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Abstract

We determine the dimension of the space of Hodge cycles for the generic fibers of the Kuga fiber varieties
associated to certain quaternion algebras.
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1. Introduction

One of the well-known conjectures in algebraic geometry is the Hodge conjecture
which states that every Hodge cycle on a complex projective variety is an algebraic
cycle. In this paper, we consider Hodge cycles on generic fibers of certain Kuga fiber
varieties.

Let V be a vector space of dimension 2« over Q, and let L be a lattice in V. Let
/} be a nondegenerate alternating bilinear form on V such that /6(L, L) C 2. Let
Sp( V, fi) be the symplectic group of the pair (V, /J), and let Jif denote the Siegel half
space determined by /6 (see Section 4). Then each element J e Jf? defines a complex
structure on V(R) and there is a unique complex analytic structure on Jf x V(R)
such that the natural projection Jif x V(R) -> Jf? is a complex vector bundle over
3if. For each / , if we denote the complex vector space (V(IR), / ) by V>, then the
complex torus Vj/L is an abelian variety with polarization p. Let A^ denote the
quotient space L\Jt?x V(R), where L acts on 3f? x V(R) by / • (/, v) = (J,v +1)
for / e Jf, v e V(R) and / e L. The projection map 3V x V(R) - • 3€ induces
the fiber bundle iz#> : A^ -> 3V whose fibers are abelian varieties isomorphic to
Vj/L polarized by p. Let Sp(L, p) be the subgroup of Sp(V, yS) of elements g
with gL = L, and take a subgroup To of Sp(L, /J) of finite index that contains no

© 1996 Australian Mathematical Society 0263-6115/96 $A2.00 + 0.00

1
https://doi.org/10.1017/S1446788700000033 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000033


2 Min Ho Lee [2]

elements of finite order. Then the quotient Xo = f0 \ Jf? is an arithmetic variety
that can be considered as a Zariski open subset of a complex projective variety. Now
the fiber bundle it^ : Aje —> ^ induces the standard family of abelian varieties
TTO : Yo —> Xo over Xo (see for example [4, 8], [9, Chapter 4]).

Let G be a semisimple algebraic group defined over Q, and let K be a maximal
compact subgroup of the semisimple Lie group G(R). We assume that the symmetric
space D = G(R)/K has a G(R)-invariant complex structure. Let f c G(Q)
be a torsion-free cocompact arithmetic subgroup of G, and let X = f \D be th:
corresponding arithmetic variety. Let p : G —>• Sp(V, ft) be a homomorphism, and
letf : D —> Jt?beaholomorphicmapsuchthatp(f) C roandr(gy) — p(g)r(y)for
all g € G(R) and y e D. Then the pair (p, f) determines a fiber variety H : Y —>• X
called a Kuga fiber variety over the arithmetic variety X whose fibers are abelian
varieties. Such a Kuga fiber variety can be constructed as follows. The semidirect
product V Mp L with respect to the representation p : f —»• Aut(L) operates on the
product manifold D x V(K) properly discontinuously by (y, I) • (y, v) = (yy, yv + l)
for (y, /) e f x , L and (y, u) e D x V(K). We set Y = f Xp L\D x V(R), and
denote by ft the natural projection of Y onto X = f \D. Then ir : y —• X is a fiber
bundle over X, which is in fact the pullback of the standard fiber bundle n0: Yo —* Xo

over Xo = ro\J^ via the map X ->- Xo induced by f : D -+ Jf.

Let K be a totally real number field with [K : Q] = m, and let S = {<pi,... , <pm]
be the set of embeddings of K into K. Let B be a quaternion algebra over K, and let
G be the algebraic group Res K/Q(SLI(B)) over Q, where Res is the Weil restriction
map. Then G(C) can be identified with 5L2(C)m. We denote by p, be the projection
of G(C) onto the yth factor of 5L2(C)m. We fix a subset R = [<pa, <pb, <pc, <pd} of
S, and define the representation p : G(C) -> SL16(C) C Sp($, C) to be the tensor
product pa ® pb 0 pc ® pd. Let T be a torsion-free arithmetic subgroup of G, and
let r : D -» ^ f a holomorphic map such that r(gy) = p(g)t(y) for y e D and
g € G(K), where D is the quotient of G(R) by a maximal compact subgroup. Let
7r : Y ->• X be the Kuga fiber variety over X determined by the pair (p, r). Given a
point x e X, we denote by

HH2k(Yx, Q) = H9-k\Yx) n //^(y,, Q)

the space of Hodge cycles in the fiber yx over x € X. Such Hodge cycles have been
studied in a number of papers (see for example [1, 3, 5, 6, 7, 10]). The purpose of
this paper is to determine the dimension of the space HH2k(Yx, Q) for 0 < k < 8 for
a generic point x in X.

2. Representations determined by quaternion algebras

In this section we state a theorem which determines exterior powers of the rep-
resentation of a complex Lie group associated to a quaternion algebra. Let K be a
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totally real number field with [K : Q] = m, and let B be a quaternion algebra over
K. Let S = {<pi,... , <pm} be the set of all embeddings of K into R, and let Kj
be the completion of K by the embedding <ps•• : K ^ R for each 7 e { 1 , . . . , m\.
Then the algebra B ®K Kj is isomorphic to either the algebra M2(R) of 2 x 2 real
matrices or the Hamiltonian quaternion H. We denote by So the set of mappings <p;

with B ®K Kj = M2(R) and for later purposes assume that 50 = { 1 , . . . , n] with
1 < n < m - 3 .

Let B = Res K/Q(B), where Res is Weil's restriction operator. Then we have

m

B <8>Q R = Y\(B ®K Kj) = M2(R)n x H"1"".

As a ring, B is isomorphic to B. We fix a ring isomorphism t : B ->• IB. We identify
B ® Q R with M2(R)" x Hm~" and denote by Pry its projection map onto the 7'th factor
for 1 < 7 < m. Then Pr, 01 is an isomorphism of B onto M2(R) for 1 < j < n and
onto H for n + 1 < 7 < m.

Let G be the algebraic group Res K/Q(SLI(B)) over Q. Then we have

G(Q) = B,x = {x € B x I V(JC) = 1},

where v is the reduced norm of the quaternion algebra B. We identify G(Q) with the
subgroup i(B?) of Bx . Then the Lie group G(R) can be identified with the subgroup
SL2(R)" x (Hx)m"" of (B (8) R)x = (M2(R)n x Hm-")x and G(C) can be identified
with SL2(C)m. If we also identify Hx with SU2, we have

G(Q) C G(R) = 5L2(R)" x SU™'" C G(C) = 5L2(C)m.

Let R = {(pa, <Pb,(pc,<Pd} be a subset of S with |/?| = 4. We associate to /? a
representation pR of G(C) = 5L2(C)m to 5L]6(C) by pR = pa® Pb® Pc<8> Pd, where
p, is the projection onto the 7th factor of SL2(<C)m for 1 < 7 < m. We shall denote the
representation pR with /? = {(pa, cpb, <pc, <Pd] simply by abed. We shall also denote by
ak, for example, the fcth symmetric power Sk(pa) of pa, and denote the tensor product
operation ® by • and the direct sum operation © by + respectively.

THEOREM 1. Given the set of embeddings S = {cpi,... ,(pm} of K into R and a
subset R = [<pa,(pb,(pc,(pd}ofS, let pR be the representation pR = abed = pa® pb®
Pc ® Pd ofG(C) = SL2(C)m in the complex vector space C16 for 1 < a,b,c,d < m
as described above. If Pu denotes the representation of the compact real form (SU2)

m

of G(C) = SL2(C)m induced by pR, then up to equivalence of representations the
exterior powers Ak(pv)for 0 < k < 16 are as follows:
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A\Pu) = A16(Pu) = 1,

A1 (/£>(/) = A

= a2^2C2 + a2b2d2 + a2c2af2 + b2c2d2 + a2 + b2 + c2 + d2,

= a3b3cd + a3bc3d + a3bcd3 + a3bcd + ab3c3d + ab3cd3

+ ab3cd + abc3d3 + abc3d + abcd3 + 3abcd,

= A12 (/Oj/) = 3a2b2c2d2 + a2b2c2d4 + 2a2b2c2 + a2b2c4d2 + a2b2c4

+ 2a2b2d2 + a2*2^4 + 2a2*2 + a2b4c2d2 + a2bAc2 + a2ft4<i2

+ 2a2c2d2 + a2c2d4 + 2a2c2 + a2c4d2 + 2a2d2 + a4b2c2d2

+ a4b2c2 + a4b2d2 + a4b4 + a4c2d2 + a4c4 + a4d4 + a4

+ 2b2c2d2 + b2c2d4 + 2b2c2 + b2c4d2 + 2b2d2 + b4c2d2 + b4c4

+ b4d4 + b4 + 2c2d2 + c4d4 + c4 + d4 + 3,

= An(pv) = 5abcd + 4abcd3 + abcd5 + Aabc3d + 3abc3d3 + abc3d5

+ abc5d + abc5d3 + 4ab3cd + 3ab3cd3 + ab3cd5 + 3ab3c3d

+ 2ab3c3d3 + ab3c5d + ab$cd + ab<,cd3 + ab5c3d + 4a3bcd

+ 3a3bcd3 + a3bcd$ + 3a3bc3d + 2a3bc3d3 + a3bc5d

+ 3a3b3cd + 2a3b3cd3 + 2a3b3c3d + a3b3c3d3 + a3b5cd

+ a5bcd + a5bcd3 + a5bc3d + a5b3cd,

= Al0(pu) = 6a2b2c2d2 + 4a2b2c2d4 + 6a2b2c2 + 4a2b2c4d2 + a2b2c4d4

+ 2a2b2c4 + a2b2c6 + 6a2b2d2 + 2a2b2d4 + a2b2d6 + a2b2

+ 4a2b4c2d2 + a2b4c2d4 + 2a2b4c2 + a2b4c4d2 + a2b4c4

+ 2a2b4d2 + a2b4d4 + 2a2b4 + a2b6c2 + a 2 ^ 2 + 6a2c2d2

+ 2a2c2d4 + a2c2d6 + a2c2 + 2a2c4d2 + a2c4d4 + 2a2c4

+ a2c6d2 + a2d2 + 2a2d4 + 3a2 + 4a4b2c2d2 + a4b2c2d4

+ 2a4b2c2 + a4b2c4d2 + a4b2c4 + 2a4b2d2 + a4b2d4 + 2a4b2

+ a4b4c2d2 + a4b4c2 + a4b4d2 + a4b4 + 2a4c2d2 + a4c2d4

+ 2a4c2 + a4c4d2 + a4c4 + 2a4d2 + a4d4 + <if,b2c2 + a6b2d2

+ a6c2d2 + a6 + 6b2c2d2 + 2b2c2d4 + b2c2d6 + b2c2 + 2b2c4d2

+ b2c4d4 + 2b2c4 + b2c6d2 + b2d2 + 2b2d4 + 3b2 + 2b4c2d2

+ b4c2d4 + 2b4c2 + b4c4d2 + b4c4 + 2b4d2 + b4d4 + b6c2d2

+ b6 + c2d2 + 2c2d4 + 3c2 + 2c4d2 + c4d4 + c6 + 3d2 + d6,
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labcd + 6abcd3 + 3abcd5 + abcd-j + 6abc3d + 6abc3d3

+ 2abc3d5 + 3abc5d + 2abc5d3 + abc-]d + 6ab3cd + 6ab3cd3

+ 2ab3cd5 + 6ab3c3d + 4ab3c3d3 + ab3c3d5 + 2ab3c$d

+ ab3c5d3 + 3ab5cd + 2ab5cd3 + 2ab5c3d + ab5c3d3 + ab-,cd

+ 6a3bcd + 6a3bcd3 + 2a3bcd5 + 6a3bc3d + Aa3bc3d3

+ a3bc3d5 + 2a3bc5d + a3bc5d3 + 6a3b3cd + Aa3b3cd3

+ a3b3cd5 + 4a3b3c3d + 3a3b3c3d3 + a3b3c5d + 2a3b5cd

+ a3b5cd3 + a3b5c3d + 3a5bcd + 2a5bcd3 + 2a5bc3d

+ a5bc3d3 + 2a5b3cd + a5b3cd3 + a5b3c3d + a-jbcd,

5a2b2C2d4 + a2b2c2d6 + 5a2b2c2 + 5a2b2c4d2

+ 2a2b2c4d4 + 4a2b2c4 + a2b2c6d2 + a2b2c6 + 5a2b2d2 + 4a2b2d4

+ a2b2d6 + 4a2b2 + 5a2b4c2d2 + 2a2b4c2d4 + 4a2b4c2 + 2a2b4c4d2

+ a2b4c4 + 4a2b4d2 + a2b4d4 + a2b4 + a2b6c2d2 + a2b6c2

+ a2b6d2 + a2b6 + 5a2c2d2 + 4a2c2d4 + a2c2d6 + 4a2c2 + 4a2c4d2

+ a2c4d4 + a2c4 + a2c6d2 + a2c6 + 4a2d2 + a2d4 + a2d6 + 5a4b2c2d2

+ 2a4b2c2d4 + 4a4b2c2 + 2a4b2c4d2 + a4b2c4 + 4a4b2d2 + a4b2d4

+ a4b2 + 2a4b4c2d2 + a4b4c2 + a4b4c4 + a4b4d2 + a4b4d4 + 2a4b4

+ 4aAc2d2 + a4c2d4 + a4c2 + a4c4d2 + a4c4d4 + 2a4c4 + a4d2

+ 2a4d4 + 3a4 + a6b2c2d2 + a6b2c2 + a6b2d2 + a6b2 + a6c2d2 + a6c2

+ a6d2 + a% + 5b2c2d2 + 4b2c2d4 + b2c2d6 + 4b2c2 + 4b2c4d2

+ b2c4d4 + b2c4 + b2c6d2 + b2c6 + 4b2d2 + b2d4 + b2d6 + 4b4c2d2

+ b4c2d4 + b4c2 + b4c4d2 + b4c4d4 + 2b4c4 + b4d2 + 2b4d4 + 3b4

+ b6c2d2 + b6c2 + b6d2 + bs + 4c2d2 + c2d4 + c2d6 + c4d2 + 2c4 d4

+ 3c4 + c6d2 + c8 + 3d4 + ds + 4,

where aj for instance denotes the jth symmetric power Sj(a) = Sj(pa) of pa, the
products denote tensor products, and sums denote the direct sums as before.

3. Proof of Theorem 1

In this section we give a proof of Theorem 1 stated in the previous section. To each
representation [i of a complex semisimple Lie group <$ in C^ and an element g
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associate a polynomial P,i,g(t) of degree N in t given by P^,g{t) = det(lw + [i(g)t),
where lN is the N x N identity matrix. Then we have

We also denote by

N

P^(t) = det(lw + put) — 2_^
k=\

the map that associates P,x,g{t) to each g e <S.

LEMMA 2. Let p v be the representation of Gu = (SU2)
m in C16 as described in

Theorem 1. We fix an element g = (gi, •.. , gm) in Gu = (SU2)
m and assume that

the eigenvalues of the 2 x 2 matrix gd are k and k~l. Then we have

where (abc)v is the representation ofGu = (SU2)
m induced by abc — pa<& pb® pc.

PROOF. Since k, k~l are the eigenvalues of gd, we have

-i A 0 \
= v [o k->)v

for some v e SU2 and A. e C. We have

(abc{g)kt 0

where

Thus we have

p , , _ {IN + abc(g)kt 0 \
Pv'g \ 0 IN + abc(g)k~ltj

= det(lw +abc{g)kt)i

Hence the lemma follows.
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From now on we shall denote the representation (ajbkcidm)v of Gv induced by the
representation cijbkcidm of G(C) simply by ajbkcidm, where j , k, I, m are nonnegative
integers.

LEMMA 3. Using the notational convention in the previous paragraph, the exterior
powers of the representations a, ab andabcfor 1 < a, b, c < m ofGu = (SU2)

m are
as follows:

(i) A 0 (a) = A2(a) = 1, A1 (a) = a.

(ii) A0 (ab) = /\\ab) = 1, Al(ab) = A3(ab) = ab, A2(ab) = a2 + b2.

(iii) A0 (abc) = A%(abc) = 1,

A1 (abc) = A1 (abc) — abc,

A2 (abc) = A6(abc) = a2b2 + b2c2 + c2a2 4- 1,

A3 (abc) = A5 (abc) = a3bc + ab3c + abc3 + abc,

A4 (abc) = aA + b4 + cA + a2b2c2 + a2b2 + b2c2 + c2a2 + 1.

PROOF. See [6, Lemma 2.2.1].

Now we go back to the proof of Theorem 1. By Lemma 2, we have

16

)(
k=0 k=0 k=0

where Ck = Ak(abc) for each k given by Lemma 3(iii). Since we are interested in
the representations up to equivalence, from now on we shall identify representations
with their traces. Thus we have

k=0 *=0

By comparing the coefficients of tk in the above relation, we obtain

A°(Pu) = Ai6(Pu) = 1

Al(Pu) = Al5(Pu) = abc(k + A"1)

A2(Pu) = Au(Pu) = (a2b2 + b2c2 + c2a2 + l)(k2 + k'2) + a2b2c2

= Al\pu) = (a3bc + ab^c + abc3 + abc)(k% + A"3)

+ abc(a2b2 + b2c2 + c2a2 + l)(X + AT1)

= Al2(pu) = (a4 + b4 + c4 + a2b2c2 + a2b2 + b2c2 + c2a2 + \)(k4 + A."4)

+ abc(a3bc + ab3c + abc2 + abc)(X2 + AT2)

+ (a2b2 + b2c2 + c2a2 + I)2
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A5 Got,) = An(pt,) = (a3bc + ab3c + abc3 + abc)(k5 + k'5)

+ abc(a4 + 64 + c4 + ^2*2^2 + a2b2 + b2c2

x (A.3 + A~3)

+ (a2b2 + b2c2 + C2CI2 + \){a3bc + ab3c + abc3 + abc)

x (A + A"1)
6 10 (̂ 2*2 + b2c2 + c2a2 + l)(k6 + A"6)

+ abc(a3bc + ab3c + abc3 + abc)(k4 + A"4)

x (a4 + b4 + c4

x (A2 + A"2)

+ (a3bc + ab3c + abc3 + abc)2

A
7(Pu) = A9(Pu) = abdk1 + A"7) + abc(a2b2 + b2c2 + c2a2 + 1)(A5 + A~5)

+ («2^2 + ^2^2 + c2a2 + l)(a3bc + ab3c + abc3 + abc)

x (A3 + A"3)

+ (a3bc + ab3c + abc3 + abc)

x (a4 + b4 + c4 + a2b2c2 + 02^2 + ^2^2 + c2a2 + 1)

A8(pt,) = (A8 + A"8) + {abcfik6 + A"6)

+ (a2b2 + b2c2 + c2a2 + 1)2(A4 + A~4)

+ (a3bc + ab3c + abc3 + abc)2(k2 + A~2)

+ {a4 + b4 + c4 + a2b2C2 + a2b2 + b2c2 + c2a2 + I)2.

By the Clebsch-Gordon formula we have

ak®al = Sk{Pa)®S'{pa)

= sk+'(Pa)®sk+l-2®---®s*-\Pa)

= ak+l 0 ak+,-2 © • • • © «|*-/|,

where K, I are non-negative integers. Thus, using our notational convention, we have

akai = ak+i + ak+i-2 H f- alk^.

Similar formulas are obtained for b, c and d.
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LEMMA 4. IfX and X~l are the eigenvalues of gd as before, then we have

X" + k-n =dn- dn_2

for all n>2.

PROOF. We use induction on n. Since d2 = d2 + 1 by the Clebsch-Gordon formula,
it follows that

X2 + X~2 = (k + \~1)2 -2 = d2-2 = d2-l;

hence the statement is true for n = 2. Assuming that it is true for all k < n, we have

r + 1 + x _ ( n + 1 ) _ ( r + x _ n ) ( x + ^ _ ( r _ , + ^-0.-1))

- {dn - dn.2)d - (d«_, - dn.3)

= dnd - dn-2d - dn-x + dn-3

— dn+l + d«_i - (</„_! + dn_3) — dn-i + dn-.3

= dn+l — dn^i.

So the statement is true for n + 1 and the lemma follows.

To complete the proof of Theorem 1 we first use Lemma 4 to replace the expressions
of the form (Xk + X~k) in the relations for A°(R), ..., A16(/?) above by dk - dk-2,
and then use the Clebsch-Gordon formula with the aid of a computer to obtain the
formulas given in Theorem 1.

4. Kuga fiber varieties

In this section, we review the construction of Kuga fiber varieties over arithmetic
varieties. Let V be a vector space of dimension In over Q, and let L be a lattice in V.
Let p be a nondegenerate alternating bilinear form on V such that f)(L, L) c 1. Let

Sp(V, P) = {ge GL{V) | 0(gx, gy) = P(x, y) for all x, y e V]

be the symplectic group of the pair (V, /J), and let Jf denote the Siegel half space

Jf = {J e GL(V(R)) \J2 = - 1 , p(x, Jy) is a positive definite

symmetric bilinear form in x, y e V(K)}.

Then each element / e J1? defines a complex structure on V(R) and there is a unique
complex analytic structure on Jtf x V(R) such that the projection P : Ji? x V(R) —*•
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JP is a complex vector bundle over 3>f. For each / if we denote the complex vector
space (V(K), / ) by Vj, then the complex torus Aj = Vj/L is an abelian variety with
the polarization /J. We set

= L\ Jtf x V(R),

where the action of L on J$? x V (IR) is given by

/ . (/, V) = (/, v + /) for / G Jtf, v e V(R) and / e L.

Then the vector bundle P : J f x V(R) —> J P induces the fiber bundle
>• «#* whose fibers are abelian varieties polarized by p\ We set

and take a subgroup Fo of Sp(L, y3) of finite index that contains no elements of finite
order. Then the quotient Xo = Fo \ Jf? is an arithmetic variety that can be considered
as a Zariski open subset of a complex projective variety. Now the fiber bundle

Aj? —> J4? induces the standard family of abelian varieties n0 '• Yo —> Xo over

Let G be a semisimple algebraic group defined over Q, and let K be a maximal
compact subgroup of the semisimple Lie group G(R). We assume that the symmetric
space D = G(R)/K has a G(K)-invariant complex structure. Let f c G(Q) be a
torsion-free cocompact arithmetic subgroup G, and let X = f \D be the corresponding
arithmetic variety. Let p : G -*• Sp(V, y3) be a symplectic representation and
f : D —>• Jf? a holomorphic map such that p(f) C Fo and

i(gy) = P(g)r(y) for all g e G(R) and j e D .

Then the pair (p, f) determines a fiber variety ir : Y ->• X over the arithmetic variety
X whose fibers are abelian varieties called a Kuga fiber variety. It is constructed as
follows. The semidirect product f x^ L with respect to the representation p : f -»•
Aut(L) operates on the product manifold D x V(R) properly discontinuously by

(y,/) • ( j , u) = (yv, yv + l)

for (y, /) e f KP L and ( j , v) e D x V(R). We set f = f K^ L\D X V(R), and
denote by ir the natural projection of Y onto X = f \D. Then n : Y -> X is a fiber
bundle over X, which is in fact the pullback of the standard fiber bundle 7T0 : lo ~* ^o
via the map X —>• Xo induced by f : D —>• Jtif. It is known that Y has a structure of a
complex projective variety and that the fiber Yx over each x G X is an abelian variety
polarized by p. Such a fiber variety ir : F —> X is called a Kuga fiber variety (see [4,
8], [9, Chapter 4]).
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5. Hodge cycles

In this section we consider Hodge cycles on generic fibers of Kuga fiber varieties
associated to quaternion algebras and prove the main theorem of the paper. Let G be
the algebraic group defined over Q considered in Section 1. Thus G is the algebraic
group Resjf/QCSL^fi)) where B is a quaternion algebra over a totally real number
field with [k : Q] = m. Let p : G -» Sp(V, fi) with V = <C8 be a symplectic
representation of G associated to a subset R = {(Pa,(Pbi<Pc,<Pd} of S as in Section 1,
and let P be a torsion free arithmetic subgroup of G wi thp( r ) C F s . Letr : D ->• J4?
be a holomorphic map such that p and T are equivariant, and let <p : X —> Xo be the
morphism of varieties induced by T. By pulling back the fiber bundle 7r0 : Yo —*• Xo

via the morphism </> : X —> Xo, we obtain the Kuga fiber variety n : Y —> X over the
arithmetic variety X.

We fix a generic point x in X, and identify T with the fundamental group ii\ {X, x)
of X at A:. We also identify the fiber Yx of Y over x e X with V/L, which induces the
following further identifications:

here * denotes the dual of the vector space. The action of ni(X, x) on Hk(Yx, Q)
corresponds to the action A*(p*) of F on A*(V)*; hence we have

Hk(Yx,Q.ri(X'x) = (Ak(V)*)r.

DEHNITION. Let n : Y ->• X be a Kuga fiber variety associated to p : G ->
Sp(V, j6) and T : D -»• J^f, and let g(R) be the Lie algebra of G(R). The Kuga fiber
variety (7, n) is of m«er fy/?e if there is a map r : D -»• g(R) such that

cos(jrf/2)/ + sin(7r?/2)T(^;)/ = p(exp(r(x)O)

for JC 6 D and ( e K , where / is the identity map on V.

REMARK 5.1. A Kuga fiber variety that does not allow deformations is said to
be rigid. Any rigid Kuga fiber variety is of inner type. For example, if R =
{<Pa, <Pb, <Pc, <Pd) C S is Gal(A7Q)-invariant and if \R n So| = 1, then the Kuga fiber
variety associated to R is rigid and therefore of inner type (see [5]).

We shall denote by HH2k{Yx, Q) the space of Hodge cycles of codimension k in
F,, that is,

HH2k(Yx, Q) = H(k'k)(Yx) n H2k(Yx, Q).

The Hodge conjecture states that the space HH2k(Yx, Q) coincides with the space of
algebraic cycles of codimension k for 0 < k < dime Yx.
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PROPOSITION 5.1. Let Yx be a generic fiber over x € X of a Kuga fiber variety
n : Y —>• X of inner type. Then

HHU(YX, Q) = H2k(Yx)
w>iXx)

for all even integers k with 0 < k < dime Yx.

PROOF. See [10].

Now we state the main theorem of the paper about the Hodge cycles on Kuga fiber
varieties associated to quaternion algebras.

THEOREM 5.2. Let Yx be a generic fiber over x e X of a Kuga fiber variety
n : Y —> X of inner type associated to the quaternion algebra B in Section 2 and the
pair (p,r). Then we have

dim HH°(YX, Q) = dim HH16(YX, Q) = 1,

dim HH2{YX, Q) = dim HHl4(Yx, Q) = 0,

dim HH\YX, Q) = dim HHl2(Yx, Q) = 3,

dim HH6(YX, Q) = dim HH1O(YX, Q) = 0,

dim////8(Y,,Q) = 4.

PROOF. Since r is Zariski-dense in G, the action A*(p*) of T in A*(V)* can be
extended to the action Ak(p*) of G(Q on Ak(V(Q)*. Thus we have

On the other hand, by the unitary trick, we have

where Gv = (SU2)
m is the compact real form of G(C) = SL2(C)m as in Theorem 1.

Hence it follows that

dim/// / 2*^, , Q) = dimc(//2i(yi)
jri(Xj:)) = dimc(A

k(V(C)T)Gu.

Since the symplectic representation p is equivalent to its dual p*, we have

dimc(A
k(V(Qrfv = f tr(A2*(Pu)){g)dg,

JGu
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where dg is the Haar measure of Gv normalized by fG dg = 1. On the other hand,

the integral

[ tr(A2*
JGu

Pu))(g)dg

is equal to the multiplicity M2t = (A2* (/>(/) : l) of the trivial representation 1 in the

representation A2k(pv). By Theorem 1 we have

M0 = Mi6 = l, M2 = M14 = 0, M4 = M12 = 3, M6 = M1O = 0, M8 = 4;

hence the theorem follows.

References

[1] S. Abdulali, 'Field of definition for some Hodge cycles', Math. Ann. 285 (1989), 289-295.
[2] S. Addington, 'Equivariant holomorphic maps of symmetric domains', Duke Math. J. 55 (1987),

65-88.
[3] B. Gordon, Topological and algebraic cycles in Kuga-Shimura varieties', Math. Ann. 279 (1988),

395-W2.
[4] M. Kuga, Fiber varieties over a symmetric space whose fibers are abelian varieties I, II, Lecture

Notes (Univ. of Chicago Press, Chicago, 1963/64).
[5] , 'Algebraic cycles in gtabv', J. Fac. Sci. Univ. of Tokyo Sect. IA Math. 29 (1982), 13-29.
[6] , 'Chemistry and GTABVs', Progr. Math. 46 (1984), 269-281.
[7] , 'Invariants and Hodge cycles', Adv. Stud. Pure Math. 15 (1989), 373^13.
[8] M. H. Lee,' Conjugates of equivariant holomorphic maps of symmetric domains', Pacific J. Math.

149 (1991), 127-144.
[9] I. Satake, Algebraic structures of symmetric domains (Princeton Univ. Press, Princeton, 1980).

[10] M. C. Tjiok, Algebraic cycles in a certain fiber variety (PhD. Thesis, SUNY at Stony Brook, 1980).

Department of Mathematics

University of Northern Iowa

Cedar Falls, Iowa 50614

USA

e-mail address: lee@math.uni.edu

https://doi.org/10.1017/S1446788700000033 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000033

