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This study addresses the question of whether a thin, relatively heavy solid body with a
smooth under-surface can skim on a shallow layer of liquid (for example water), i.e. impact
on the layer and rebound from it. The body impacts obliquely onto the liquid layer with the
trailing edge of the underbody making the initial contact. The wetted region then spreads
along the underbody and eventually either retracts, generating a rebound, or continues
to the leading edge of the body and possibly leads to the body sinking. The present
inviscid study involves numerical investigations for increased mass (M, in scaled terms)
and moment of inertia (I, proportional to the mass) together with an asymptotic analysis
of the influential parameters and dynamics at different stages of the skimming motion.
Comparisons between the asymptotic analysis and numerical results show close agreement
as the body mass becomes large. A major finding is that, for a given impact angle of the
underbody relative to the liquid surface, only a narrow band of initial conditions is found
to allow the heavy-body skim to take place. This band includes reduced impact velocities
of the body vertically and rotationally, both decreasing like M−2/3, while the associated
total time of the skim from entry to exit is found to increase like M1/3 typically. Increased
mass thereby enhances the super-elastic behaviour of the skim.

Key words: flow-structure interactions

1. Introduction

The issue of whether a body of comparatively large mass and smooth under-surface
(underbody) can skim across a layer of water or other liquid is considered here. There
are many interesting areas of application. An industrial one concerns aircraft icing where
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the body or particle of concern is an ice shard or ice crystal and the water layer present
is situated on the surface of a wing or fuselage or inside an engine intake (Gent, Dart &
Cansdale 2000; Mason, Strapp & Chow 2006; Purvis & Smith 2016; Smith et al. 2019).
The skimming or sinking of the ice particle here influences heat transfer and hence the
creation of further ice with a consequent risk to aircraft safety. Another area concerns
landings of airborne vehicles and other bodies on a sea or a lake where again the matter of
safety is a prime issue (Von Kármán 1929; Wagner 1931). Meteor impacts can also lead to
skimming. The skimming of an object across a water surface is also probably familiar to
many readers from the recreational game of stone skipping or skimming where a thin stone
is thrown with a significant horizontal velocity in an attempt to cause the stone to bounce
off the water surface. Ideally, the stone descends into the water with a small downward
velocity, impacts and then is subjected to pressures on the underbody from the water layer
which produce a positive lift and push the stone back out of the water, followed by further
such bounces thereafter. Here, the onset of the skimming motion is modelled and, as such,
the air effect is assumed to be dynamically negligible when compared with the liquid
layer’s interaction with and effect on the body.

The behaviour of the combined liquid-layer–body motion is particularly sensitive when
the body has relatively large mass since a ballistic body motion would be expected for
a wide range of impact conditions. The ballistic effect is due to the body’s large mass,
multiplied by acceleration, dominating the overall interaction under many conditions of
incident velocity and body attitude: we have in mind here a thin body at small incidence
rather than a bluff body with high inertia or a spear entering lengthways. The ballistic
effect reduces the influence of the liquid layer, causing the body’s trajectory and motion
to be largely unaffected by the water layer flow. As a result, the body would simply sink as
a classical projectile to the bottom of the layer. Thus, this raises the question of whether a
heavy body may skim and, if so, how? That is the central question here.

A balance in terms of orders of magnitude between the vertical mass acceleration of the
body and the lift due to water-flow pressure suggests a critical parameter of approximately

ρb

ρw

(
H
Lb

)2

, (1.1)

where ρb is the body density, ρw is the water density, H is the water depth and Lb is the
body length. The parameter (cf. body mass per unit horizontal distance relative to water
mass) is based on the typical time scale being that of the water transit under the body and
on the body mass being approximately the body density multiplied by the water volume
beneath the underbody. The latter factor leads to the squared contribution displayed above.
For shallow water, the depth ratio (H/Lb) will be somewhat less than unity and, for a
‘heavy’ body, the density ratio (ρb/ρw) is anticipated to be somewhere between 2 and
10 say (this range includes various metals for example). As a result, the above critical
parameter is nominally large. Then again, experience indicates that the details of the
initial impact conditions (angle, orientation) and the body shape can play a very significant
role in determining the trajectory of the body on the water surface. This further suggests
quantification of the skim evolution would be desirable.

In general the topic of skimming, particularly in the present scenario of a thin body
with a sharp trailing edge on water with finite depth, has been subject to numerous
investigations: for example Green (1935, 1936), Tuck & Dixon (1989), Hicks & Smith
(2010), Liu & Smith (2014) and Palmer & Smith (2020). In such cases the water is assumed
to detach smoothly from the body’s sharp trailing edge, whereas ahead of the body a splash
jet can also be emitted (see also Hewitt, Balmforth & McElwaine 2011). One modelling
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Skimming impact: a thin heavy body on a shallow liquid layer

challenge here is to determine the contact region between the body and the water, thereby
obtaining the resulting lift force on the body, the lift being mainly due to the water-flow
pressure. The early mathematical treatments of a solid object slamming on an undisturbed
free surface of water were pioneered in Wagner (1931), Wagner (1932) and Von Kármán
(1929). There are also more recent very interesting works by Edge (1968), Watanabe
(1986), Cointe & Armand (1987), Greenhow (1987, 1988), Scolan & Korobkin (2001),
Korobkin (2004), Howison, Ockendon & Oliver (2004) and Khabakhpasheva & Korobkin
(2013). The range of phenomena present may be complex and there are many parameters
potentially involved including the body shape and the initial conditions at impact. It is
notable, though, that most studies impose a prescribed body motion whereas the present
work allows free movement of the body – this free movement is felt to play a crucial part
as far as the question of heavy-body skimming is concerned.

The present investigation takes the Hicks & Smith (2010) interaction theory as its basis.
This assumes two-dimensional motion of the thin body and the water, the latter being
treated as inviscid and incompressible. The water layer is also thin. At impact the body’s
inclination to the water surface is taken to be small and the body velocity is taken as almost
but not quite parallel to that surface. The effects of the major interaction parameters and of
different body shapes of concern are to be described by means of nonlinear analysis and
computation. Solutions for the resulting fluid–body interaction including the thin-layer
flow dynamics are described by Hicks & Smith (2010) and more recently by Liu & Smith
(2014) for reduced inclinations, by Smith & Liu (2017) for sinking bodies, by Palmer &
Smith (2020) for impacts of increased-thickness bodies and by Liu & Smith (2021) for
smooth-body impacts. We consider herein whether the theory predicts skimming to take
place with a body of comparatively large mass and if so under what conditions.

Section 2 describes the framework for the present study and the interaction structure
including splash jets at the unknown moving front of the wetted (pressured) surface
on the underbody. The work considers shallow water, with the liquid layer being thin
relative to the body length, and variations in the underbody shape significantly smaller
than the liquid-layer thickness. (This places the fluid flow part of the current study in an
intersectional regime between the Wagner (1931) theory and the Tuck & Dixon (1989)
and Korobkin (2004) theory.) Section 3 then addresses computational solutions of the
water–body interaction, showing results for the body motion, the water flow, the pressures
and the moving front for increasingly large values of the appropriate scaled mass and
moment of inertia. Here super-elastic behaviour is encountered: the body rebounds with a
velocity greater than that with which it originally hit the liquid surface. Next, § 4 presents
an analysis to identify the trends in the interactive properties for enhanced mass of the
body. Section 5 describes comparisons between the computational and analytical results,
while § 6 gives the conclusion and further comments including practical application and
the overall predictions for heavy-body impacts and rebounds.

2. The skimming model

The model used here is essentially that of Hicks & Smith (2010). The body of mass
mD and length 2LD is assumed to be thin and to impact upon the water obliquely at a
small angle (say φ, to be defined explicitly later) such that its horizontal velocity is UD,
with the subscript D denoting a dimensional quantity. The trailing edge impacts first. The
assumption that the trailing edge touches down first may, for some specific underbody
shapes F, rule out some ranges of θ (usually small values). The configuration is sketched
in figure 1 in non-dimensional terms with the vertical scale stretched.
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Liquid layer

Overbody

θ < 0

d1
d1 + d2Y(t) d1

d1y

 O(d2)

Length 2
 O(d

2 )x

Solid base (y = 0) x1(t) x0(=1)

UL ~ (1,0)

Figure 1. In non-dimensional terms, a schematic of the thin body with a sharp trailing edge skimming on a
liquid layer. The solid arrows indicate the flow direction in a frame of reference in which the body does not
appear to move horizontally. Its centre of mass is at height d1 + d2Y and varies with time. The leading contact
position, x1, also varies with time whilst the trailing edge of the body and of the wetted (pressured) region,
x0, remains fixed. The subscript L refers to the liquid layer. (The figure is not to scale and the small angles of
incidence and inclination are accentuated.)

We work in a coordinate frame (x horizontal, y vertically upward) moving horizontally
with the horizontal velocity component of the centre of mass of the body, so that
the water layer flows with unit speed horizontally towards the station x = −1 of the
leading edge of the body, where the Cartesian coordinates x, the time t, the fluid
velocity vector U and the pressure variation P are non-dimensionalised with respect to
LD, LD/UD, UD, ρDU2

D, respectively. Here, ρD is the constant fluid (water) density ρw
referred to in the Introduction, the atmosphere (air) is taken to be dynamically negligible
during contact of the body with the water surface and the atmospheric pressure is taken
as zero without loss of generality. The constant unit approach speed over the time scales
of current interest is due to the relative smallness of the drag forces acting on the body
surface; the horizontal component of velocity thereby remains almost constant (and much
greater than the vertical component), at least until much longer time scales may come into
play.

There are several additional features of the liquid-layer–body skimming interaction
displayed in figure 1. Many of these are explained further throughout the paper; however,
we provide a brief overview of the salient points here. Within the frame of reference
centred on the horizontal motion of the body, the oncoming water is on the left in the
figure and the wake on the right. (We emphasise that figure 1 is a sketch and is not
to scale. In particular, the wake shape drawn is schematic; precise shapes are given
numerically in figure 5 of Hicks & Smith 2010.) The origin of coordinates used here
is on the wall (y = 0) directly below the centre of mass. Only the underbody shape is
directly influential within the skimming interaction and it is defined by a curve F(x) within
an O(d2) variation in shape. In scaled quantities, with the base at y = 0, the centre of
mass has d1y = d1 + d2Y(t) and the water layer height has d1y = d1 + d2h(x, t). Here,
d1 is the undisturbed water layer thickness while d2 is the typical disturbance to the
thickness, of order d1 or smaller; Appendix A includes discussion of the case where
d2 is comparable to d1 whereas the majority of the paper is for the case d2 � d1. By
comparison, the overbody dynamics is negligible such that the overbody can take the
form of an arbitrarily smooth curve (within the limits of scalings below), although
the shape of the overbody does influence the moment of inertia and hence the rotation
of the body. Ahead of the contact point, x1(t), the flow can reverse leading to a thin splash
jet that may extend ahead of the body. Furthermore, surrounding the moving position
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x1(t), there is a ‘square’ Euler region (with its x-wise extremities marked by long dashed
lines in figure 1) that remains close to the contact point and describes turnover, upstream
of which the oncoming water layer is undisturbed to leading order. This effective contact
point is sometimes called the turnover point or jet root; herein we will use ‘contact point’
to mean ‘effective contact point’. The main region of interest (where the liquid-layer–body
interaction occurs) is the so-called wetted region or pressured region that is given by
([x1(t), x0]) where −1 < x1(t) < x ≤ x0 = 1. Of note, the pressure P is zero (atmospheric)
on all the free surfaces that lie outside the wetted region. Since the splash jet on the body is
one of those free surfaces, the ‘wetted region’ defined by x1(t) < x < 1 might be described
better as the ‘pressured region’ but we shall keep to the conventional term of wetted region
below. Finally, the schematic diagram in figure 1 is given in scaled terms as explained next.

In the regime of current interest, the governing equations (as in Hicks & Smith 2010) can
be linearised using the following reasoning and related scales. The water layer is taken to
be thin in the sense that its non-dimensional thickness d1 is small compared with the body
length of unity. The underbody shape variation is with respect to x only and is of order d2
which is also small such that d2 is small relative to d1, while the angle of attack d2θ and the
angle of inclination φ are likewise taken to be of order d2. So the scaled angle θ is of order
unity. Thus d2 � d1 � 1. In consequence, we can expect the majority of the water flow
under the body to be only slightly disturbed from its oncoming state of unit velocity. We
observe that, strictly, the derivation of the governing equations and associated conditions
here is based on the nonlinear thin-layer formulation described by Hicks & Smith (2010),
using much of the flow structure in Tuck & Dixon (1989), but followed by linearisation as
in the former paper: the derivation is summarised in Appendix A.

For the fluid flow, then, the governing equations are the linearised shallow-water
equations. Gravity and capillary effects are supposed negligible by virtue of large Froude
and Weber numbers while viscous effects can also be neglected for large Reynolds
numbers provided the flow remains attached, particularly along the underbody and along
the bottom of the water layer. The corresponding asymptotic expansion of the flow solution
has the form

U = (1 + d2u/d1, d2v) + · · · , P = d2p/d1 + · · · , (2.1a,b)
with x = (x, d1y) for t of order unity. Substitution into the Navier–Stokes or Euler
equations (here, to re-emphasise, viscous effects are supposed negligible) then yields the
horizontal momentum equation

ut + ux = −px, (2.2a)
while the vertical momentum shows that p = p(x, t) is independent of y. The vorticity
here is zero. The continuity equation coupled with the kinematic boundary condition at
the surface of the water y = 1 + d2h(x, t)/d1 and the lack of vorticity at leading order
yields the balance

ht + hx + ux = 0. (2.2b)
Here, h is zero at the incident wall-layer height. Equations (2.2a) and (2.2b) hold for x1 <

x < x0, the unknown moving location x = x1(t) being the upstream contact point and the
trailing-edge location x0 being fixed at unity. The contact conditions involve unknown
jumps of u, p from their oncoming values of zero such that

p + (1 − x′
1)u = 0 at x = x+

1 , (2.2c)

u + (1 − x′
1)h = 0 at x = x+

1 , (2.2d)

from Tuck & Dixon (1989) and Hicks & Smith (2010) (the prime notation indicates
differentiation with respect to time here and throughout). We observe the present model
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for the fluid flow is in addition the same as that of Case 3 in Howison et al. (2004).
A thin jet of water is also provoked along the underbody ahead of the contact point. The
requirement at the sharp trailing edge is

p = 0 at x = 1, (2.2e)

which follows from the Kutta condition.
As regards the body motion, the underbody surface moves according to the relation

(holding for the present small displacements)

h(x, t) = Y(t) + xθ(t) + F(x), (2.3a)

where Y(t) is the perturbation height of the centre of mass, θ(t) is the finite scaled rotation
angle (the real unscaled angle, to repeat, is d2θ , as noted earlier, which is small) and F(x)
denotes the fixed shape of the underbody. For d2F(x)/dx2 < 0 the underbody is concave
and conversely the underbody is convex for d2F(x)/dx2 > 0. The centre of mass is taken
to be at x = 0 midway between the leading and trailing edges of the body, as a central
example. We should remark that the x-wise variation of the underbody shape is supposed
to be O(d2) typically in a successfully completed skip, whereas the x-wise variation in
body thickness plays virtually no direct role in the current interaction. Only the wetted
(pressured) part of the underbody is subjected to the fluid flow pressure of (2.1a,b) whereas
the unwetted part suffers merely the air pressure of zero. Hence the body-motion equations
are

MY ′′ =
∫ 1

x1

p(x, t) dx, (2.3b)

Iθ ′′ =
∫ 1

x1

xp(x, t) dx, (2.3c)

describing the vertical and rotational motions in turn. The working here is of course
in the non-inertial frame of reference with the origin remaining in the same vertical
position but moving horizontally at the horizontal speed of the body. The scaled mass
M and moment of inertia I are related to their dimensional counterparts mD, iD by means
of M = mDd1/(ρDL2

D), I = iDd1/(ρDL4
D), respectively. The acceleration/force balance for

the horizontal motion in contrast confirms that the body velocity in the x-wise direction
remains constant over the current time scales.

There is an interesting question of the relation between the present approach and
previous models, especially concerning certain papers, e.g. Wagner (1931), Tuck & Dixon
(1989), Howison et al. (2004), Korobkin (2004) and Hicks & Smith (2010). Our approach
is based on Tuck & Dixon (1989) as extended to unsteady interaction by Hicks & Smith
(2010) and we work totally within that framework of shallow water as described in
Appendix A. That framework includes an exact form of the conditions holding at contact
points and those conditions enable us to proceed readily to the present conditions (2.2c)
and (2.2d). The current investigation is then over the body length scale on which full
interaction takes place. It is recognised that once linearisation is applied Wagner properties
hold on a smaller length scale buried inside the Euler region but on the other hand those
properties have negligible effect on the all-important jump conditions (2.2c) and (2.2d) at
leading order. We should repeat also our main concern is with a freely moving body and
corresponding novel issues.

In terms of a problem statement, the skimming problem involves solving the
system (2.2) and (2.3) for the unknowns u(x, t), p(x, t), h(x, t), x1(t), Y(t), θ(t) subject to

940 A6-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

20
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.207


Skimming impact: a thin heavy body on a shallow liquid layer

prescribed values of the initial height Y(0)(= Y0 say), vertical velocity V = V0 = Y ′(0),
initial angle θ(0) (= θ0 say) and rotation velocity ω = ω0 = θ ′(0) at time zero. The initial
touchdown being at the trailing edge implies that Y0 = −θ0, with θ0 being negative, and
at the trailing edge the perturbation height h is initially zero, while x1 is initially unity. The
overall problem is nonlinear because of the conditions in (2.2c) and (2.2d). This, to repeat,
is in essence the model of Hicks & Smith (2010) who presented solutions of the system
for a variety of parameter values. The special case of a flat underbody can be treated more
analytically as shown by Hicks & Smith (2010), leading to a nonlinear system of ordinary
differential and algebraic equations. In the current study, however, a somewhat broader
argument based on pressure and velocity as in the present section will be preferred since
it holds for more general body shapes. Our concern in the remainder of this paper is with
the skimming response as the scaled mass and moment of inertia are increased.

3. Numerical solutions for increasing mass

Numerical solutions of (2.2) and (2.3) were obtained using a seventh- and eighth-order
Runge–Kutta adaptive step-size integration (Fehlberg 1968; Palmer & Smith 2020).
Importantly, there are three geometric conditions that are obtained at leading order from
the small-time analysis (Hicks & Smith 2010; Palmer & Smith 2020) that must be met
to initialise the numerical solution. Firstly, Y0 + x0θ0 = 0 must be fulfilled. This is a
constraint on the position of the body as it enters the initially undisturbed water layer.
Secondly, D0 = x2

0ω0/2 + x0(V0 + θ0 + a0) must also be met; D0 is the initial fluid
velocity at x = 0 and is here related to the initial trailing-edge position of the body, angular
momentum of the body, velocity of the body, inclination of the body and the constant term
of the underbody shape function. Thirdly, there is a condition for the position of the contact
point at small time given by

x′
1(0) = −3(x0ω0 + V0) +

√
9(x0ω0 + V0)2 + 8θ0(x0ω0 + V0)

4θ0
, (3.1)

as in Hicks & Smith (2010) and Palmer & Smith (2020). The limit case of a flat underbody,

F(x) = 0, (3.2)

is used in all the computational results in this section.
We first focus on the following representative initial conditions for each case: Y0 =

4, V0 = −1, scaled angle θ0 = −4, ω0 = 0 with D0 = x2
0ω0/2 + x0(V0 + θ0) and M = 3I,

with varied I = 1, 2, 3, 4. It is noteworthy that physical sense requires the limitation I < M
because of the definitions of M and I in terms of integrals.

The initial Y0 and θ0 values here are each slightly larger than the cases shown in Hicks &
Smith (2010) to allow for larger values of M and I before flooding (where fluid is able to run
over the top of the body, Smith & Liu 2017) and possibly sinking. Results for M = 3I are
presented since they capture the typical dynamics of the skimming motion. Physically, the
moment of inertia for a thin flat body with uniform density can be at most M (Liu 2017).
However, in many physical applications, the body spins around its vertical axis which
stabilises its contact angle with water via gyroscopic effect. This effect can be modelled
in two dimensions by increasing the body’s moment of inertia to be greater than what is
seemingly possible for a flat body (Liu 2017). When M = 2I (for comparison), the body
can complete successful skims for larger values of I, whilst larger ratios cause the body to
sink for smaller values of I. In each of these cases, however, the same dynamics is typically
seen (as indicated by the analysis in § 4).
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x1 0

–0.2

–0.4
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M = 3, I = 1

M = 6, I = 2

M = 9, I = 3

M = 12, I = 4

–0.8

–1.0
0 2 4 6

Time

8 10

Figure 2. Evolution of x1 as a function of time for varying M = 3I, I = 1, 2, 3, 4. The linear behaviours at
small times and for exit (dashed lines) are shown. See table 1 for the other parameter values.

Parameter Value

Y0 4
V0 −1
θ0 −4
ω0 0
D0 x2

0ω0/2 + x0(V0 + θ0) = −5
M = 3I I = 1, 2, 3, 4

Table 1. Table of control parameters for the numerical investigations.

The evolution of the leading contact position of the wetted region x1 throughout an
impact is shown in figure 2 to highlight solution trends as M and I increase. The same
qualitative behaviour is seen in each case with the leading contact position being initially
close to the trailing edge at touchdown and immediately moving in the negative x-direction
as the body descends into the water layer. Eventually a maximum wetted area is reached,
after which the body tends to rebound, if M and I are not too large for the given initial
conditions, with the leading contact position moving downstream and returning to the
trailing-edge position as water exit is approached. The physical limitation of the rebound
is that x1 ∈ [−1, 1] since x = −1 marks the leading edge of the body itself.

The time to body exit increases with increasing M and I, as does the extent of body
wetting as measured from x1 to x0(= 1). When I = 4, M = 12 (indeed, when I > 3, M >

9) the body is predicted to flood and quite likely sink (Smith & Liu 2017) as shown by the
entire underbody extent becoming wetted (x1(t) < −1): the modelling of the skimming
motion is then no longer considered to be physical and thus the numerical solution
is terminated. Overall, as a check, the small time response in (3.1) holds well throughout
the body entry, with the solution for the body’s trajectory remaining closer to the
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7
M = 3, I = 1

M = 6, I = 2

M = 9, I = 3

M = 12, I = 4

6

5

4

P(x1)

3

2

1

0 2 4 6

Time
8 10 12

Figure 3. Evolution of the pressure on the body at the moving contact point x1 as a function of time for
varying M = 3I, I = 1, 2, 3, 4. See table 1 for the other parameter values. The solution curves here terminate
at the times when either exiting or flooding occurs.

asymptote for longer as the mass increases. The exit solution in the computations, however,
as x1 returns to unity, at time te say, only matches the analytical exit form

x1 − 1 = −(te − t) + O((te − t)/ ln(te − t)), (3.3)

over shorter time frames with increasing M and I (a phenomenon that involves a delicate
effect of the logarithmic dependence as analysed in § 5). This dynamics is noticeably
different from that examined in Palmer & Smith (2020) (in brief, for larger mass: the
skimming motion is longer and deeper as measured by x1 vs time, the body undergoes a
super-elastic response (see figure 4), and the small-time entry solution holds for longer).
In addition, we have found no examples where dx1/dt ever exceeds unity. This tends to
suggest that the contact point never recedes in the laboratory frame of reference.

Now we consider the contact-point pressure at x1 presented in figure 3. In general, the
pressure initially increases to a maximum and after that it falls. As exit is approached this
decline becomes slower until the body is on the verge of exit, at which point there is rapid
change in the pressure. This occurs for all values of M and I and is in keeping with the
trends found in Hicks & Smith (2010) and Palmer & Smith (2020). As M and I increase
the qualitative shape of the pressure profile changes, with pressure increasing for a longer
period of time as the body descends further into the liquid layer. For the largest M and I for
which rebound occurs (M = 9, I = 3), a peak is reached, after which the pressure falls as
before; however, there is a quantitative change in the profile and a larger positive pressure
is sustained, declining more slowly. The consequences of these differences in pressure
are seen in figures 4 and 5, regarding the vertical and rotational progression of the body,
respectively. When I = 4, M = 12 the body floods and the pressure solution terminates
at the time when x1(t) < −1. Up until this juncture the trend in the curves for increasing
mass continues.

In figure 4, the vertical height of the body’s centre of mass, Y , initially falls linearly as
the downward momentum carries the body into the liquid layer. The body then begins
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Figure 4. (a) Evolution of Y as a function of time. (b) Evolution of V as a function of time. Each plot is for
varying M = 3I, I = 1, 2, 3, 4. See table 1 for the other parameter values. The solution curves here terminate
at the times when either exiting or flooding occurs.

to rise out of the water as the pressure on the wetted region increases, see figure 3.
Meanwhile, the (initially negative) vertical velocity increases throughout the majority of
the skimming motion even as the pressure falls away until some point is reached where
the velocity becomes near constant. When M and I are comparatively small, the body
leaves the water at a lower height than it entered. However, as M and I increase there is
a change in the dynamics and a super-elastic response, as previously shown in Liu (2017)
and Palmer & Smith (2020), occurs with the body leaving the water layer at a far greater
height and magnitude of velocity than it entered. This super-elastic response is a result of
the nonlinear deformation of the liquid layer where a relatively small portion of the large
horizontal kinetic energy of the liquid layer is converted into (relatively small) vertical
kinetic energy of the body (through the body’s angle of inclination and the developing
splash jet); see also Hewitt et al. (2011). In the laboratory frame, while the body can
rise with a vertical speed/angle greater than that with which it impacts, its horizontal
momentum must be converted into vertical momentum by means of the fluid flow and so
the body loses some horizontal velocity, albeit a small amount of higher order.

These differences in the entry and exit height of the body can be understood when
considered in parallel with the rotational behaviour of the body, as shown in figure 5. In
each case here there is initially an anti-clockwise moment on the body due to a positive
pressure over the wetted region as it progresses through the water layer. This causes the
body’s angle of inclination to increase throughout its skimming motion and the angular
velocity to simultaneously increase rapidly. Again, for the lower M and I cases, the trend
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Skimming impact: a thin heavy body on a shallow liquid layer
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Figure 5. (a) Evolution of θ as a function of time. (b) Evolution of ω as a function of time. Each plot is for
varying M = 3I, I = 1, 2, 3, 4. See table 1 for the other parameter values. The solution curves here terminate
at the times when either exiting or flooding occurs.

is consistent with the change in angle being monotonic and the angular velocity tending
towards a constant as exit is approached. By contrast, for increased M and I the body is
more resistive to the rotational torque and as such does not rotate as significantly. Indeed,
the body’s rotation reverses, becoming clockwise at some point, and thus a larger negative
angle of trajectory is maintained.

Physically, in the smaller M and I cases, the body is descending into the water layer,
undergoing a significant rotation which acts to lift the rear of the body upwards. This
causes the leading contact position of the wetted region to retreat towards the trailing
edge, producing a rapid decrease in the wetted region towards body exit. A swift change in
pressure then arises during the short exit period with the vertical and angular accelerations
diminishing toward zero. This helps to show why the exit asymptote only holds well within
a short time frame.

In the larger M and I cases on the other hand the close geometrical relation between
Y and θ also contributes to the super elastic response and significantly large Y, V values
upon exit. Note that there is a larger disturbance of the water layer, producing an isolated
wave like response in the water under the body. This movement of the water layer and
the lack of substantial rotation causes contact to be maintained with the body. As such, a
larger positive pressure persists across the body (figure 3) as the water layer deforms and
continues to push against the body. The delayed exit and slower decline in pressure then
leads to the super-elastic response, pushing the body out of the water with greater velocity
and height. This is in accordance with observations from empirical studies (Hewitt et al.
2011).
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Finally, regarding the case when I = 4, M = 12 in figures 4 and 5, the curves again
terminate when x1(t) < −1, having shown the same overall trend as mass increases. For
I > 4, M > 12 it is expected that the body trajectory will become more ballistic. As such,
each of the solution curves in figures 2 and 3 will become increasingly linear (with
corresponding simplifications in figures 4, 5), terminating at earlier times for x1(t) < −1.

4. Analysis for large mass

Given the general trends of delayed exiting (or flooding) as M and I increase in the
numerical results above, along with higher pressures and slower rotation, the detailed
account below returns to consider the original interaction equations of § 2 when the body
becomes heavier in the sense of increased M and I. There are two temporal stages then.
These are initially studied for a general underbody with fixed shape

F(x) = O(1), (4.1)

with their implications for the flat underbody of § 3 to be discussed later.

4.1. Stage 1 – the majority of the skim
This stage covers most of the body’s descent and ascent (if there is no sinking) in the water
after entry when a distinguished time scale of O(M1/3) brings in the lift and moment.
As such, the orders of magnitude indicate that x1(t) − x0 = O(1), with the time scaling
t = M1/3t∗. The particular scaling here follows from the expectation that only a relatively
narrow band of initial body velocities can lead to skimming instead of flooding. As
such, the height Y and the angle θ remain equal and opposite constant values to a first
approximation (following the small-time condition of Y0 + x0θ0 = 0 with x0 set equal to
unity) but subject to small perturbations of unknown order E say over the long time scale
of the complete skim. It follows from (2.3a) that the depth h is simply an O(1) function of
x to leading order with explicit time dependence arising first in the order-E perturbation,
while the conditions at the trailing edge and moving contact imply that the flow velocity u
and the pressure p have the same format as h. Hence both of the body-motion balances in
(2.3b) and (2.3c) indicate that ME(σ )−2 must be O(1) to avoid a ballistic motion leading to
flooding. Here, σ is the unknown time scale. We anticipate further that the E-perturbations
should also bring in the time derivatives in h, u, p, which suggests the balance E ∼ (σ )−1.
Combining the two balances here yields M(σ )−3 being O(1) and therefore the time scaling
of M1/3. Moreover it is inferred that the wetting speed scales as x′

1 = M−1/3 dx1/dt∗ in this
stage.

With the given underbody function F taken as O(1) in general, we expect the variations
in p, h, u, x1, Y, θ to be as follows:

( p, h, u, x1) = (p0, h0, u0, x̄1) + M−1/3(p1, h1, u1, x̄1) + · · · , (4.2a)

(Y, θ) = (−s, s) + M−1/3(Y0(t∗), θ0(t∗)) + · · · . (4.2b)

The O(1) constant s is expected to be negative, corresponding to the centre of mass being
above the water, while the small perturbations in Y , θ occurring over the present long time
scale indicate the narrow band of impact velocities (of order M−2/3) involved here.
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Skimming impact: a thin heavy body on a shallow liquid layer

We substitute the expansion into (2.2) and (2.3). At leading order, the unknown terms
having subscript zero together with x̄1 are seen to satisfy the reduced equations

h0x + u0x = 0, (4.3a)

u0x = −p0x, (4.3b)

h0 = −s + sx − F(x). (4.4)

Thus, h0 only depends on the x value. The boundary conditions at leading order become

at the trailing edge : p0(1, t∗) = 0, (4.5a)

at the contact point : p0(x̄1, t∗) = −u0(x̄1, t∗) = h0(x̄1, t∗). (4.5b)

Hence, we have the simple solution

p0 = h0 = −u0 = −s + sx − F(x), (4.6a)

along with the body-motion balances, which now require

Y ′′
0 =

∫ 1

x̄1

h0(x, t∗) dx, (4.6b)

I∗θ ′′
0 =

∫ 1

x̄1

xh0(x, t∗) dx, (4.6c)

where the O(1) positive constant I∗ = I/M and 0 < I∗ < 1. This restriction is in keeping
with the limitation on I given after (3.2). The integral contributions in (4.6b) and (4.6c) and
the perturbation form of (4.2a) and (4.2b) are the aspects that distinguish the present time
scale. However, we are one equation short since, although (4.6a) determines h0, (4.6b) and
(4.6c) yield only two equations for three unknown functions of t∗, namely Y0, θ0 and x̄1.
We continue to the next order to derive the third equation.

At the next order explicit time dependence appears in the form

h0t∗ + h1x + u1x = 0, (4.7a)

u0t∗ + u1x = −p1x, (4.7b)

h1 = Y0(t∗) + θ0(t∗), (4.8)

and although h0 and u0 are quasi-steady effects Y0 and θ0 turn out not to be. The relevant
boundary conditions are now as follows:

at the trailing edge : p1 = 0; (4.9a)

at the contact point : p1 + x̄1p′
0(x̄1) = −u1 − x̄1u′

0(x̄1) + x̄′
1u0(x̄1), (4.9b)

at the contact point : u1 + x̄1u′
0(x̄1) = −h1 − x̄1h′

0(x̄1) + x̄′
1h0(x̄1). (4.9c)

Here, we have left out t∗ explicitly from h0, u0 in the view of (4.6a). The reduced equations,
(4.7a) and (4.7b), imply that

u1(x, t∗) = −h1(x, t∗) + U1(t∗), (4.10a)

p1(x, t∗) = h1(x, t∗) + P1(t∗), (4.10b)

where the flow velocity contribution U1(t∗) is to be found but the Kutta condition
determines the pressure contribution here as P1(t∗) = −h1(1, t∗). Then, when we impose
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(4.9b), (4.9c) and also use (4.8) we find much cancellation takes place and leads to the two
equations

U1(t∗) = (s − sx̄1 + F(x̄1))x̄′
1 + Y0 + θ0, (4.11)

U1(t∗) = −(s − sx̄1 + F(x̄1))x̄′
1, (4.12)

for U1(t∗) and x̄′
1(t

∗) effectively. Hence we obtain the following:

Y0(t∗) + θ0(t∗) = 2x̄′
1(t

∗){−s + sx̄1(t∗) − F(x̄1)}, (4.13)

as the third equation for Y0, θ0, x̄1. Thus, the nonlinear problem in this stage reduces to
solving (4.6b), (4.6c) and (4.13).

Now focusing on the basic case of a flat underbody surface where F is zero, the three
equations reduce to

Y ′′
0 (t∗)

s
= −1

2
(x̄1(t∗) − 1)2, (4.14a)

I∗θ ′′
0 (t∗)
s

= −1
6
(x̄1(t∗) − 1)2(2x̄1(t∗) + 1), (4.14b)

Y0(t∗) + θ0(t∗)
s

= 2x̄′
1(t

∗)(x̄1(t∗) − 1). (4.14c)

Combining these, a nonlinear ordinary differential equation (ODE) is obtained for the
function x̄1(t∗), namely

(
x̄′

1(x̄1 − 1)
)′′ = (x̄1 − 1) (a0 + a1x̄1 + a2x̄2

1), (4.15)

where a0 = (3I∗ + 1)/(12I∗), a1 = (1 − 3I∗)/(12I∗) and a2 = −1/(6I∗) are known O(1)

constants. For small times t∗ the solution x̄1 must behave as 1 − Bt∗ + · · · in order to
match with the initiation form found in (3.1). In the present context B is an arbitrary
positive constant.

To simplify we put x̄1 − 1 = −(b1/b2)Q1/2, t∗ = (−2b1)
−1/3T with b1 = a1 + 2a2 <

0 and b2 = a2 < 0. This leaves us with a nonlinear ODE for the dependence of Q on T ,
namely

d3Q/dT3 = −Q + Q3/2. (4.16a)

The initial condition to match the trend emerging from the small-time behaviour is

Q ∼ CT2, for small T, (4.16b)

with the initiation constant C being a positive constant related to B (and therefore to x̄′
1(0)).

Thus we have a one-parameter system (4.16a) and (4.16b) to solve. The solution is plotted
in figure 6(a) for varying C. Higher values of the initiation constant C lead to a blowup
of Q within a finite scaled time, implying subsequent flooding and possible sinking of the
body, whereas lower values point to Q returning to zero within a finite time. The latter
indicates an approach to a full rebound, i.e. an exit phenomenon. Notably the separatrix is
at Csep = 0.1017179. The mathematical and physical meaning of Q (and its integral shown
in figure 6b) as a function of scaled time will be explored further in § 4.2 as regards the
exit and in § 5 where comparisons with the full model are discussed.

Properties for small and large initiation constant C are described in Appendix B. For C
less than some value Cmax < Csep (notably Cmax is not the maximum value of C overall,
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Figure 6. Large-mass analysis for stage 1. (a) Plots of Q vs T with varying values of constant C. (b) Plots
of the integral of Q with respect to T vs T with varying values of constant C. There is a separatrix for
Csep = 0.1017179. (c) Solutions to (4.14a)–(4.14c) for stage 1 perturbation values (4.2b) with Y0(0) = θ0(0) =
ω0(0) = 0 and V0(0) = −0.4973 to produce a near maximal skim where x̄1 ∼ −1 at the point of rebound.

rather the largest value of C for which a successful skim may occur) the most important
behaviour to study is the response near liftoff as the contact-related function Q → 0+
at a finite time T = T0− say. (Here, Cmax is the maximum value of C that allows liftoff
to ensue.) The response is linear in the sense that Q ∼ α1(F0 − F) where the positive
constant α1 can be derived numerically from the above solutions. However, it follows that,
near a finite scaled time t∗ = t∗0− , the behaviour is irregular in terms of x̄1, specifically

x̄1 ∼ 1 − α
1/2
2 (t∗0 − t∗)1/2, (4.17a)

where α2 = (b1/b2)
2(−2b1)

1/3α1, and so the scaled contact-point velocity is
dx̄1

dt
= M−1/3 dx̄1

dt∗
∼ 1

2
M−1/3α

1/2
2 (t∗0 − t∗)−1/2 as t∗ → t∗0− . (4.17b)

Therefore the relatively slow evolution of x̄1 during the above stage quickens significantly
now and indeed it reaches O(1) when (t∗0 − t∗) reduces to the order M−2/3. This defines
the final exit stage.

4.2. Stage 2 – exiting from the water
The final stage has the contact point approaching the trailing edge closely and has
the spatial and temporal scales x = 1 + M−1/3x̂, t = M1/3t∗0 + M−1/3 t̂, respectively.
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Figure 7. Large-mass analysis for stage 2. Graphs of R (blue) and its derivative (red) vs scaled time T̄ , along
with asymptotes (dashed) at large negative T̄ values, from (4.20b) and its derivative, and asymptotes at near-exit
times, from (4.23) and its derivative. The inset shows a close-up view very near exit.

The solution now expands as

( p, h, u, F) = M−1/3(p̂, ĥ, û, F̂) + · · · , (4.18a)

(Y, θ) = (−s, s) + M−1/3(Ŷ(t̂), θ̂ (t̂)) + · · · , (4.18b)

x1 = 1 + M−1/3x̂1 + · · · , (4.18c)

this being the form inferred from the ending of the previous stage. The contact-point
velocity here is of order unity.

Substituting (4.18a)–(4.18c) into the full problem we find Ŷ(t̂), θ̂ (t̂) are constants, given
by the matching at large negative t̂, and ĥ = β + sx̂. Here, the constant β = Ŷ + θ̂ is
known. Working through, we obtain the following equation for Z = x̂1(t̂):

ZZ′′(β + sZ) + 2sZZ′2 − 2sZZ′ + β(Z′ − 1)2 = 0. (4.19)

Putting β = sB (noting that we expect β > 0, s < 0 and so the constant B is negative),
we write Z = −BR, t̂ = −BT̄ (so that T̄ marches forward in time) to give us a nonlinear
equation for R(T̄), namely

RR′′(1 − R) − 2RR′2 + 2RR′ + (R′ − 1)2 = 0, (4.20a)

which is free of parameters. The boundary condition here is

R ∼ −|T̄|1/2 as T̄ → −∞, (4.20b)

from matching with the end of the previous stage in (4.17a). The solution is shown in
figure 7. The match (4.20b) is observed at large negative T̄ values in the figure while the
approach to final exit is highlighted in the inset.
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At final exit, as T̄ tends to some finite value T̄E, the contact-point position R tends to
zero. Therefore, to examine the behaviour of the system as exit is approached we integrate
(4.20a) to

R2(1 − R′) + R(R′ − 2) = (T̄E − T̄), (4.21)

on the assumption that R′R tends to zero; the subsequent working shows the assumption
is valid. As the contact point recedes, R rapidly tends to zero and we can neglect the term
with a factor R2 on the left-hand side at leading order. Thus, transforming back to Z and t̂
the near-exit solution is governed by:

Z(Z′ − 2) = (t̂E − t̂). (4.22)

The solution to (4.22) can be found implicitly, showing the final exit behaviour to be

Z = x̂1 ∼ −(t̂E − t̂){1 + (ln(t̂E − t̂))−1} + · · · . (4.23)

The implicit solutions of (4.22) and (4.23) are shown in figure 8. In particular, the
comparison in figure 8 and the result (4.23) agree with and confirm the exit response
shown in (3.3). The logarithmic form only appears in the present large-mass scenario
when stage 2 is encountered, very near to the final exit, a feature that explains the last-gasp
behaviour seen in the numerical results of the full system (2.2)–(2.3) in figures throughout
§ 3. See also figure 7 and its inset.

5. Comparisons

The analysis above demonstrates several interesting scales and trends present in the
skimming process of a large-mass body that would benefit from further exploration and
discussion. In § 4.1, it was shown that the skimming process as described by (2.2) and (2.3)
reduces to a one-parameter ODE for a body of large mass (4.16a) and (4.16b). As shown in
figures 6(a) and 6(b) the behaviour of the one-parameter system qualitatively changes with
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the constant C, from the initial condition (4.16b), with higher values (C > Csep) resulting
in a finite time blowup. In practice, prior to such blowup, flooding occurs (with x1 < −1
indicating that the liquid layer completely covers and submerges the body). Flooding also
applies for Cmax < C < Csep. Of particular interest here are the cases where C < Cmax
and how the dynamics of the skimming motion is affected by the stage 1 time and body
wetting scales (in § 4.1 the time scaling is shown to be M1/3 whilst the extent of body
wetting x1 − x0 remains O(1)). Indeed, from (4.16a) and (4.16b), it is possible to find
initial conditions that cause bodies of varying mass to undergo skimming motions of near
maximal wetting (i.e. the position of the contact point x1 getting as close as possible to −1
at the body leading edge yet still completing a full skim).

Using the definitions of Q, a0, a1, a2, b1 and b2 (presented between (4.15) and (4.16a)),
this ‘maximal’ skim occurs when x = xLE = −1 with the equivalent value for Q given by
QLE = (16/9)(1 + I∗)−2. Following from (4.16b) it is possible to find the value Cmax <

Csep such that the maximum value of Q equals QLE, representing a maximal skim in the
full system. For example, in figure 6(a) the scaled moment of inertia is I∗ = 1/3, and
therefore we seek the value of Cmax that leads to the maximum value of Q being QLE = 1
(we recall that in figure 6(a) the Q solution was seen to have been able to overshoot QLE
for Cmax < C < Csep, but this results in the body flooding).

Once the value of Cmax has been obtained for a given I∗, the small-time behaviour in
(4.16b) gives that

x1 − 1 ∼ 3 + 3I∗

2

(
1 + I∗

2I∗

)1/3

C1/2
maxt∗. (5.1)

Inserting this value into (4.15) provides a relationship between the initial conditions and
Cmax as follows:

Y0(t∗) + θ0(t∗)
s

∼ 2
(

3 + 3I∗

2

)2 (
1 + I∗

2I∗

)2/3

Cmaxt∗. (5.2)

Therefore, given two of the three initial conditions s, Y0(t∗) or θ0(t∗) as known or chosen,
the third may be calculated to produce a near maximal skimming motion. Additionally,
V0(0) and ω0(0) may be freely chosen to fulfil this relationship since, from (4.2b),
V0(t∗) = M−2/3Y0(t∗) and ω0(t∗) = M−2/3θ0(t∗) may be substituted into the above. It
should be noted that this method can be used to produce the asymptotic large-mass solution
for any two given initial conditions and maximum x1 value as desired.

In practice, numerically solving the system (4.16a) and (4.16b) is quick and thus iterative
methods can be used to find Cmax for a given value of I∗. Using a seventh-/eighth-order
time step adaptive Runge–Kutta method with small error tolerances we found that for
I∗ = 1/3, Cmax = 0.097899. For ω0 = 0 and s = −4 we thus expect for maximal skim the
value

V0 ∼ 2(11/3)Cmaxs = −0.4973M−2/3. (5.3)

The solutions to (4.14a)–(4.14c) are presented in figure 6(c) for the above parameters and
are plotted against the scaled time t∗.

The near maximal underbody wetting is clearly seen in the x1 profile. The profiles
corresponding to Y(t∗) and V(t∗) show that the super-elastic response as previously seen
in § 3 is captured by the reduced form in § 4. The super-elastic behaviour is enhanced
with increased mass since this leads to more body wetting and a longer, sustained contact
with the water layer. In addition the increased mass results show the interesting rotational
dynamics from § 3 with the body’s angle of attack increasing in the clockwise direction
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Time, t∗
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I = 50
Asymptote
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Figure 9. Evolution of x1 vs t∗ = M−1/3t for M = 3I and varying I = 10, 20, 30, 40, 50. The initial conditions
have been chosen to achieve the near maximal wetting of the underbody. The asymptotic solution is shown in
each case (black curves).

after rebound. Together with the trend in body velocity, the increasing clockwise body
angle helps the body maintain contact with the liquid layer as the trailing edge rotates
into the liquid layer. These results are indicative of an isolated wave and water jet building
under the body as it rebounds, the size of which increases with the body’s mass, and yields
the sustained interaction with the water sheet.

Next, we make comparisons with the numerical findings for the full system (2.2)–(2.3).
The value on the right-hand side in (5.3) is found to be marginally too negative for maximal
skimming according to the numerical results over the range of M/3 between 10 and 50.
Instead the value V0 = −0.4968M−2/3 produces the desired maximal results over that
range. This very small discrepancy concerning the difference between the asymptotic
and the full solutions is likely due to the use of the small-time solution (from which
the full system deviates before rebound) in determining (5.1), the limitation of numerical
accuracies in both the iterative method to find Cmax and the numerical solution, or possibly
the finite M-range mentioned. An O(1) time shift also clearly plays a role. However,
inserting the value of Cmax for V0 = −0.4968 into (4.16a) and (4.16b) we obtain a
maximum value of Q = 0.9975, which is very close to maximal wetting indeed. Thus,
presented in figures 9 to 11 are the results of (2.2)–(2.3) with the above initial conditions
and V0 = −0.4968M−2/3.

The specific comparisons in figures 9 to 11 concern x1, Y, V, θ and ω vs the scaled
time t∗ for the maximal cases. Plotted in figure 10(a) in the form M1/3(Y − Y(0)) are
solutions from the full system along with the asymptote Y0(t∗) from § 4, for comparison
purposes, and similarly in figures 10(b) and 11(a,b). The trends holding and the scales
showing appear to be in keeping with the analytical predictions of the previous section.
This is subject to the qualifications described in the previous paragraph of course and we
note that the approach of θ and ω to the asymptote is relatively slow for increasing mass.
Here, the analysis implies that the acceleration Y ′′ in height must be positive since it can
be shown to be proportional to Q, while the angular acceleration θ ′′ is initially positive
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Figure 10. (a) Value of (Y − Y0)M1/3 vs t∗. (b) Value of VM2/3 vs t∗. Each plot is for M = 3I and varying
I = 10, 20, 30, 40, 50. The initial conditions have been chosen to achieve the near maximal wetting of the
underbody. The asymptotic solution is shown (black curves). Also shown are Y0(t∗), V0(t∗) from (4.2b), for
comparison.

and later negative, and both analytical aspects are reflected in the full results in figures 10
and 11; likewise the analytical integral shown in figure 6(b) is proportional to the velocity
Y ′ and this asymptotic trend agrees with the full trend of figure 10.

6. Conclusion

The theory of oblique skimming impact on a shallow liquid layer has been used here to
help understand the behaviour for a body of enlarged mass. The trailing edge of the body
initially descends into the water layer with the wetted (pressured) region extending from
this point, a feature that was consistent across all cases. For cases where the body did not
simply remain submerged, the wetted region later receded back towards this point. If the
mass is not too large then, depending on the initial conditions, the body may complete a
successful skimming motion where the body is able to rebound and exit the liquid layer
with the maximal leading contact point of the wetted region remaining strictly within
the confines of the horizontal extent of the body. If, however, the mass is too large, the
body will become flooded and continue to descend into the liquid layer. In either case, the
body undergoes changes in its vertical position, vertical velocity, inclination and angular
velocity throughout the motion in response to the changes in the underbody pressures.
When the body completes a successful skim and exits the liquid layer into the air, the
body may continue under the influence of gravity to a subsequent skimming impact with
the liquid layer. The initial conditions for such a successful skim lie in a narrow band of
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Figure 11. (a) Value of (θ − θ0)M1/3 vs t∗. (b) Value of ωM2/3 vs t∗. Each plot is for M = 3I and varying
I = 10, 20, 30, 40, 50. The initial conditions have been chosen to achieve the near maximal wetting of the
underbody. The asymptotic solution is shown in each case (black curves). Also shown are θ0(t∗), ω0(t∗) from
(4.2b), for comparison.

impact velocities decreasing as the −2/3 power of body mass and producing a skim time
scale that is enhanced as the 1/3 power of mass.

In this work two distinct phases of the skimming motion were found, i.e. the majority of
the motion and the exit stage, for which the analysis showed how the dynamics of the body
trajectory changed dramatically with mass. Qualitative agreement exists with the flat plate
analysis of Hicks & Smith (2010) for smaller mass. For larger mass a super-elastic response
due to the vertical motion and rotational dynamics of the body is seen. Indeed, as noted
above, the analysis for large mass confirms the existence of a small band of velocities
and initial inclinations that may lead to successful skimming motions; conditions for
near maximal skimming motions are readily calculable from the reduced-order equations.
(Additionally, the logarithmic effect at exit as seen in the previous literature (Hicks &
Smith 2010; Liu & Smith 2014; Palmer & Smith 2020) is shown to also be relevant in
the large-mass regime and is of similar form to that in Palmer & Smith (2020), see also
our (3.3). An enhanced formula capturing this effect for the final stage prior to exit is
provided in implicit form in figures 7 and 8.)

The asymptotic results provide physical understanding of the skimming interaction and
of the solution trends with regard to the underbody pressure, rotational dynamics and
vertical motion. These results help to add overall clarity to the process that is governed
by the complex coupled nonlinear system (2.2) and (2.3). In general the asymptotics and
reduced-order analysis hold well in each case for the majority and for the exit parts of the
skimming motion. In practical terms the assumption of large values for the scaled mass M
leads to the ratio of the body density to the liquid density being supposed large (exactly
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Time, t∗
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I = 100
Asymptotic
F = 0

F = (1 – x2)
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Figure 12. Evolution of x1 vs t∗ = M−1/3t for M = 3I and varying I = 50, 100 (blue and red curves,
respectively). Dashed curves relates to the flat underbody case (F = 0) and the dotted curves relate to a curved
underbody case (F = (1 − x2)). The asymptotic solutions are shown in each case (black curves). The initial
conditions for both cases are the same and have been chosen to achieve the near maximal wetting of the
underbody for the flat body case.

how large depends on the overbody shape as well as the underbody shape). Stone and many
metals in particular give density ratios in the range 2–10 if the liquid involved is water.

To highlight the wider scope of the results presented in this paper, figure 12 presents a
comparison for increasing mass between the full solution and asymptotic solution for a flat
body from (4.14a)–(4.14c) and for a convex underbody of O(1) thickness where

F(x) = −(1 − x2). (6.1)

(Equations (4.6a)–(4.6c) and (4.13) are used for the curved body case (6.1).) The O(1)

thickness here is relative to the original scales of § 2 of course. In the curved body case the
initial angle, say θ̂0, between the underbody at the trailing edge and the water layer, is equal
to the initial angle for the flat plate case to account for the thickness of the body near the
trailing edge. Overall, the same general trends (shallower and shorter skimming motions)
are seen for the curved body with increasing mass and the asymptotic solution holds
reasonably well. These results also indicate that bodies with some curvature can complete
successful skimming motions for a wider range of velocities, including for conditions that
would lead to the sinking of equivalent flat bodies.

For subsequent work, it would be interesting to investigate fully the interplay between
larger mass and increased body curvature. This would include seeking to understand how
these two properties affect the presence of different stages in the skimming motion and
affect the overall skimming dynamics. Moreover, introducing further flexibility into the
modelling set-up would be of interest, in particular by allowing the trailing edge to move
freely, or by changing the underlying modelling assumptions by introducing a new scaling
that voids (2.1a,b). In particular, a moving trailing edge, as noted in Hicks & Smith (2010),
would allow for solutions with splash jets both in front and behind the body, as in Howison
et al. (2004) and Liu & Smith (2021). Given the significant splash jets present ahead of
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the body in the work presented here, it would be very interesting to see how these develop
at the trailing edge of the body also for increasing mass.

Further extensions to this work include the incorporation of gravity effects for larger
bodies or the consideration of a series of impacts for variously shaped bodies, extending
the work presented in Liu & Smith (2014). Exploring fully the relation between the present
shallow-water regime and the deeper-water models of Wagner (1931), Korobkin (2004)
and Howison et al. (2004), is also of interest, especially the properties of fluid–body
interaction for the regime where the body length and water depth are comparable. Perhaps
the greater challenge, however, is that associated with having the streamwise variation in
underbody height become comparable to the incident liquid-layer thickness (see figure 1
and the description in Appendix A), where the fluid flow part of the interaction becomes
nonlinear.
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Appendix A. Background of governing equations and conditions

This appendix acts to support the governing equations and conditions (2.2a)–(2.2e). Their
derivation is based on the Tuck & Dixon (1989) shallow-water analysis for a planing body
as extended to unsteady interaction by Hicks & Smith (2010) for skimming bodies. First,
suppose that the water depth to length ratio d1 is small and the underbody shape variation
is of the same order d1. The appropriate expansion of the flow solution is then

U = (ū, d1v̄) + · · · , P = p̄ + · · · , (A1a,b)

where x, y, t and quantities with overbars are of order unity. Substitution into the Euler
equations, given that viscous effects are negligible, yields the equations

ūx + v̄y = 0, (A2)

ūt + ūūx + v̄ūy = −p̄x(x, t), (A3)

with the vertical momentum balance requiring p̄ to be independent of y. A kinematic
condition holds at the upper moving boundary y = h̄(x, t) say (thus v̄ = h̄t + ūh̄x at y =
h̄) and a requirement of tangential flow holds at the wall (v̄ = 0 at y = 0). The flow is
irrotational, however, and so ∂ ū/∂y is zero because of the length scalings; hence we have
ū = ū(x, t) only. In view of this, (A3) reduces to the form

ūt + ūūx = −p̄x(x, t). (A4)

Also an integration of (A2) with respect to y from the wall to the upper boundary yields
the relation

h̄t + (ūh̄)x = 0. (A5)
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Therefore, we have the shallow water equations (A4), (A5) applying in the range x1(t) <

x < 1 corresponding to the wetted part of the underbody, with x1(t) giving the unknown
moving contact position.

The condition holding at the trailing edge of the body is the Kutta condition,

p̄ = 0 at x = 1. (A6)

The conditions at the leading edge of the wetted (pressured) region, which moves
according to x = x1(t), stem from the quasi-steady Euler equations (steady potential flow
equations) that apply in a ‘square’ region surrounding x = x1(t). Therein x − x1(t) = d1ξ
say and Laplace’s equation holds in terms of (ξ, y) where 0 < y < h̄(x1, t) is the constant
vertical extent locally. Either the relevant exact solution, given by Tuck & Dixon (1989),
or alternatively a balance of overall integral contributions, points to Bernoulli-type and
mass-and-momentum conservation relations holding between the uniform water layer flow
and reversed jet just upstream of x1 and the shallow water flow just downstream, such that

p̄ + 1
2

(
ū − x′

1(t)
)2 = 1

2

(
1 − x′

1(t)
)2 at x = x1(t), (A7)

(ū − x′
1(t)) =

(
2h̄−1/2 − 1

) (
1 − x′

1(t)
)

at x = x1(t). (A8)

The exact form of these relations is notable.
Second, suppose the underbody shape variation can be regarded as small within the

above system (A4)–(A8). The flow solution is then expected to involve small perturbations,
with

ū = 1 +
(

d2

d1

)
û + · · · , h̄ = 1 +

(
d2

d1

)
ĥ + · · · , p̄ =

(
d2

d1

)
p̂ + · · · , (A9a–c)

where the parameter d2/d1 is small, essentially as in Hicks & Smith (2010). Substitution
into (A4), (A5) leads to the equations

ût + ûx = −p̂x, (A10)

ĥt + ĥx + ûx = 0, (A11)

while the boundary conditions (A7), (A8) give

p̂ + (1 − x′
1(t))û = 0 at x = x1(t), (A12)

û = −(1 − x′
1(t))ĥ at x = x1(t), (A13)

from working to leading order throughout. The trailing-edge requirement (A6) remains
as it is but with p̄ replaced by p̂. The reduced system (A10)–(A13) coupled with the
trailing-edge condition confirms the form written in (2.2a)–(2.2e).

It is worth re-emphasising that the present reduced system applies within the framework
of (A4)–(A8) and that the exactness of the contact-point conditions (A7) and (A8) plays
an important part, leading directly to (2.2c)–(2.2d). (For gradually increased depth the
framework just mentioned may well remain valid for an inviscid fluid until the ratio d1
becomes O(1).) The free movement of the underbody in the current study also seems
worth mentioning again.

Appendix B. The initial behaviour of the skim

This appendix confirms that the onset of the first stage of § 4.1 agrees with the small-time
entry prediction (3.1) at small scaled times such that there is no real distinct prior stage
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within the large-mass response. We begin by differentiating (4.14c) with respect to the
scaled time to obtain

Y ′
0(t

∗) + θ ′
0(t

∗)
s

= 2x̄′′
1(t

∗)(x̄1(t∗) − 1) + 2
(
x̄′

1(t
∗)

)2
. (B1)

Thus it can be readily seen that the value V0 + ω0 implied by (4.14c) is small and negative
since, in our scaled system, x̄1(t∗) is expected to behave like 1 − Bt∗ for small scaled time,
with B a positive constant as in the main text, and Y ′

0(t
∗) and θ ′

0(t
∗) are of small orders of

magnitude. Thus

(V0 + ω0) = c0δ
2, (B2)

with δ small and positive and the constant c0 of O(1). Substituting into (3.1) the initial
slope of the x1(t) curve to leading order, denoted here as μ say, is given by

μ = −2−1/2δ. (B3)

Thus, a small negative (V0 + ω0) value of order δ2 makes the slope μ small and negative
of order δ, based on (3.1). This ordering regarding the slope is as in the present first stage
and the general small time entry. Hence, we have consistency between the start of the first
stage and the small entry time formula, such that there is no significantly distinct extra
stage at small times.

Appendix C. Properties for extreme initiation constants

The working here concerns the reduced system associated with (4.16a) (4.16b), for which
we examine the effects of the initial-value parameter C > 0 being small or large. First, if
C is small then the main time scale T = T∗ is of O(1) and Q expands as CQ∗ + · · · . So
(4.16a), (4.16b) reduces to

d3Q∗

dT∗3 = −Q∗, subject to Q∗ ∼ T∗2 for T∗ � 1, (C1)

at leading order. The form (B1) is identical with a normalised problem addressed by
Palmer & Smith (2020) and it leads to exit (Q∗ → 0+) occurring at a finite value of T∗.
The property that Q remains small throughout corresponds to the body trajectory giving
only a shallow skim in this case.

Second, if C is large then the appropriate time scale is shortened such that T =
C−1/8T∗∗ (where the ∗∗ notation indicates the analysis with large C) and Q becomes large,
being C3/4Q∗∗ to leading order. Here, T∗∗, Q∗∗ are O(1). Hence, the dominant terms in
(4.16a), (4.16b) give

d3Q∗∗

dT∗∗3 = Q∗∗3/2
, subject to Q∗∗ ∼ T∗∗2 for T∗∗ � 1. (C2)

The effective curvature d2Q∗∗/dT∗∗2 therefore increases monotonically with time T∗∗
and the solution produces a singularity as T∗∗ tends to some finite value T∗∗

0 such that
Q∗∗ ∼ (T∗∗

0 − T∗∗)−6. The corresponding trajectory of the body involves a relatively fast
descent in which the wetting soon reaches the leading edge of the underbody and then
leads on to flooding over the overbody surface. The responses for the two extremes above
are consistent with the results for the fuller system discussed in § 4.
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