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Abstract. Let VD be the Shimura curve over Q attached to the indefinite rational quaternion

algebra of discriminant D. In this note we investigate the group of automorphisms of VD and
prove that, in many cases, it is the Atkin–Lehner group. Moreover, we determine the family of
bielliptic Shimura curves ðover �Q and over QÞ and we use it to study the set of rational points

on VD over quadratic fields. Finally, we obtain explicit equations of elliptic Atkin–Lehner
quotients of VD.
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Introduction

Let B be an indefinite rational quaternion algebra and choose a maximal order

O � B of integers. Let D ¼ p1 � . . . � p2r, pi prime numbers, be the discriminant of

B. We can view G ¼ fg 2 O; nðgÞ ¼ 1g as an arithmetic subgroup of SL2ðRÞ through

an identification C : B� R ffi M2ðRÞ and consider the Riemann surface GnH, where

H denotes the upper-half plane of Poincaré. Shimura ([30]) showed that this is the set

of complex points of an algebraic curve VD=Q over Q which parametrizes Abelian

surfaces with quaternionic multiplication by O.

The classical modular case arises when we consider the split quaternion algebra

B ¼ M2ðQÞ of discriminant D ¼ 1. In this case, V1 ¼ A1
Q is the j-line that classifies

elliptic curves or, by squaring, Abelian surfaces with multiplication by M2ðZÞ.

Throughout, we will limit ourselves to nonsplit quaternion algebras, that is, D 6¼ 1.

In this case, G has no parabolic elements and GnH is already compact so there are

no cusps and the automorphic forms on VD do not admit Fourier expansions. In this

regard, see [22].

As in the modular case, the elements of the Atkin–Lehner group W ¼

fwm:m j Dg ffi C2r
2 , where C2 is the cyclic group of order two, act as rational involu-

tions on the Shimura curve VD and there is a natural inclusion W � AutQðVDÞ (see,
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e.g., [12, 25]). The aim of the present study is to examine the full group of auto-

morphisms AutðVD � CÞ of these curves. In the first section we describe its group

structure and the field of definition of its elements and we prove that

AutðVD � CÞ ¼ W in many cases. In [24], Ogg studied the group of automorphisms

of the modular curves X0ðNÞ for square-free levels N and there, the action of

AutðX0ðNÞÞ on the set of cusps played a fundamental role. When D > 1, the difficulty

lies precisely in the absence of cusps on VD.

In Section 2, the family of Shimura curves VD that admit bielliptic involutions is

determined. The hyperelliptic problem was already settled by Michon and Ogg inde-

pendently in [21, 23, 25] and the family of bielliptic modular curves X0ðNÞ was given

in [4]. Since AutðX0ðNÞÞ is largely understood ([24, 17]), the main point in [4] was to

count the number of fixed points of the non-Atkin–Lehner involutions that appear

when 4 j N or 9 j N. In our case, this difficulty does not arise but, on the other hand,

the automorphism groups of the Shimura curves VD are much less known.

In the last section, we derive some arithmetical consequences from the above

results concerning the set of rational points on VD over quadratic fields. Recall that

by a fundamental theorem of Shimura, there are no real points on Shimura curves

and therefore quadratic imaginary fields are the simplest fields over which these

curves may have rational points. Our main theorem in this section completely solves

a question posed and studied by Kamienny in [16]: which Shimura curves VD of

genus g5 2 admit infinitely many quadratic points? This question is motivated by

Faltings’ theorem on Mordell’s conjecture and the answer is based upon ideas of

Abramovich, Harris and Silverman (see [1] and [11]).

Finally, we use the �Cerednik–Drinfeld theory to compute equations of elliptic

Atkin–Lehner quotients of Shimura curves. Table III in Section 3 gives a Weierstrass

equation of all elliptic curves of the form VD=hwi where w 2 AutðVDÞ is any Q-biel-

liptic involution on the curve. Some examples were already given in [29].

The main tools used in this paper come from the reduction of Shimura curves at

both good and bad places. Drinfeld constructed a projective model MD over Z of

the Shimura curve VD which extends the moduli interpretation given by Shimura

to Abelian schemes over arbitrary bases ([6, 7, 10]). Morita showed thatMD has good

reduction at any prime p 6 jD and Shimura ([30]) determined the zeta function of the

special fibre of MD at p. Moreover, the �Cerednik–Drinfeld theory ([6, 8, 10, 14]) pro-

vides a good account of the behaviour of the reduction of MD (mod p) when p j D.

NOTATIONS. We will denote by b 7! �b the conjugation map on B. The reduced

trace and reduced norm on B will be denoted respectively by trðbÞ ¼ bþ �b and

nðbÞ ¼ b � �b.

1. The Group of Automorphisms of Shimura Curves

Throughout, VD will denote the canonical model over Q of the Shimura curve of dis-

criminant D ¼ p1 � . . . � p2r 6¼ 1 (cf. [30]). It is a proper smooth scheme over Q of
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dimension 1. LetAutQðVDÞ be the group ofQ-automorphisms ofVD that sits inside the

full group of automorphisms AutCðVD � CÞ of the complex algebraic curve VD � C.

PROPOSITION 1. If gðVDÞ5 2, then

ð1Þ All automorphisms of VD � C are defined over Q . That is: AutCðVD � CÞ ¼

AutQðVDÞ.

ð2Þ AutQðVDÞ ffi Cs
2, s5 2r.

Proof. In [27], Ribet proved that all the endomorphisms of an Abelian variety

A=K with semistable reduction over a number field K are defined over an unramified

extension of K. The Jacobian variety JD=Q of VD has good reduction at primes p 6 jD

and, from [15], we know that the identity’s connected component of the reduction

mod p, p j D, of the Néron model of JD is a torus. Hence, JD has semistable

reduction over Q and all its endomorphisms are rational becauseQ has no nontrivial

unramified extensions.

Since, by Hurwitz theorem, AutCðVD � CÞ is a finite group, any automorphism of

VD � C is defined over �Q. Moreover, the natural map Aut �QðVD � �QÞ !

Aut �QðJD � �QÞ is injective and Galð �Q=QÞ-equivariant and therefore, we conclude

from above that all automorphisms of VD � C are rational.

For the second part, let X0ðDÞ=Q be the modular curve of level D and consider the

new part J0ðDÞ
new=Q of its Jacobian variety J0ðDÞ. It is well known ([27]) that

End0QðJ0ðDÞ
new

Þ ffi T�Q ffi
Qt

i¼1 Ki, where T denotes the Hecke algebra of level D

and Ki are totally real number fields. Ribet’s isogeny theorem ([28]) states the exis-

tence of an isogeny j : JD �! J0ðDÞ
new between JD and J0ðDÞ

new. This isogeny is

Hecke invariant (but sign-interchanging for the Atkin–Lehner action) and defined

over Q. Hence, the ring of endomorphisms EndQðJDÞ is an order in
Qt

i¼1 Ki. An

automorphism of the curve VD induces an automorphism of finite order on JD.

Moreover, the group of integral units in
Qt

i¼1 Ki is isomorphic to Ct
2. So

AutQðVDÞ ffi Cs
2 with 2r4 s4 t, the first inequality holding just because

W � AutQðVDÞ. &

We conclude that any automorphism of VD acts as a rational involution on it.

In view of the above proposition, we will simply denote the group

AutCðVD � CÞ ¼ AutQðVDÞ by AutðVDÞ. Naturally we ask whether the Atkin–Leh-

ner group is the full group of automorphisms of the curve, provided that

gðVDÞ5 2. This is the case for modular curves X0ðNÞ of square free level N,

N 6¼ 37 ([17, 24]).

Recall that an elliptic point on the curve VD is a branched point of the natural pro-

jection H ! GnH¼ VDðCÞ. The stabilizers of those elliptic points in G=f�1g are of

order 2 or 3. 2-elliptic points (resp. 3-elliptic points) correspond to G-conjugacy
classes of embeddings of the quadratic order Z½i�, i2 ¼ �1 (resp. Z½r�, r3 ¼ 1) in

the quaternion order O. Their cardinality is given by
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e2 ¼
Y
‘jD

1�
�4

‘

� �� �
; e3 ¼

Y
‘jD

1�
�3

‘

� �� �
;

where ð�
�
Þ denotes the Kronecker symbol.

THEOREM 2. Let VD be the Shimura curve of discriminant D. If it has no elliptic

points, then AutðVDÞ ¼ W.

Proof. If there are no elliptic points on VDðCÞ, then the natural projection

H ! GnH ¼ VDðCÞ is the universal cover of the Riemann surface VDðCÞ so

AutðVDÞ ffi NormPGLþ

2
ðRÞðGÞ=G. Here the superindex þ denotes matrices with positive

determinant. It is known that W ffi NormB	ðGÞ=Q	G ffi C2r
2 ([21, 25]). We observe

now that the Q-vector space spanned by G is hGiQ ¼ B. Indeed, since the reduced

norm n is indefinite on the space of pure quaternions B0 ¼ fb 2 B; trðbÞ ¼ 0g, we can

find linearly independent elements o1;o2;o3 2 B0 such that Z½oi� � B is a real

quadratic order in B. Then, by solving the corresponding Pell equations, we find

units gi 2 Z½oi� \ G, gi 6¼ �1, such that f1; g1; g2; g3g is a Q-basis of B.

Hence, any a 2 NormGLþ

2
ðRÞðGÞ will actually normalize B	. By the Skolem–Noe-

ther theorem, a induces an inner automorphism of B so that a 2 R	NormB	ðGÞ. This
shows that AutðVDÞ ¼ W.

Remark. In proving the above theorem, we have also shown that the Atkin–

Lehner group W of an arbitrary Shimura curve VD is exactly the subgroup of

automorphisms that lift to a Möbius transformation on H through the natural

uniformization H ! VDðCÞ ¼ GnH.

The proof remains valid for Eichler orders of square-free level N and therefore, it

generalizes an analogous result of Lehner and Newman for discriminant D ¼ 1

([20]).

The next theorem is similar in spirit to Theorem 2 and requires a previous lemma

due to Ogg.

LEMMA 3 ([24]). Let K be a field and mðKÞ its group of roots of unity. Let

p ¼ maxð1; charKÞ the characteristic exponent of K. Let C be an irreducible curve

defined over K and P 2 CðKÞ a regular point on it. Let G be a finite group of K-

automorphisms acting on C and fixing the point P. Then there is a homomorphism

f : G ! mðKÞ whose kernel is a p-group.

THEOREM 4. Let D ¼ 2p, 3p; p a prime number. If gðVDÞ5 2, then AutðVDÞ ¼

W ffi C2 	 C2.

Proof. Suppose first that D ¼ 2p with p 
 3 (mod 4). In this case, the fixed

points on VD of the Atkin–Lehner involution w2 are Heegner points (see, e.g., [2] for

a general account). Their coordinates on Shimura’s canonical model VD generate

certain class fields. More precisely, if the genus gðVDÞ is even, then w2 exactly fixes

two points P, P0 with complex multiplication by the quadratic order Z½i� and hence
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([32]) P, P0 2 VDðQðiÞÞ. If gðVDÞ is odd, then, besides P and P0, w2 fixes two more

points Q, Q0 2 VDðQð
ffiffiffiffiffiffiffi
�2

p
ÞÞ which have CM by Z½

ffiffiffiffiffiffiffi
�2

p
�. As we have seen, AutðVDÞ

is an Abelian group so it acts on the set of fixed points of w2 on VD. Since all

automorphisms are rational, they must keep the field of rationality of these points so

that AutðVDÞ actually acts on fP;P0g. It follows from the previous lemma that the

order of the stabilizer of P or P0 in AutðVDÞ is at most 2. Hence, #AutðVDÞ4 4 and

AutðVDÞ ¼ W.

Suppose now that D ¼ 2p, p 
 1 (mod 4) or D ¼ 3p, p 
 1 (mod 3). By the theory

of �Cerednik and Drinfeld, the special fibre MD � Fp of the reduction mod p of the

integral model MD of our Shimura curve consists of two rational irreducible compo-

nents Z, Z0 defined over Fp2 . The complete local rings of the intersection points of Z

and Z0 over the maximal unramified extension Zunr
p of Zp are isomorphic to

Zunr
p ½x; y�=ðxy� p‘Þ for some length ‘5 1. The reduction mod p of the Atkin–Lehner

involution wp switches Z and Z0, fixing the double points of intersection. Among

these double points, there is exactly one, say ~Q, which has length 2, as it follows from

[18]. Thus AutðVDÞ acting on MD � Fp must fix ~Q. Recalling now that

AutðVDÞ ffi Cs
2, we again apply Ogg’s lemma to the curve Z=Fp2 (p 6¼ 2) and the point

~Q to obtain that #AutðVDÞ4 4. Therefore, AutðVDÞ ¼ W.

In the remaining case, namely when D ¼ 3p, p 
 �1 (mod 3), we observe the cur-

ious phenomenon that ‘ ¼ 109 is a prime of good reduction for the Shimura curve

VD that yields

#MD � F109ðF109Þ 6
 0 ðmod 4Þ

except for the two exceptional cases D ¼ 3	 89 and D ¼ 3	 137. In any case, we

check that #M3	89 � F67ðF67Þ ¼ 94 and #M3	137 � F103ðF103Þ ¼ 98. This is carried

out by using the explicit formula for the number of rational points over finite fields

of the reduction of Shimura curves at good places given by Jordan and Livné in

[14]. From this we proceed as above: since all automorphisms of VD are defined

over Q, their reduction mod ‘ must preserve the F‘-rational points on MD � F‘
and we apply Ogg’s lemma to the regular curve MD � F‘ to conclude that

AutðVDÞ ¼ W. &

Remark. The first argument can be adapted for more general discriminants in an

obvious way. For instance, if D ¼ pd where p is a prime integer, p 
 3 (mod 8), and

(�p
‘ Þ ¼ �1 for any ‘ j d, then we again obtain that AutðVDÞ ¼ W because the Hilbert

class field of Qð
ffiffiffiffiffiffiffi
�p

p
Þ is strictly contained in the ring class field of conductor 2 and,

by genus theory, hð�pÞ is odd.

EXAMPLE. Shimura curve quotient Vþ
291 ¼ V291=W has genus 2 and therefore, it is

hyperelliptic. However, the hyperelliptic involution on Vþ
291 is exceptional: it does not

lift to a Möbius transformation on H through p : H ! Vþ
291ðCÞ ¼ G �WnH, while all

automorphisms of V291 are of Atkin–Lehner type by Theorem 4. This is caused by

the fact that p is not the universal cover of Vþ
291.
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2. Bielliptic Shimura Curves

Recall that an algebraic curve C of genus g5 2 is (geometrically) bielliptic if it

admits a degree 2 map j : C ! E onto a curve E of genus 1. We will ignore fields

of rationality until the next section. Alternatively, C is bielliptic iff there is an invo-

lutive automorphism acting on it with 2g� 2 fixed points. We present now some

facts about bielliptic curves C such that, like Shimura curves, AutðCÞ ffi Cs
2.

LEMMA 5. Let C=K, charK 6¼ 2, be a bielliptic curve of genus g with AutðCÞ ffi Cs
2 for

some s5 1. For any w 2 AutðCÞ, let nðwÞ denote the number of fixed points of w on C.

Let v be a bielliptic involution on C and for any w 2 AutðCÞ, w 6¼ 1 or v, denote

w0 ¼ v � w.

ð1Þ If g is even, then nðwÞ ¼ 2 and nðw0Þ ¼ 6, or vice versa. If g is odd, then fnðwÞ;

nðw0Þg ¼ f0; 0g; f0; 8g or f4; 4g as nonordered pairs.

ð2Þ If g is even, then s4 3. If g is odd, then s4 4.

ð3Þ If g5 6, then the bielliptic involution v is unique.

Proof. The first part follows from Hurwitz’s theorem applied to the map

C ! C=hv;wi, while 2: and 3: are simple corollaries of that. &

Remark. Observe that if D is odd, then gðVDÞ is always odd, as we check from

Eichler’s formula for the genus (see, e.g., [25]).

Obviously, the main source for possible bielliptic involutions on the curves VD is

the Atkin–Lehner group. From Eichler’s formula for nðwÞ, w 2 W (see [25]), it is a

routine exercise to check whether VD has bielliptic involutions of the Atkin–Lehner

type. An alternative way to compute nðwÞ is to read backwards the last column of

Table 5 in [3]. This is because Ribet’s isogeny j : JD ! J0ðDÞ
new switches the sign

of the Atkin–Lehner action. But, first, we should focus on possible extra involutions

and also bound the bielliptic discriminants D. Following Ogg’s method in [23], we

give such an upper bound in the next

PROPOSITION 6. If D > 547, VD is not bielliptic.

Proof. Suppose that the curve VD is bielliptic: there is a degree 2 map

j : VD ! E onto a curve E of genus 1. By Proposition 1.2, both j and E are defined

over Q although E may not be an elliptic curve over Q since it may fail to have

rational points (see Section 3 for examples). Choose a prime of good reduction ‘ 6 jD

of VD, let K‘ be the quadratic unramified extension ofQ‘ and let R‘ denote its ring of

integers. As follows from [14], VDðK‘Þ 6¼ ; and, hence, E is an elliptic curve over K‘.

Moreover, due to Ribet’s isogeny theorem, E also has good reduction over ‘. By the

universal property of the Néron model of E over R‘, j extends to the minimal

smooth model MD � R‘ of VD and we can reduce the bielliptic structure mod ‘ to

obtain a 2 : 1 map ~j : MD � F‘2 ! ~E. From Weil’s estimate,

N‘2 ¼ #MD � F‘2ðF‘2Þ4 2 � # ~EðF‘2 Þ4 2ð‘þ 1Þ2:
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Besides, we obtain from [14] that

ð‘� 1Þ

12

Y
pjD

ðp� 1Þ4N‘2

so N‘2 grows as D tends to infinity. Applying these inequalities for ‘ ¼ 2; 3; 5; 7

and 11, we conclude that, if 2 � 3 � 5 � 7 � 11 6 jD, then D4 546. But, if 2 � 3 � 5 �

7 � 11 j D, then s5 5 and therefore, VD cannot be bielliptic (Lemma 5.2). &
We are now able to prove the following theorem.

THEOREM 7. There are exactly 32 values of D for which VD is bielliptic. In each

case, the bielliptic involutions are of Atkin–Lehner type. These values, together with the

genus g ¼ gðVDÞ and the bielliptic involutions are given in Table I.

Proof. Since we need only consider discriminants D4 546, we can first use any

programming package to build up the list of Atkin–Lehner bielliptic involutions on

Shimura curves VD. These computations yield Table I below. In order to ensure that

no extra bielliptic involutions arise, we observe that the above results (and in par-

ticular Theorem 4) imply that any bielliptic involution on VD, for most of the dis-

criminants D4 546, must be of Atkin–Lehner type. There are exactly three cases,

namely D ¼ 55, D ¼ 85 and D ¼ 145, for which none of the previous results and

their obvious generalizations seem to apply.

Ad hoc arguments can be worked out for them. Firstly, the Jacobian varieties of

the curves V55 and V85 have just one Q-isogeny class of sub-Abelian varieties of

dimension 1, so there can be at most one bielliptic involution on these curves. But

w5 (resp. w17) is already a bielliptic involution on V55 (resp. V85).

More interesting is the curve V145 of genus 9. It is not bielliptic by any Atkin–

Lehner involution although J145 �Q E	 S	 A3 	 A0
3, where each factor has dimen-

sion 1, 2, 3 and 3, respectively. We check that nðw5Þ ¼ nðw29Þ ¼ 0 and nðw145Þ ¼ 8,

Table 1. Bielliptic Shimura curves

D g wm D g wm D g wm

26 2 w2,w13 82 3 w82 210 5 w30,w42,
35 3 w7 85 5 w17 w70,w105,
38 2 w2,w19 94 3 w2 w210

39 3 w13 106 4 w53, w106 215 15 w215

51 3 w3 115 6 w23 314 14 w314

55 3 w5 118 4 w59,w118 330 5 w3,w22

57 3 w57 122 6 w122 w33,w165,

58 2 w2,w58 129 7 w129 w330

62 3 w2 143 12 w143 390 9 w390

65 5 w65 166 6 w166 462 9 w154

69 3 w3 178 7 w89 510 9 w510

77 5 w11,w77 202 8 w101 546 13 w546
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so if there was a bielliptic involution v on V145 then nðw0
145Þ ¼ 0, by lemma 5.1. It

follows from Lefschetz’s fixed point formula (see [5]) that the rational traces of these

three involutions on the Jacobian J145 would be trðw5Þ ¼ trðw29Þ ¼ trðw0
145Þ ¼ 2.

Moreover, involutions on J145 must be of the form f�1Eg 	 f�1Sg 	 f�1A3
g	

f�1A0
3
g, up to conjugation by j, thus tr ¼ 2 can only be attained by two different

involutions. Therefore, v cannot exist and V145 is not bielliptic.

It can be showed that actually AutðV145Þ ¼ W: from the decomposition of J145 we

know that W ffi C2
2 � AutðV145Þ � C 4

2 . Since V145 is neither hyperelliptic ([25]) nor

bielliptic (as we have just seen), it follows that the involutions

f�1Eg 	 f�1Sg 	 f�1A3
g 	 f�1A0

3
g

and

fþ1Eg 	 f�1Sg 	 f�1A3
g 	 f�1A0

3
g

cannot be induced from AutðV145Þ. Thus it is a subgroup of index at least 4 in C4
2 and

AutðV145Þ ¼ W. &

3. Infinitely Many Quadratic Points on Shimura Curves

In [31], Shimura proved that VDðRÞ ¼ ; and in particular there are no Q-rational

points on Shimura curves VD. Jordan and Livné ([14]) gave explicit criteria for decid-

ing whether the curves VD do have rational points over the p-adic fields Qp for any

finite prime p.

Much less is known about rational points over global fields. Jordan [13] proved

that for a fixed quadratic imaginary field K, with class number hK 6¼ 1, there are only

finitely many discriminants D for which K splits the quaternion algebra B of discri-

minant D and VDðKÞ 6¼ ;. In this section we solve a question that is to an extent reci-

procal: which Shimura curves VD, gðVDÞ5 2, have infinitely many quadratic points

over Q?

That is,

#VDðQ; 2Þ ¼ #fP 2 VDð
�QÞ; ½QðPÞ : Q�4 2g ¼ þ1:

We will say that an algebraic curve C=K of genus g5 2 is hyperelliptic over K

(respectively bielliptic over K) if there is an involution v 2 AutKðCÞ such that the quo-

tient curve C=hvi is K-isomorphic to P1
K (resp. an elliptic curve E=K). Notice that in

both cases C=hviðKÞ 6¼ ; while it perfectly well happen that CðKÞ ¼ ;.

The following theorem of Abramovich and Harris shows that the question above

is closely related to the diophantine problem of determining the family of hyperellip-

tic and bielliptic Shimura curves over Q.

THEOREM 8 ([1]). Let C be an algebraic curve of genus greater than or equal to 2,

defined over a number field K. Then CðK; 2Þ ¼ #1 if and only if C is either hyper-

elliptic over K or bielliptic over K mapping to an elliptic curve E of rankKðEÞ5 1.
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Ogg ([25, 26]) gave the list of hyperelliptic Shimura curves overQ. In what follows,

we will determine which bielliptic Shimura curves from Table I are bielliptic over Q.

We first observe that the map VD ! VD=hwi is always defined over Q since we

showed that AutCðVD � CÞ ¼ AutQðVDÞ (Proposition 1). In order to check whether

VD=hwiðQÞ 6¼ ; for each pair ðD,wÞ in Table I, we can disregard those in which

VD=hwi fails to have rational points over some completion Qv of Q. This is done

by using the precise results in that direction given by Jordan and Livné in [14] and

Ogg in [25] and [26]; the conclusions are compiled in Table II. Let us say that a field

L is deficient for an algebraic curve C defined over a subfield K � L if CðLÞ ¼ ;.

On the genus 1 Atkin–Lehner quotients VD=hwmi that do have rational points over

all completions of Q, we can try to construct a Q-rational point by means of the the-

ory of complex multiplication. That is, a Heegner point P 2 VDðKÞ with CM by a

quadratic imaginary order R, R�Q ¼ K, hðRÞ ¼ 1, will project onto a Q-rational

point on VD=hwmi if and only if wmðPÞ ¼ �P, where �P is the complex conjugate of

P on VDðKÞ. From [12], 3.1.4, we deduce that wmðPÞ ¼ �P if m is the product of

the primes p j D that are inert in K.

Performing the necessary computations, it follows that among those pairs ðD;wÞ

that VD=hwiðQvÞ 6¼ ; for every completion Qv of Q, it is always possible to produce

a Q-rational point on VD=hwi by the above means, except for two interesting cases:

ðV26;w2Þ and ðV58;w2Þ.

Since gðV26Þ ¼ gðV58Þ ¼ 2, we may apply a result of Kuhn ([19]) to deduce that

there are also rational points on the quotients V26=hw2i and V58=hw2i. Therefore,

the Hasse–Minkowsky principle is never violated for the Atkin–Lehner quotients

from Table I and those pairs VD=hwmi that do not appear in Table II are bielliptic

curves over Q. There are only eighteen values of D for which VD admits a bielliptic

involution over Q.

It still remains to compute the Mordell–Weil rank of the elliptic curves VD=hwi

over Q. Using Cremona’s tables ([9]), switching the sign of the Atkin–Lehner action

as explained above, we can determine the Q-isogeny class of these elliptic curves.

Table II. Deficient completions L of Q for VD=hwmi

D wm L D wm L D wm L

35 w7 Q5 115 w23 Q5 330 w3 R,Q2

39 w13 R,Q3 178 w89 R,Q2 Q5,Q11

51 w3 Q17 210 w30 R,Q3 330 w22 R,Q2,Q3

55 w5 R,Q11 210 w42 R,Q2,Q3 Q5,Q11

62 w2 R,Q31 Q5,Q7 330 w33 R,Q2

69 w3 R,Q23 210 w70 R,Q2 Q3,Q5

77 w11 R,Q7 Q3,Q5 330 w165 Q2,Q3

85 w17 Q5 210 w105 R,Q2 Q5,Q11

94 w2 R,Q47 Q7 462 w154 R,Q11
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This is enough to compute their Mordell–Weil rank but we can use a beautiful idea

of Roberts ([29]) to compute theQ-isomorphism class and, hence, aWeierstrass equa-

tion for them as follows: Cremona’s tables give the Kodaira symbols of the reduction

of elliptic curves E at the primes p j condðEÞ. This is done by using Tate’s algorithm

which makes use of a Weierstrass equation of the curve. This is not available in our

case, but we can instead use the �Cerednik–Drinfeld theory to compute the Kodaira

symbols for the reduction mod p, p j D, of VD=hwi and contrast them with Cremona’s

tables. This procedure uniquely determines the Q-isomorphism class of the curves.

EXAMPLE. Curve V210 has genus 5 and is bielliptic by the Atkin–Lehner involution

w210. After Eichler’s theory on optimal embeddings (see, e.g., [25]), the quadratic

order Z½
ffiffiffiffiffiffiffiffiffi
�43

p
� embeds in the quaternion algebra B of discriminant 210. Such an

embedding produces a point P 2 V210ðQð
ffiffiffiffiffiffiffiffiffi
�43

p
ÞÞ. From the above, it follows that

w210ðPÞ ¼ �P. Therefore, V210=hw210iðQÞ 6¼ ; and we obtain that ðV210;w210Þ is a

bielliptic pair over Q. A glance at Cremona’s Table 3 in [9], pp. 249–250, shows that

the elliptic curve V210=hw210i falls in the Q-isogeny class 210D because it is the only

one that corresponds to a newform f 2 H0ðO1; J210Þ such that w�
210ð f Þ ¼ f (recall that

the sign for the Atkin–Lehner action is opposite to the classical modular case!).

Therefore, from Cremona’s Table 4, rankQðV210=hw210iÞ ¼ 1.

In order to determine a Weierstrass equation for V210=hw210i we may compute the

Kodaira symbols of its reduction mod p, p j 210. It suffices to study the reduction at

p ¼ 3. The �Cerednik–Drinfeld theory asserts that M210 � F3 is reduced and its irre-

ducible components are all rational and defined over F9. Moreover, M210 � Z3 is a

(minimal) regular model over Z3. This is because over the quadratic unramified inte-

gral extension R3 of Z3, M210 � R3 is a Mumford curve uniformized by a (torsion-

free) Schottky group, as one checks from �Cerednik–Drinfeld’s explicit description

of this group and the congruences 5 
 �1 ðmod 3Þ and 7 
 �1 ðmod 4Þ.

In a way, �Cerednik–Drinfeld’s description of the reduction of Shimura curves at

p j D is not so different from Deligne–Rappoport’s for the modular curves X0ðNÞ

at p k N becauseMpd � Fp is again the union of two copies of the Shimura curve – also

called the Gross curve – Md � Fp, defined in terms of a definite quaternion algebra.

Let hðd; nÞ denote the class number of an (arbitrary) Eichler order of level n in the

quaternion algebra of discriminant d. The dual graph G of M210 � F3 has as vertices

the irreducible components of M210 � F3. There are

2h
210

3
; 1

� �
¼ 2hð70; 1Þ ¼ 4

of them. Two vertices v, ~v in G are joined by as many edges as there are intersection

points between the corresponding components Z, ~Z in M210 � F3. In our case, there

are hð2103 ; 3Þ ¼ 8 edges in G, that is, 8 double points in M210 � F3.

We may label the 4 vertices v1, v
0
1, v2, v

0
2 so that w3ðviÞ ¼ v0i, where w3 still denotes

the involution w3 now acting on G. There are no edges joining v1 and v2, and the

same holds for v01 and v02. The total number of edges joining v1 with v01 and v2 with
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v02 is 4, as Kurihara ([18]) deduced from trace formulae of Brandt matrices. Since

there must also be pþ 1 ¼ 4 edges at the star of any vertex, it turns out that the dual

graph G must be as Figure 1.

Since 3 j 210, w210ðfv1; v2gÞ ¼ fv01; v
0
2g and therefore, G=hw210i is a graph with two

vertices joined by two edges, which corresponds to the Kodaira symbol I2. The only

elliptic curve in theQ-isogeny class 210Dwhose reduction type at p ¼ 3 is I2 is 210D2.

Hence, a Weierstrass equation for V210=hw210i is y
2 þ xy ¼ x3 þ x2 � 23xþ 33.

Performing similar computations, we obtain the list of bielliptic Shimura curves

ðVD;wÞ over Q such that the genus 1 Atkin–Lehner quotient VD=hwi is an elliptic

curve with infinitely many rational points. With this procedure, we also give a Weier-

strass equation for the elliptic curves VD=hwi. Together with the hyperelliptic Shi-

mura curves over Q given by Ogg, we obtain the family of Shimura curves of

genus gðVDÞ5 2 with infinitely many quadratic points. Summing up, we obtain

the following theorem:

THEOREM 9. There are only finitely many D for which VD has infinitely many

quadratic points over Q . These curves, together with their rational or elliptic quotients,

are listed in Table III above.

Figure 1. Dual graph of M210 � F3.

Table III. Shimura curves VD, gðVDÞ5 2, with #VDðQ; 2Þ ¼ þ1

D wm VD=hwmi D wm VD=hwmi D wm VD=hwmi

26 w13 P1
Q 77 w77 77A1 143 w143 143A1

35 w35 P1
Q 82 w82 82A1 146 w146 P1

Q

38 w38 P1
Q 86 w86 P1

Q 159 w159 P1
Q

39 w39 P1
Q 87 w87 P1

Q 166 w166 166A1

51 w51 P1
Q 94 w94 P1

Q 194 w194 P1
Q

55 w55 P1
Q 95 w95 P1

Q 206 w206 P1
Q

57 w57 57A1 106 w106 106B1 210 w210 210D2

58 w29 P1
Q 111 w111 P1

Q 215 w215 215A1

w58 58A1 118 w118 118A1 314 w314 314A1

62 w62 P1
Q 119 w119 P1

Q 330 w330 330E2

65 w65 65A1 122 w122 122A1 390 w390 390A2

69 w69 P1
Q 129 w129 129A1 510 w510 510D2

74 w74 P1
Q 134 w134 P1

Q 546 w546 546C2
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15. Jordan, B. W. and Livné, R.: On the Néron model of jacobians of Shimura curves, Com-

positio Math. 60 (1986), 227–236.
16. Kamienny, S.: Points on Shimura curves over fields of even degree,Math. Ann. 286 (1990),

731–734.
17. Kenku, M. A. and Momose, F.: Automorphisms groups of the modular curves X0ðNÞ,

Compositio Math. 65 (1988), 51–80.

18. Kurihara, A.: On some examples of equations defining Shimura curves and the Mumford
uniformization, J. Fac. Sci. Univ. Tokyo, Sec. IA 25 (1979), 277–301.

19. Kuhn, R. M.: Curves of genus 2 with split jacobian, Trans. Amer. Math. Soc. 307 (1988),

41–49.
20. Lehner, J. and Newman, M.: Weierstrass points of G0ðNÞ, Ann. Math. 79 (1964), 360–

368.

240 VICTOR ROTGER

https://doi.org/10.1023/A:1015858710606 Published online by Cambridge University Press

https://doi.org/10.1023/A:1015858710606


21. Michon, J. F. Courbes de Shimura hyperelliptiques, Bull. Soc. Math. France 109 (1981),

217–225.
22. Mori, A.: Power series expansions of modular forms at CM points, Rend. Sem. Mat. Univ.

Pol. Torino 53 (1995), 361–374.

23. Ogg, A. P.: Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449–462.
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