ON PRODUCTS OF MODULES IN A TOPOS

JAVAD TAVAKOLI

(Received 29 September 1982; revised 11 May 1983)

Communicated by R. H. Street

Abstract

In an elementary topos if R is a ring and X is a decidable object then there exists a canonical homomorphism from the coproduct of an X-family of R-modules to the product of the same family. In this paper it is shown that this homomorphisms is a monomorphism.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 18 B 25; secondary 03 G 30.

In the category Set of sets if X is a set and R is a ring then for an X-family $\{M_x\}_{x \in X}$ of R-modules there is always a canonical monomorphism $\phi: \bigoplus_{x \in X} M_x \to \prod_{x \in X} M_x$, with $\pi_x \phi i_x = 1_{M_x}$, where π_x and i_x are the x th projection and injection, respectively. In [5] it is shown, by an example, that in an elementary topos such a homomorphism does not always exist. However, if we choose X, the index object, to be decidable, it is proved that such a canonical homomorphism exists.

In this paper we show that the canonical homomorphism given in [5] is a monomorphism. A closely related work can be found for the case of abelian groups in [1].

Throughout the paper, E denotes an elementary topos with natural numbers object, and R is a ring in E. All other notation, not explained here, can be found in [2] or [3].

Let A be an E-indexed category with \lim_{\to} and small homs, let C be an internal category of E, let $\Gamma: C \to E$ be an internal functor with $\lim_{\to} \Gamma = I$ and for each J in E let $\Gamma^J(c) \xrightarrow{\lambda_c^J} J^*I$ be the canonical injection, where $c \in [J, C]$.

^{© 1985} Australian Mathematical Society 0263-6115/85 \$A2.00 + 0.00

1. LEMMA. If $A \in A^{I}$ then

$$\sum_{I} A \simeq \lim_{C} \sum_{\Gamma^{J}(c)} \lambda_{c}^{J_{*}} \pi_{2}^{*} A,$$

where $\pi_2: J \times I \to I$ is the projection.

PROOF. Let $B \in A^1$. Then we have the following natural isomorphisms:

$$\lim_{C} \sum_{\Gamma^{J}(c)} \lambda_{c}^{J_{c}} \pi_{2}^{*} A \to B;$$

indexed cocone $\left\langle \sum_{\Gamma^{J}(c)} \lambda_{c}^{J_{c}} \pi_{2}^{*} A \to J^{*} B \right\rangle_{c \in [J, C]};$
compatible families $\left\langle \lambda_{c}^{J_{c}} \pi_{2}^{*} A \to \Gamma^{J}(c)^{*} J^{*} B \right\rangle_{c \in [J, C]};$
compatible families $\left\langle \lambda_{c}^{J_{c}} \pi_{2}^{*} A \to \lambda_{c}^{J_{c}} \pi_{2}^{*} I^{*} B \right\rangle_{c \in [J, C]};$
indexed cocone $\left\langle \pi_{2} \lambda_{c}^{J} \to \operatorname{Hom}^{I}(A, I^{*} B) \right\rangle_{c \in [J, C]};$
 $1 \approx \lim_{C} \pi_{2} \lambda_{c}^{J} \to \operatorname{Hom}^{I}(A, I^{*} B);$
 $A \to I^{*} B;$
 $\sum_{I} A \to B.$

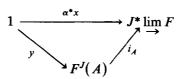
Hence by the Yoneda Lemma,

$$\lim_{C} \sum_{\Gamma'(c)} \lambda_c^{J_*} \pi_2^* A \simeq \sum_{I} A.$$

We will use the following theorem, due to D. Schumacher, which is proved in [4].

2. THEOREM. Let A be a small filtered indexed category and let $F: A \rightarrow E$ be an indexed functor.

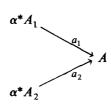
(a) For every $1 \xrightarrow{x} I^* \lim_{x} F$ there exist $J \xrightarrow{\alpha} I$, $A \in A^J$ and $1 \xrightarrow{y} F^J(A)$ such that

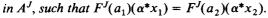


commutes, where i_A is indexed.

Javad Tavakoli

(b) For $I \xrightarrow{x_1} F^I A_1$ and $I \xrightarrow{x_2} F^I A_2$, $i_{A_1}(x_1) = i_{A_2}(x_2)$ if and only if there exist $J \xrightarrow{\alpha} I$ and





Let X be an object in E and let E_{fin} be the internalization of E_{fc} , the category of finite cardinals, in the sense that its external category of *I*-elements is equivalent to $(E/I)_{\text{fc}}$. For more details and the proof of the following lemma see [5] and [4].

3. LEMMA. The internal category E_{fin}/X is filtered.

Let *M* be an object in $\operatorname{Mod}_R(E)^X$. Define a functor *P*: $E_{\operatorname{fin}}/X \to \operatorname{Mod}_R(E)$ as follows: for any *I*-object of E_{fin}/X , i.e. $(I \xrightarrow{p} N, [p] \xrightarrow{x} I^*X), P^I([p] \xrightarrow{x} I^*X) = \bigoplus_{p \to I} x^* \pi_2^* M$, where $\pi_2: I \times X \to X$, and for any *I*-morphism

$$[p] \xrightarrow{f} [q]$$
$$\xrightarrow{} \swarrow \qquad \checkmark$$
$$I^* X$$

 $P^{I}(f)$ is defined by

$$\begin{bmatrix} \bigoplus_{[p]} x^* \pi_2^* M, L \\ [p] \end{bmatrix} \approx \begin{bmatrix} \pi_2^* M, \prod_x [p]^* L \\ \uparrow [\pi_2^* M, f^*] \\ \oplus_{[q]} y^* \pi_2^* M, L \end{bmatrix} \approx \begin{bmatrix} \pi_2^* M, \prod_y [q]^* L \\ y \end{bmatrix},$$

where L is in $\operatorname{Mod}_{R}(E)^{I}$. It is easy to see that P is an indexed functor.

Let *I* be a decidable object in *E*, i.e. $\delta: I \rightarrow I \times I$, the diagonal morphism, has a complement $J \xrightarrow{c} I \times I$ such that $\binom{\delta}{c}$: $I + J \rightarrow I \times I$ is an isomorphism. Then it is well known that $E/I \times I \xrightarrow{(\delta^*, c^*)} E/I \times E/J$ is an equivalence of categories. This extends to an equivalence $\alpha: \operatorname{Mod}_R(E)^{I \times I} \rightarrow \operatorname{Mod}_R(E)^I \times \operatorname{Mod}_R(E)^J$. For *M* in $\operatorname{Mod}_R(E)^I$, let $\alpha(\pi_1^*M) = (M_1, M_1')$ and $\alpha(\pi_2^*M) = (M_2, M_2')$, where $I \xrightarrow{\pi_2} I \times I \xrightarrow{\pi_1} I$ are the projections and M_1' , M_2' are in $\operatorname{Mod}_R(E)^J$. Since $\pi_1 \delta = \pi_2 \delta = 1_I$, then $M_1 \simeq M \simeq M_2$ in $\operatorname{Mod}_R(E)^I$, i.e. there is an isomorphism $M_1 \xrightarrow{\theta} M_2$. Thus we have a morphism

$$\alpha(\pi_1^*M) = (M_1, M_1') \stackrel{(\theta, 0)}{\rightarrow} (M_2, M_2') = \alpha(\pi_2^*M)$$

and so there is a homomorphism $\psi: \pi_1^*M \to \pi_2^*M$, because α is an equivalence. By the Beck condition the canonical homomorphism $\gamma: \bigoplus_{\pi_2} \pi_1^*M \to I^* \bigoplus_I M$ is an isomorphism, and hence we have the following natural isomorphisms:

$$\begin{array}{cccc} \pi_1^*M & \stackrel{\psi}{\to} & \pi_2^*M & \text{ in } \operatorname{Mod}_R(E)^{I \times I}; \\ \bigoplus_{\substack{\pi_2 \\ I^*}} & \pi_1^*M & \stackrel{\to}{\to} & M & \text{ in } \operatorname{Mod}_R(E)^I; \\ I^* & \bigoplus_I & M & \stackrel{\overline{\phi}}{\to} & M & \text{ in } \operatorname{Mod}_R(E)^I; \\ \bigoplus_I & M & \stackrel{\to}{\to} & \prod_I M & \text{ in } \operatorname{Mod}_R(E). \end{array}$$

If η' is the unit for $\bigoplus_{\pi_2} \to \pi_2^*$ and ε is the counit for $I^* \vdash \prod_I$, then ψ and ϕ are related by the equation $(\pi_2^* \overline{\phi})(\pi_2^* \gamma) \eta'_{\pi_1^* M} = \psi$, where $\overline{\phi} = \varepsilon_M(I^* \phi)$. On the other hand the canonical morphism γ satisfies $(\pi_2^* \gamma) \eta'_{\pi_1^* M} = \pi_1^* \eta_M$, where η is the unit for $I^* \vdash \prod_I$, so we have $(\pi_2^* \overline{\phi})(\pi_1^* \eta_M) = \psi$. Apply δ^* to this equality to get $\overline{\phi} \eta_M = \delta^* \psi = 1_M$ (by definition of ψ), i.e. $\varepsilon_M(I^* \phi) \eta_M = 1_M$.

The main result of this paper is as follows.

4. THEOREM. Let X be a decidable object in E and M be an object in $\operatorname{Mod}_R(E)^X$. Then the homomorphism $\bigoplus_X M \xrightarrow{\Phi} \prod_X M$, defined above, is a monomorphism.

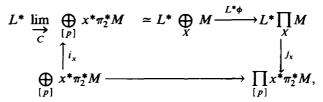
PROOF. Let $T \xrightarrow{m} \bigoplus_{X} M$ be a *T*-element of $\bigoplus_{X} M$ such that $\phi(m) = 0$. We have to show that m = 0. By Lemma 1, $\bigoplus_{X} M \approx \lim_{x \to C} \bigoplus_{[p]} x^* \pi_2^* M$, where $[p] \xrightarrow{x} I^* X$ is in E/I and $C = E_{\text{fin}}/X$. Apply the first part of Theorem 2 to the filtered indexed category E_{fin}/X and the indexed functor *P*, defined above (we can do that because filtered colimits in $\text{Mod}_R(E)$ are the same as in *E*) to get $L \xrightarrow{\infty} T$, *p*: $L \rightarrow N$, *x*: $[p] \rightarrow L^*X$, and $1 \rightarrow \bigoplus_{[p]} x^* \pi_2^* M$ such that $\alpha^* m = i_x y$, where i_x : $P^L(x) \rightarrow L^* \lim_{x \to C} P$ is the indexed injection. But by the properties of colimit the following diagram commutes:

$$[p]^*L^* \lim_{[p]} \bigoplus_{[p]} x^*\pi_2^*M \approx x^*\pi_2^*X^* \bigoplus_X M \xrightarrow{x^*\pi_2^*X^*\phi} x^*\pi_2^*X^* \prod_X M$$

$$i_{[p]^*x} = [p]^*i_x \int_{[p]} x^*\pi_2^*M \xrightarrow{\overline{\phi}} x^*\pi_2^*\overline{\phi} x^*\pi_2^*M.$$

Javad Tavakoli

Since $x^*\pi_2^*X^* = [p]^*L^*$, then by transpose of the above diagram along $[p]^*$ we get



where j_x is the transpose of $x^*\pi_2^*\varepsilon_M$. Now, by Theorem 2.3 [5],

$$\bigoplus_{[p]} x^* \pi_2^* M \xrightarrow{\phi} \prod_{[p]} x^* \pi_2^* M$$

is an isomorphism. Therefore $j_x L^* \phi(\alpha^* m) = j_x L^* \phi(i_x y) = \phi(y) = 0$ implies y = 0, so $\alpha^* m = 0$. But α is an epimorphism and hence m = 0, as required.

References

- R. Harting, 'Internal coproduct of Abelian groups in an elementary topos,' Comm. in Alg. 10(11), 1173-1237 (1982).
- [2] P. Johnstone, Topos theory (L. M. S. Mathematical Monographs No. 10, Academic Press, 1977).
- [3] R. Paré and D. Schumacher, 'Abstract families and the adjoint functor theorems' (Indexed Categories and their Application, Springer Lecture Notes in Math. 661 (1978)), 1-125.
- [4] J. Tavakoli, Vector spaces in topoi, Ph.D., thesis, Dalhousie University, Canada (1980).
- [5] J. Tavakoli, 'Elements of free modules in topoi', Comm. in Alg. 10(2) 171-201 (1982).

Department of Mathematics Mashhad University Mashhad Iran