulus 1220 and the ICELS systems are compared in order to test the ICELS as an alternative counting system that could be used by an established ¹⁴C dating laboratory to increase its dating capacity.

EXPERIMENTAL

Liquid Scintillation Systems

Both the Quantulus 1220 and the ICELS (Figure 1) liquid scintillation (LS) systems used in the present study have been described thoroughly in previous publications (e.g. Kojola et al. 1984; Theodórsson 2005). Thus, only a brief description is needed here, with an emphasis on the systems’ differences. The detector unit of Quantulus 1220 has, as most other LS systems do, two 180-degree exposed 50-mm-diameter photomultiplier tubes (PMT), facing the counting vial, for detecting the weak scintillation pulses caused by the decay of ¹⁴C nuclides. To eliminate the background cathode thermionic pulses of the phototubes, only events giving simultaneous pulses in the PMTs are registered. This core unit is housed inside a long annular LS anticosmic counter that significantly reduces the cosmic radiation background component. To further enhance background reduction, the Quantulus 1220 has an external lead shield (10–20 cm) weighing 1000 kg.

The Quantulus 1220 has a fixed factory setting for high voltage and amplification (semi-logarithmic). In high-precision LS dating (±20 ¹⁴C yr or better), the systems are generally operated in balance-counting mode, i.e. the high voltage is set at the value where the count rate reaches a maximum (Figures 2–3) for the ¹⁴C reference sample with rising voltage (Theodórsson et al. 2003). This setting minimizes the influence of fluctuating parameters that can affect the ¹⁴C spectrum (high voltage, amplification, and temperature), and it reduces the correction due to sample light quenching.

Modern PMTs (such as the R6094 Hamamatsu Photonics) have a greatly reduced thermionic background, and particularly when the lowest-energy nuclides (e.g. tritium) are not being measured, the 2-PMT coincidence arrangement is not needed for background reduction. For this reason, ICELS

¹Dept. of Radioisotopes, Institute of Physics, Silesian University of Technology, Krzywoustego 2, 44-100 Gliwice, Poland.
²Corresponding author. Email: konrad.tudyka@polsl.pl.
³Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland.
has a single 28.5-mm-diameter PMT (Figure 1), which eliminates the coincidence electronics, simplifies the system, and makes it more compact (Figure 1). The benzene samples are in 7-mL glass vials sitting on the top of the PMT. The vials are wrapped, except for the bottom, with polytetrafluoroethylene (PTFE) tape. A drop of glycerol is added between the PMT and the vial for high-photon transmission (Theodórrson and Gudjónsson 2009).

Using ICELS, the quench correction is reduced to a theoretical minimum by adjusting the high voltage of each sample to its balance point (Pearson 1983; Theodórrson et al. 2003). The 14C pulse-height spectrum is then adjusted to the same position as that of the reference sample (spectrum restoration balance mode).
Comparison of 14C LSC Measurements

Table 1 gives typical values of basic parameters used in 14C dating (Pazdur et al. 2000). The factor of merit (FOM; Theodórsson 1991) in this work is calculated as:

$$FOM = \frac{S_0}{\sqrt{B}}$$

where S_0 is the modern biosphere standard and B is the background counting rate. Figure 4 shows the FOM of ICELS at 655 V (HVbal) as a function of the lower discriminator (LD) and the upper discriminator (HD) in the 14C counting window. The 14C window spans from channel 40 to 214 in the 512-channel MCA correction mode. The position of the 14C window, in the case of ICELS, responds to almost the maximum FOM. However, this FOM is only relevant when very old samples are dated. In our laboratory, ICELS will only be used for relatively young samples (<5000 yr). Samples older than ~5000 yr are measured in the Quantulus due to its much lower background.

Table 1. Comparison of 2-mL geometry LSC systems in the Gliwice Radiocarbon Laboratory.

<table>
<thead>
<tr>
<th></th>
<th>ICELS 1</th>
<th>ICELS 2</th>
<th>Quantulus 1</th>
<th>Quantulus 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>2 mL</td>
<td>3 mL</td>
<td>2 mL</td>
<td>3 mL</td>
</tr>
<tr>
<td>S_0 (cpm)</td>
<td>14.661 ± 0.068</td>
<td>21.790 ± 0.067</td>
<td>14.304 ± 0.016</td>
<td>21.377 ± 0.029</td>
</tr>
<tr>
<td>B (cpm)</td>
<td>4.052 ± 0.032</td>
<td>4.471 ± 0.042</td>
<td>3.980 ± 0.025</td>
<td>0.4519 ± 0.0047</td>
</tr>
<tr>
<td>FOM (cpm$^{1/2}$)</td>
<td>8.57</td>
<td>11.7</td>
<td>7.17</td>
<td>34.8</td>
</tr>
<tr>
<td>T_{max} a (BP)</td>
<td>35,300</td>
<td>39,100</td>
<td>35,100</td>
<td>47,200</td>
</tr>
<tr>
<td>Efficiency</td>
<td>62%</td>
<td>62%</td>
<td>60%</td>
<td>60%</td>
</tr>
</tbody>
</table>

a Value is calculated for 1000-min counting time.
To compare our LSC systems and check their reliability, we used samples from the Fifth International Radiocarbon Intercomparison (VIRI). Consensus values were taken from Scott et al. (2007). Three of 4 VIRI samples (B, C, and D) were converted to 2-mL benzene samples. δ13C values were measured as CO2 before benzene preparation. We also used 3 samples from the Fourth International Radiocarbon Intercomparison (FIRI) program (Pazdur et al. 2003; Scott 2003). Figure 5 shows the plotted results, and Figure 6 presents a scaled deviation plot of the obtained results. The scaled deviation is calculated as:

\[
\text{scaled deviation} = \frac{T_G - T_C}{\sqrt{\sigma_G^2 + \sigma_C^2}}
\]

where \(T_G\) and \(T_C\) correspond to the Gliwice Radiocarbon Laboratory dating result and consensus value, respectively, and \(\sigma_G\) and \(\sigma_C\) are uncertainties of the values. The larger uncertainty in ICELS systems is caused by the shorter counting time. The Quantulus 1 and 2 VIRI C values are significantly different than consensus values. This is caused by an unknown gross error.

ICELS Counting Stability and Reproducibility

The stability of ICELS systems was presented previously (Theodórsson 2005) but not directly for 14C dating. Some tests of 14C dating stability and reproducibility were performed in our laboratory using ICELS 2. Table 2 and Figure 5 (with data points labeled as “1st value” and “2nd value”) show the dating results obtained from sample measurements that were repeated. The results are in a very good agreement, and statistically they are the same. Moreover, there was a lapse of time between measurements of approximately 1 month and a different standard of activity was used.

<table>
<thead>
<tr>
<th>Sample</th>
<th>1st value</th>
<th>2nd value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard (S_0) (cpm)</td>
<td>14.25 ± 0.12</td>
<td>14.319 ± 0.063</td>
</tr>
<tr>
<td>VIRI B (BP)</td>
<td>2740 ± 115</td>
<td>2790 ± 120</td>
</tr>
<tr>
<td>VIRI D (BP)</td>
<td>2810 ± 75</td>
<td>2905 ± 60</td>
</tr>
<tr>
<td>VIRI C (pMC)</td>
<td>110.74 ± 1.2</td>
<td>111.54 ± 0.64</td>
</tr>
</tbody>
</table>
CONCLUSIONS

The measurement results of VIRI and FIRI samples for the Quantulus 1220 and the ICELS LSC systems are in acceptable agreement with consensus values. The deviation from the consensus value for VIRI C is higher than expected in both our LSC systems. Values obtained from ICELS 2 and ICELS 1 are satisfying, although higher precision can be reached. In this initial testing of ICELS, the factor limiting the precision was counting statistics. We expect that our ICELS results can be greatly improved in further work.

Figure 5 Comparison of consensus values with measurement results

Figure 6 Scaled deviation of LSC systems for 3 VIRI samples

https://doi.org/10.1017/S0033822200056393 Published online by Cambridge University Press
REFERENCES

Pearson GW. 1983. The development of high precision 14C measurement and its application to archaeological time-scale problems [PhD thesis]. The Queen’s University of Belfast.

