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Motivated by wind blowing over water, we use asymptotic methods to study the evolution
of short wavelength interfacial waves driven by the combined action of these flows.
We solve the Rayleigh equation for the stability of the shear flow, and construct a
uniformly valid approximation for the perturbed streamfunction, or eigenfunction. We
then expand the real part of the eigenvalue, the phase speed, in a power series of the
inverse wavenumber and show that the imaginary part is exponentially small. We give
expressions for the growth rates of the Miles (J. Fluid Mech., vol. 3, 1957, pp. 185-204)
and rippling (e.g. Young & Wolfe, J. Fluid Mech., vol. 739, 2014, pp. 276-307) instabilities
that are valid for an arbitrary shear flow. The accuracy of the results is demonstrated by a
comparison with the exact solution of the eigenvalue problem in the case when both the
wind and the current have an exponential profile.

Key words: shear-flow instability, shear layer turbulence, wind-wave interactions

1. Introduction

Waves at the interface between two fluids with different densities are ubiquitous in nature.
A natural question concerns how a flow in either fluid affects these waves. Here, we
consider fluid layers of infinite extent. A canonical example is the wind flowing over the
ocean, both of which can be modelled as parallel flows of the form U = U(z) x, with z the
vertical coordinate and X a horizontal unit vector (figure 1). The stability of the arbitrary
shear flow U under the influence of small two-dimensional perturbations has been studied
extensively over the last seventy years. In the absence of a current in the water, Miles
(1957) found an instability of the wind, leading to the growth of water waves. The theory
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Figure 1. Schematic of wind driving a current in the water. Both are modelled as a parallel shear flow
U = U(z) and perturbed by a wave with wavenumber k.

of Miles is inviscid and assumes that the wind and the waves are weakly coupled because
the air/water density ratio, r, is small. Hence, the wind transfers energy to the waves
within a critical layer in the air, where the wind speed equals the phase speed of free
surface waves. Recent laboratory measurements of the air flow over wind-generated waves
provide evidence of this critical layer mechanism (Carpenter, Buckley & Veron 2022).
Nonetheless, the growth rate can be calculated analytically in only a few cases (Bonfils
et al. 2022).

Miles (1957) argued that the critical layer should be above the viscous sublayer,
and hence neglected viscosity. This rationale is now supported by the measurements
of Carpenter et al. (2022). The experiments of Caulliez (2013) showed that viscous
damping is the main dissipation mechanism for waves shorter than 4 cm, whereas,
at larger wavelengths, the generation of capillary waves, micro-breaking and breaking
also contribute to dissipation. Recent fully coupled direct numerical simulations further
demonstrated that viscous stress plays a role in wave growth only in the case of strong wind
forcing (Wu, Popinet & Deike 2022). Hence, the effect of viscosity is complex and has yet
to be clarified (Zeisel, Stiassnie & Agnon 2008; Wu & Deike 2021). Thus, simplified
inviscid models still provide valuable insights, as shown here.

When there is a laminar current in the water, the position of the critical layer responsible
for the Miles instability is unknown, because the phase speed is itself unknown. This is
associated with the fact that the surface waves are no longer free in the sense that the
current modifies their dispersion relation in a non-trivial manner. Water currents are often
wind induced and decay with depth. Stern & Adam (1974) were the first to suggest that,
in such cases, sheared surface waves propagating slower than the water surface, which is
dragged by the wind, undergo an instability. They considered a current with a broken-line
velocity profile, a model further studied by Caponi ez al. (1991), and extended to smooth
velocity profiles by Morland, Saffman & Yuen (1992). Young & Wolfe (2014) showed
that there is another critical layer in the water, where the unknown phase speed of the
waves matches the speed of the current. They referred to this phenomenon as the ‘rippling
instability’. Analytical progress on the rippling instability in deep water has only been
made for piece-wise linear or exponential currents; see Young & Wolfe (2014) for a review.
Finally, Kadam, Patibandla & Roy (2023) gave an exact analytical treatment of the stability
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of an exponential wind profile over a finite-depth water layer that is either quiescent or has
linear or quadratic current profiles. For the quadratic current, they introduced spheroidal
wave functions to assess the stability of a shear flow. Here, we use asymptotic methods to
obtain general results on both the Miles and the rippling instabilities. The fully coupled
numerical approach of Wu et al. (2022) resolved the development of the shear-induced
drift layer beneath the water surface as well as the evolution of the air-side turbulent
boundary layer. They showed that, in strongly forced cases, the flows are transient, in
the sense that the waves feedback on the air flow while the water flow becomes turbulent.
Although transient effects are beyond the scope of this work, we can explicitly account for
the effect of turbulence using mean profiles.

In the absence of a current in the water and for r less than unity, and yet not small, the
Miles instability is difficult to study. Indeed, the waves are then strongly coupled to the
wind so that the shear substantially changes the dispersion relation, yielding yet another
situation in which the position of the critical layer is unknown. Not only is such a strong
wind—-wave coupling a central process on Earth, it may also play an important role in
a number of astrophysical settings, including white dwarfs, one of the end products of
stellar evolution, neutron stars and black holes (Shapiro & Teukolsky 2008). For example,
although most recent high-resolution three-dimensional simulations (Casanova et al. 2011)
suggest that Kelvin—Helmholtz instabilities driven by buoyant fingering may be able to
explain the composition of white dwarfs, an alternative proposal by Rosner et al. (2001)
and Alexakis et al. (2004a) is that the Miles instability is responsible.

Because most ocean waves have wavelengths much larger than the characteristic length
scale of the wind profile, the Miles instability can be treated using asymptotic methods in
the long-wave limit (Bonfils et al. 2022). Here, we focus on short waves with the goal of
capturing the combined influences of an underlying current and a moderate density ratio.
Whereas short waves may not be central in terrestrial oceanography, Alexakis, Young &
Rosner (2004b) argued that they are at the core of the astrophysical setting described in
the previous paragraph. White dwarfs are extremely dim and dense, with approximately
one solar mass confined within an Earth scale radius, and hence possess large gravitational
forces. Indeed, Alexakis et al. (2004b) showed that, for an exponential wind profile, the
low wavenumber cutoff of the Miles instability is a growing function of gravity, and hence
the low wavenumber cutoff of the Miles instability is in fact very large. Thus, the growing
waves at the surface of white dwarfs are short with respect to astrophysical scales.

Therefore, rather than solving a particular geophysical or astrophysical problem, we treat
a basic fluid mechanical question: the stability of a sheared two-fluid interface where the
upper fluid is less dense than the lower fluid. For clarity of discussion, we refer to the
upper and lower fluids as air and water, respectively, and refer to wind as the shear flow in
the air, and current as the shear flow in the water.

In § 2, we describe the linear stability analysis of a sheared two-fluid interface. The
eigenfunction satisfies the Rayleigh equation and the eigenvalue is a complex intrinsic
phase speed. We focus on the case of a wind-induced current in § 3, and obtain the real
part of the eigenvalue as a series in powers of the dimensionless inverse wavenumber.
Moreover, we show that the imaginary part of the eigenvalue is small and obtain general
formulae for the growth rates of the Miles and the rippling instabilities. In § 4, we treat
the case of the wind and the current governed by an exponential profile and compare
our asymptotic results with the exact eigenvalue. In § 5, we treat another type of current
wherein a mode can have two critical layers, one in the air and one in the water. We
then derive in § 6 the asymptotic solution of the Rayleigh equation that was used in § 3
for the calculation of the eigenvalue. In particular, we show that an internal boundary
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layer emerges from the singularity at the critical level. Finally, before concluding, in § 7
we demonstrate the limitations of the Wentzel-Kramers—Brillouin (WKB) approach to
solving the Rayleigh equation.

2. Linear stability of a sheared two-fluid interface
Young & Wolfe (2014) derived the eigenvalue problem associated with the linear stability
of an inviscid parallel shear flow across a two-fluid interface, as sketched in figure 1.

First, we outline the governing Rayleigh equation and boundary conditions, after which
we describe the non-dimensionalization of the problem.

2.1. Eigenvalue problem

We consider a parallel shear flow, U = U(z), monotonic in both air and water with a
non-zero curvature. The air to water density ratio is r = p,/p, < 1, and the gravitational
acceleration and surface tension are g and o, respectively. Incompressibility ensures that a
perturbation of the flow is entirely determined by the streamfunction ¢ = v (x, z, f), where
t is the time. We use normal modes in the form

¥ (x, 7, 1) = Re{y (z) D}, @2.1)

where k is a real wavenumber and ¢ a complex phase speed to be determined (the
eigenvalue), conservation of vorticity yields the Rayleigh equation as

[U(z) — el (2) — P (@)] — U@ (z) = 0. (2.2)

We require the function U(z) to be continuous at z =0, which excludes a
Kelvin—Helmholtz type of instability and ensures the continuity of ¥ (z) (Drazin & Reid
1981). Note that the derivative U’(z) may have a finite jump at z = 0 and the perturbation
must decay in the far field. Provided that

U//
im 2@ _ (2.3)
=00 U(z) — ¢
we can impose an exponential decay, viz.
lim ¥/'(z) £ k¥ (z) = 0. (2.4)
z—*o0

Finally, we impose continuity of the normal stress at z =0 and require the air—water
interface to be a streamline, which yields the boundary condition

o
TR+ —rg+r |:(US L ACI NN c)U/(0+)}
7(0)

Pw

— (Ug — C)waﬁ((?);) + (Ug — c)U'(07) = 0, (2.5)

where Us = U(z = 0) is the surface drift.
976 A19-4
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2.2. Non-dimensionalization

The length and velocity scales, L and V, differ in the air and water, which we denote with
the subscripts a and w, respectively. Whereas, when there is no current in the water, we
use the scales of the wind, L, and V,, to non-dimensionalize the problem, because water is
the primary medium of surface waves we use L,, and V,, when a current is present. Thus,

the ratios
V. L
Ri=—" and Roy= - (2.6a,b)
Vi Ly
act as additional control parameters. In a frame moving at speed Us, we use the
dimensionless profile

U-U
U= S where U(0) = 0, 2.7)
Vi
and the dimensionless intrinsic phase speed is
c— Ug
C= . 2.8
v (2.3)

The dimensionless wavenumber and vertical coordinate are £ = kL,, and 5 = z/L,,
respectively, and we define the dimensionless gravity and surface tension as
L
=8 and = —2 (2.9a.b)
V2 pWVyvaW
In astrophysical contexts, o can represent a magnetic field in the lower fluid, whose
direction is aligned with the flow (Alexakis, Young & Rosner 2002). From (2.4), the
far-field behaviour of the streamfunction has the form e*”3. Short waves are characterized
by £ > 1, so the exponential decay is captured as follows:
) —H if 5> 0
v _ © . f) if5 >0, (2.10)
¥ (0) e h(z) 1ifsz <0.
We introduce the small parameter € = 1/£ and use (2.10) in the Rayleigh equation (2.2),
which gives

ef"(5) =2 (3) — GMJ”(%) =0, f(O)=1, (2.11)
) ) UGy —-c -
and eh”(3) + 2K (3) — th(z) =0, h0)=1. (2.12)
) : U@G)—-¢c =
We assume that

f(z) =0()asz — 400 and h(z) =O0(1)as 5 — —oo, (2.13a,b)

the veracity of which we check a posteriori. The dimensionless form of (2.5) is

CEE + G —Ne + [FU'©O) = U O7)]eC — (1 +NC? + [rf'(0T) — K (07)]eC? = 0.

(2.14)

For a given profile U(3), our main task is to solve (2.11) and (2.12) subject to the boundary
conditions (2.13a,b) and (2.14).

We consider the canonical situation where the wind blows over the water in which it
induces a current (figure 1). Hence, U/'(3 < 0) > 0, U(3 > 0) > 0, and U(5 < 0) < 0.
We explore another situation in § 5.

976 A19-5
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2.3. Examples of profiles
A typical example of a wind and a wind-induced current is the double exponential profile

Uso + (Us — Usy) e/ if 7 > 0,

215
Ug e¥/dw ifz <0, 15)

U(z) = {

where Uy is the free-stream air velocity, and d, and d,, denote the thicknesses of the
air and water shear boundary layers, respectively. In the frame of the water surface, the
dimensionless form of (2.15) is

@R = DA —e3 /Ry if 5 >0,
U(5) = {65 1 i3 <0, (2.16)

with R| = Uy /Us and Rr = d,/d,,. Young & Wolfe (2014) showed that, for such a
profile, the eigenvalue problem can be solved exactly in terms of hypergeometric functions.
In the context of physical oceanography, the double log profile

U {Us + tag In(1 + 2/200) /& if 2> 0, (2.17)

N Us — uuy In(1 — z/20) /. if 2 <O,

may be more realistic (Wu 1975), where u,, and u,,, are the friction velocities of air and
water, respectively, k = 0.4 is the von Kdrman constant and zg, and zq,, are air and water
roughness lengths, accounting for the presence of waves. Note that the velocity of the
logarithmic current is negative for z < z,;,, Where

Zmin = — 20w (€U — 1), (2.18)

Such a change of sign is unphysical, so we take U(z) = 0 for z < zi,. The dimensionless
form of (2.17) in the frame of the water surface is

UGy = {le In(1 + 5/Ry) /i if 5 > 0, (2.19)

| =In(1 —3)/k if 5 <0,

with Ry = Uy /sy and Ry = zo4/z0w. In this case, exact analytical solutions are
unknown.

3. Short wavelength expansions and exponential asymptotics

We treat the eigenvalue problem described in §2.1 perturbatively, where the small
parameter is the dimensionless inverse wavenumber, € < 1. We draw intuition for the
approach from Miles (1957), who considered a simpler version of our problem, with the
small parameter r < 1 and in the absence of a current. Hence, the leading-order eigenvalue
corresponding to r = 0 is real and equal to cy, the phase speed of free surface waves.
Moreover, due to the critical layer at height z., such that U(z.) = c, the eigenvalue has an
imaginary part of order r as well as real corrections, also of order r.

In contrast to the treatment of Miles (1957), the leading-order eigenvalue is unknown.
In fact, even the nature of the lowest-order behaviour in € is murky and hence we only
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assume that
C = C,(e) +iC;(e), with C;(¢) € C,(¢), € — 0. (3.1

We use the notation of Bender & Orszag (1999) for ‘C;(¢) is much smaller than C,(¢) as
€ tends to 0’, namely that
Ci(e)
im =
e—0 Cr(€)
The purpose of such an assumption is to replace C € C by C, € R in (2.11) and (2.12).
Recalling that U(z > 0) > 0 and U(5 < 0) < 0, if C, is positive (negative) then there
is a critical layer in the air (water), associated with a singular point in (2.11) (2.12).
However, at this stage in the development, we do not know the possible values for C,.
Indeed, the term rf'(07) — 4 (0~) depends on C in a non-trivial manner so that (2.14)
is not necessarily quadratic in C. Physically, C, is the phase speed of sheared interfacial
waves in the reference frame of the water surface. In that frame, a wave propagating in the
direction of (against) the current has a positive (negative) C, and Young & Wolfe (2014)
refer to these as prograde (retrograde) modes. In the case of a constant (zero shear) current
U, there is one prograde and one retrograde mode, which are simply the Doppler-shifted
forward and backward interfacial waves. We generalize this result to the case of arbitrary
shear, which we check a posteriori. Thus we assume that there are two solutions, C,+ > 0
and C,_ < 0, that correspond to two critical levels, 5.+ > 0 and 3. < 0, such that

U(sex) = Crt. (3.3)

Therefore, the prograde (retrograde) mode undergo the Miles (rippling) instability, and
hence C; # 0 for both modes. We stress that, provided that the values of C,+ are within
the bounds of the function U (3), critical layers actually exist. When C,+ are equal to these
bounds, the system is marginally stable. In Appendix C, we derive a general asymptotic
formula for the large wavenumber cutoff of the rippling instability.

Hence, although C,1 are unknown, we replace C by C, in (2.11) and by C,_ in (2.12).
We then solve these equations using boundary layer theory in § 6, where we construct
uniformly valid composite solutions. However, here we need only substitute the derivatives
at 5 = 0% into (2.14). In Appendix B, we show that, for the prograde mode,

(3.2)

O  U'Get) €

u// X N
f/(0+) — —IT[ /(5(’—"_) 6_236+/E + € S s (34)
W (5e+)1 2Cr+(6)  W(3e+) 230+
U’ 07)
and H'(07) = —¢ , (3.5)
2G4 (6)
whereas, for the retrograde mode,
u’ ot
(0t = , 3.6
S(0) 626,_(6) (3.6)
u// _ u// — u// _
and #'(07) =in/(—56) e2se-/¢ _ ¢ )(r ) /(56 )_¢€ . (3.7)
U (5c-)] 2C—(e)  UW(zc-) 250

We can now solve (2.14). With the advent of results (3.4) and (3.7), our key assumption,
(3.1), is made more precise by letting

Cy = Cry(€) +iAy(€)e e 2laexl/e (3.8)
976 A19-7
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Therefore, in order to have solutions with a non-zero imaginary part, we must include
exponentially small terms. When first discarding those terms, we obtain

g + G —Pe+[FUON) —UO)]eCr — (1 +r+hot)C2=0, e<1, (3.9)

where h.o.t denotes higher-order terms, such as terms of order € /C, and €/z.

We seek solutions of (3.9) as a series in powers of €. The nature of the leading-order
term depends on the value of the dimensionless surface tension &. When gravity is the
only restoring force, we find

- WO - o WO =W O 32
Grg:ri":av -+ rgé ri’(0) ( )E:|: [rU'(0T) (07)] |: € :| +hot.
1+r 2(14+7r) 8,/C(1 —r) 1+r
(3.10)
When capillary forces are included, we instead obtain
_ S U @O — WO G -
Clp—EaY O = WO A= sy (3.11)

Uxne T 209 " 2/5a30

Hence, apart from the effect of shear, for short waves gravity acts as a high-order correction
to the effect of surface tension. Note that the third term in (3.11) can be derived by
expanding the dispersion relation of interfacial capillary—gravity waves

S 1—r
C(e) = i\/(l e + o rge. (3.12)

Armed with C,4, we can use assumption (3.8), and (3.4) and (3.7), in (2.14). We collect
terms of order ee~2l5+l/€ to find the amplitudes A, and infer the growth rates of the
prograde (+) and retrograde (—) modes as

ro U (3es) —2hises

b1
Im{ACL} = —C)y — , 3.13
{RC+} 2T WG] (3.13)

© 1 U (o) 264
and Im{AC_}=—-C_— — L et 3.14
e T2 14 U Geo) G149

where £ = 1/€. We emphasize several aspects of the present results. Firstly, (3.13) for the
prograde mode is a generalization of the growth rate obtained by Miles in an appendix of
Morland & Saffman (1992). That result was obtained from short wavelength asymptotic
analysis of the exact solution of the Rayleigh equation for an exponential wind profile.
Secondly, (3.14) for the retrograde mode is a generalization of the short wavelength limit
of the growth rate of the rippling instability found by Young & Wolfe (2014) for an
exponential wind-induced current. Here, we have included the effect of the upper fluid
on the rippling instability, showing the weakness of the effect for the air—water system
because r = O(1073), consistent with the r = 0 limit of Young & Wolfe (2014). Finally,
we find that the results of Shrira (1993) are a special case of our own when r = 0, but
stress that his small parameter was the smallness of the deviation of the wave motion from
potential flow, rather than the inverse wavenumber.
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Figure 2. Comparison of the short wavelength asymptotic results (dashed lines) for the prograde mode with
the exact solution (solid lines) in the case of an exponential wind profile (no current), U(z) = Uso(l — e*z/d“),
a density ratio r = 0.001 and different values (grey and black) of the dimensionless gravity, G = gd,/ Ugo, and

surface tension, & = o /(py Ugoda). The phase speed as a function of the wavenumber is shown for gravity (a),
capillary () and capillary—gravity waves (c); the exact and the asymptotic solutions are indistinguishable. The
growth rate as a function of the wavenumber for gravity (d), capillary (e) and capillary—gravity waves (f).

4. Interpretation

The behaviour of short waves in presence of a wind and a wind-induced current depends on
the profile of the latter solely through the derivatives at 5 = 0 and at the critical levels, 5 =
5c+. In consequence, the results are qualitatively the same for the two profiles introduced
in §2.3. We note that, as shown by Young & Wolfe (2014), the eigenvalue problem can
be solved exactly in terms of hypergeometric functions in the case of double exponential
profiles, whereas exact analytical solutions for double log profiles are unknown.

In figures 2 and 3, we show the phase speed and the growth rate of the prograde
mode undergoing the Miles instability. We compare the results of our short wavelength
asymptotic analysis with the exact solution for an exponential wind profile, in the case of
gravity (a and d), capillary (b and e) and capillary—gravity waves (c and f), for different
values of the density ratio r and the control parameters ¢ and &. Figure 4 shows a similar
comparison for the retrograde mode undergoing the rippling instability in the absence of
air, that is » = 0. The asymptotic results are in accord with the exact results.

The phase speed of Doppler-shifted interfacial waves in presence of a constant, zero
shear current is

0 =Ust [~=78, 9 4 @1
clk) = 2 , .
STVT+rk " o +7)

which is the dimensional form of (3.12), where the plus (minus) sign corresponds to the
prograde (retrograde) mode. Equations (3.10) and (3.11) predict that the non-uniformity
of the current increases the phase speed by rU’(0")/2k and reduces it by U’(07)/2k,
respectively. Indeed, figure 3(a—c) shows that, when r is close to 1, and £ approaches
unity, the phase speed of sheared waves is significantly larger than the phase speed of free
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Figure 3. Same as figure 2 but with a density ratio of » = 0.9. Whereas in figure 2(a—c) the asymptotic results
(dashed lines) and the exact solution (solid lines) are indistinguishable, such is not the case here, where we also
see the phase speed of free surface waves (dotted lines).
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Figure 4. Comparison of the short wavelength asymptotic results (dashed lines) for the retrograde mode with
the exact solution (solid lines) in the case of an exponential current (no air), U(z) = Us e¥/dw and different

values (grey and black) of the dimensionless gravity, G = gd,,/ U2, and surface tension, S = o/ (pWUédw).
The dotted lines depict the corresponding phase speed of Doppler-shifted surface waves. The growth rate as a
function of the wavenumber for gravity (d), capillary (e) and capillary—gravity waves (f).

surface waves. Moreover, figure 4(a—c) shows the predicted reduction of the retrograde
mode in the absence of air when £ is of order unity.

Generally, for small values of r, the effect of the wind on dispersion is insignificant,
as shown by the phase speed of free surface in figure 2(a—c). However, for large values
of r, the wind has a major influence. For instance, as shown in figure 3(b), the wind

976 A19-10


https://doi.org/10.1017/jfm.2023.906

https://doi.org/10.1017/jfm.2023.906 Published online by Cambridge University Press

Asymptotic study of flow-driven interfacial waves

| Uz)

Air

=y

17k

Water

Figure 5. Schematic of a wind blowing in the air and a current in the water.

is responsible for a minimum phase speed of capillary waves. Moreover, as r increases,
so does the growth rate of the prograde mode. Thus, we interpret the density ratio as a
wind—wave coupling constant.

Finally, for both modes the growth rates increase when ¢ and & are small, which is the
case for large velocity scales (cf. figure 2 and 4). Thus, consistent with physical intuition,
a small perturbation grows faster in the presence of strong winds and/or currents.

5. Prograde instability due to critical layers in both air and water

We now explore the case of a wind blowing in the air when there is also a current in the
water, as shown in figure 5. Thus we have U(3 < 0) > 0, U'(3 > 0) > 0, and U'(5 <
0) < 0, and again assume an infinite depth and proceed as in § 3. The key difference is
that the prograde mode has a critical layer in both the air and the water, and the retrograde
mode has no critical layer. Therefore, there are levels 5.+ such that

U(3e+) = Cry and  U(3c-) = Cry, (5.1a,b)

and there is no value of 5 such that C,_ < 0 is equal to U(z). This implies that

% "o+ "
f107) = —in |?111<(::>)| et eger(f(e)) - Z((;:; 25; 62
and #(07) = in% e2e-/< _ e;gio(;)) + Z/:((fc‘)) 2: (5.3)

Be— r Be—) 25¢—

for the prograde mode, while
u’ ot

FOh =e3ct s (5.4
and H'(07) = —e LG (5.5)

2C,—(e)’

for the retrograde mode. Hence, the retrograde mode is neutral but the prograde mode can
undergo both the Miles and rippling instabilities, and has a growth rate of

) |:’” W aer) e 2+ 4 U (5c-) ezfm_]- (5.6)
L+r 2 [ WGl (W (5c-)]

Im{AC.} = —
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Figure 6. Schematic of the domain of analysis of the Rayleigh equation for short waves; £ > 1. A boundary
layer of thickness € = 1/4 emerges from the singularity at the critical level, 5 = 3.

The real parts C,4 are still given by (3.10) and (3.11). Such an enhancement of the Miles
instability by the rippling instability may be difficult to observe in geophysical flows.
However, it could be examined in a controlled laboratory setting through a refinement
of the viscosity-stratified approach of Charles & Lilleleht (1965) or the two-layer Couette
flow approach of Barthelet, Charru & Fabre (1995), as well as in the context of Holmboe
wave experiments (e.g. Carpenter et al. 2010).

6. Asymptotic solution of the Rayleigh equation for short waves

Here, we solve (2.11) for C = C,4 and note that a similar procedure is applicable to (2.12)
when C = C,_. For simplicity, we rewrite (2.11):

U ()
é =0, 0)=1, 6.1
—U(g) Grf(5) = f0) = (6.1)

ef"(5) = 2'(5) —€
and we drop the subscript + for the rest of this section. There is a regular singularity at
5 = 3¢ such that

U(zc) = Cy. (6.2)

Because the small parameter € multiplies the highest-order derivative in (2.11), we expect
the solution to have a boundary layer somewhere in the domain, but do not know its
location a priori. However, guidance is provided by the presence of the singularity. The
Frobenius exponents are 0 and 1, so that the solution of (2.11) is finite at 5 = 5, whereas
its derivative has a logarithmic divergence (Drazin & Reid 1981). Therefore, we assume
that an internal boundary layer emerges from the singularity. We assume that the point
5 = 5c(€) is well separated from the lower boundary, 5 = 0, as € goes to zero. We check
this a posteriori once the dependence of C, on € is known. In consequence, C, can be
treated as a constant in the following analysis.

The boundary layer is an inner region where the solution of (2.11) changes rapidly. We
define two outer regions, where the solution changes slowly. One spans 5 = O to the inner
region; the other spans the inner region to the far field. We call them ‘lower outer region’
and ‘upper outer region’, respectively (see figure 6).
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6.1. Outer solutions

Following Miles (1962), we seek outer solutions as a power series in € as

four(3) =f0(5) + €fi(3) + O(€?), € — 0T, (6.3)
and find that

Jo / u’(z) (6.4a.)

p=const. and f1(3) =—= dz———.
fi S1(5) 2 ), “ue o
The constant f and the lower limit of the integral 51 are not a priori the same for the two
outer solutions. In particular, they cannot be determined by the boundary conditions at

z = 0 and infinity, requiring us to find an inner solution.

6.2. Inner solution

Within the boundary layer, we introduce the stretched coordinate Z = (5 — 3.)/§, where
0 < § < 1, and seek an inner solution, F;,(Z), to (2.11). We approximate the coefficients
by their Taylor series expansions about 5 = 3., so that (2.11) becomes

4

€ _, 2, e U,
2lin?) = SFp@) — s 5= Fin(2) = 0; - Z=0(1), (6.5)
C

where the subscript ‘c’ denotes evaluation at the critical level, 5 = .. By balancing the
two first terms, we obtain the distinguished limit § = € (Bender & Orszag 1999), and hence
must solve

1

1/ / uc +
Fin(2) = 2F},(2) = e S Fun(2). € — 07 (6.6)

c

Because the boundary layer has an O(¢) thickness, the appropriate inner expansion is
Fin(Z) = Fo(Z) + € F1(Z) + O(€?), € — 0T, (6.7)
The general solutions are

Fo(Zy=Ae*’ +B, A,BeC, (6.8)

U’ Z X e—Zt
and F(Z) = —¢ / dxe / dt——Fo(1). (6.9)
UC b a t

Next, we determine the integration constants, A and B, and the bounds of integration, a
and b, by asymptotic matching.

6.3. Asymptotic matching and uniformly valid composite solutions

We must match the inner solution and the two outer solutions, as € — 0. We use the
superscripts ‘¢’ and ‘v’ for lower and upper, respectively.
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The lower outer solution, £,

boundary condition

((3), is defined for 0 < 5 < 3., and must satisfy the lower

f(f (0)=1, and ff 0) =0. (6.10a,b)

The upper outer solution, f (), is defined for 5 > 5. and hence must satisfy condition

(2.13a). We use the following matching conditions:
lim ffm(g) = lim Fy(Z) and lim f),(z) = lim F;(2), (6.11a,b)
530 Z——00 ;_>%C*' Z—+00
and then apply the Van Dyke additive rule (Bender & Orszag 1999) to construct uniformly
valid composite solutions
uniform approx = inner 4 outer — common part. (6.12)

We stress that this is possible because the lower and upper outer solutions happen to have
a common analytical expression.

6.3.1. Leading order
To leading order, the outer solutions are constant (see (6.4a)), and because of the boundary
condition (6.10a) we have

fo=1. (6.13)

The leading-order inner solution is given by (6.8). To preempt divergence as Z — +oo,
we impose A = 0, and the matching condition (6.11a) implies that B = 1. Therefore

Fo=1, (6.14)
which, upon imposition of the matching condition (6.115), yields
fo =1 (6.15)

We combine the solutions (6.13), (6.14) and (6.15) using the additive rule (6.12), and thus
obtain a uniformly valid composite solution at leading order

Junir,0 =1+ O(e). (6.16)
The effect of the boundary layer appears only at the next order.

6.3.2. Order €
Following (6.4b), the lower and upper outer solutions at order € are
1 5 u//(z) 1 5 u//(z)
¢ = " ~
= —— dz——— d = —— dz———, 6.17a,b
fi(3) Z/sf e - W i (3) 2/5? e —c (6.17a.,b)
respectively. From the Laurent series expansion
') w 1 [ug]z
_ +o =5 | +06 - 50, (6.18)
UG —C ~ UG —30 2 uz] TURT
we deduce that
u// z _ %
L c é oc _
5) ~ — L , , 6.19
fi3) 2w ¢ (5{3 — 5c> 57 5 (6.19)
u// 5 — 5¢
d fix) ~ ——C°1, A , +, 6.20
and  f'(5) 2 08 (51{ — 56) 3> ¢ (6.20)
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where Log denotes a continuation of the natural logarithm to the negative real numbers

Inls — 5.l —im ifU. >0

f . 6.21
In|z — 3c| +im ifu2<()’ or3 < e ( )

Log(s — 3c) = {

The choice of the branch cut — just above the negative real axis if U/ > 0, just below
otherwise — follows from Lin (1955).
From (6.9), the inner solution at order € is

u’ rz x —2t
Fi(2)= —¢ / dxe™ / dr=—. (6.22)
uc b a t

X X +0o0
/ = / + / . (6.23)
a “+oo a

Noting that the second integral is a constant, C € C, we obtain

We split the integral over 7 as

4

" (% C
FI1(Z) = ——< { / dxe®E| (2x) + E(eZZ — eZb)} , (6.24)
b
where
+oo ot
Ei(x) E/ dtT, | arg(x)| < m, (6.25)
X

is the exponential integral. For large values of |x|, the divergent series (Bender & Orszag
1999)

! 3
Em="—-Y " x>0 |arg®)| < —, (6.26)
X (—x)n 2
n=0
yields
1
e E; (2x) ~ i +o00. (6.27)
X
After integration, we find
w’ Z
F1(Z) ~ _2Ucé {Log [Z} + C(@e* — e } , Z— +oo. (6.28)

Recalling that Z = (5 — 5.)/€, the matching of the inner limits, given by (6.19) and (6.20),
and the outer limits, given by (6.28), yields

C=0 and 3| — 3 =eb=j3"— 3. (6.29a,b)
Because the boundary condition (6.10) requires that
51 =0, (6.30)
the outer solution at order € has the same expression in the lower and upper outer regions
L e 0 U@®
= —= dz———, 3K and 5> 3. 6.31
fi(3) 2/0 ue_o < 5> 5 (6.31)

The lower outer solution is real, because the path of integration along the real axis does
not reach the branch point 5 = 3.. However, for the upper outer solution we have to make a
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detour in the complex plane. We deform the path of integration in the upper part if U, > 0,
and in the lower part otherwise. In Appendix B, we show that

T U
2 U

Using the matching conditions (6.29a,b) together with (6.30), the inner solution (6.24)
becomes

Im{f"} = — . (6.32)

" Z
lc

Fi1(2)=—-—¢ dxe*E; (2x). (6.33)
uC —3c/€
Finally, we use the Van Dyke rule (6.12) to construct a uniformly valid composite solution

at order €

U’ Z 1 3 u“(?)
. =1+4c¢ ——C/ dxe*E;(2x ——/ dZ——
fumf,l(g) { /c s/ 1(2%) 2 0 U(Z) -G,
u’ 5
+ —<Lo (1 - —)} +0(?). (6.34)
YT/t G

In Appendix B, we verify that x (5) = e_ﬁ'zfumf 1(5) satisfies the global property:

u//
Im{x'(0")} = —m—5 [x.I? (6.35)
A
at leading order. In Appendix A we show that
el 2
fGO =1+ =< (ye+In| 2| —in ) + 0D, (6.36)
2 UL €

Equation (6.36) generalizes a result that Miles derived in an appendix to Morland &
Saffman (1992) using an exact solution of the Rayleigh equation for an exponential wind
profile.

6.4. Comparison with the numerical solution

We numerically solve (2.11) for the two standard wind profiles
U)=1—e? and U(3) = In(l + 3)/«, (6.37a,b)

where, as before, k = 0.4 is the von Kdrmén constant. We compare the numerical solution
with our uniformly valid composite solution (6.34) for fixed values of £ and C, in figure 7.
(Note that any dispersion relation can be retrieved with a proper choice of the control
parameters.) For both profiles the composite solution and the numerical solution agree
very well. We distinguish the lower (upper) outer solutions with their imaginary part being
equal to zero (a positive constant). Consistent with the Frobenius solution (Drazin & Reid
1981), the solution within the inner layer depends on the wind profile and the dispersion
relation solely through the scale factor U /U.. and the bound of integration 3./€. Since
the phase of the solution of the Rayleigh equation changes only within the boundary layer,
we conclude that the interaction of short waves with the wind principally occurs therein.
In contrast, we showed that for # < 1 the phase varies from 5 = 0 to 5 = 3., so that long
waves interact with the wind all the way from the mean water surface to the critical level
(Bonfils et al. 2022).
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Figure 7. Comparison of the uniformly valid composite solution (6.34) with the numerical solution of the
Rayleigh equation for the exponential (a,b) and logarithmic (c,d) wind profiles, with C, = 0.1 and different
values of 4. The dots and the stars denote the real and imaginary parts of the numerical solution, respectively.
The solid line shows the real part of (6.34) and the dashed line the imaginary part.

6.5. Similarity solution

We have non-dimensionalized the variables using external parameters characterizing
the shear in the air. However, the general short-wave solution (6.34) can also be
written in terms of & = kz and U = U/c¢,, where ¢, is the dimensional version of C,.
The wind-generated ripples have a continuous wavenumber spectrum so that k, and
subsequently ¢,, are variables rather than parameters. In that sense, £ is a similarity
variable introduced by Miles (1957), and the Rayleigh equation has a self-similar solution,
¢ = ¢ (&), which for short waves is

[ W [ L we  weE ;
_ ¢ _ 2x _ - _ 5
P& =e {1 W) f_a. dre £ (20 2/0 dzu<z>—1+2u’<sc>L°g<l s)}

(6.38)

7. The WKB method in the short wavelength limit

Alexakis et al. (2004b) proposed a solution of the Rayleigh equation for short waves using
the WKB method. However, because their solution does not satisfy the global property
(6.35), their growth rate has an extra factor 7w/&; see their (A31). In figure 8, we show the
growth rate of gravity waves for an exponential wind profile and compare the results of
Alexakis et al. (2004b) with our short-wave asymptotic solution and the exact solution.
Clearly the WKB method deviates from the others for all kd, 2 25, and in what follows,
we explain the origin of the deviation.
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Setting € = 1/£, we write the Rayleigh equation in the form

. U ()
2.1 2 £
x) = s s th s =1 . 71
€ x"(3) =0G.e)x(5), with O3, €) +e UG) =G, (7.1)
A WKB expansion is (Bender & Orszag 1999)
13X
x(3) ~ exp |:Z ZOE”Sn(g)i| , €—0. (7.2)
n=

In the standard case, Q(3, €) does not depend on the small parameter €. Then, we can take
only two terms in the series (7.2); this physical optics approximation yields

1 /3 1 3
f di\/Q(Z)}JrCz[Q(g)]”“eXp [—g / dZ\/Q(E)]

x(3) ~ C1IOG)T* exp [;
‘ ‘ (7.3)

for Q(3) > 0, and

- o
x(5>~c3[—Q(5>]—‘/4exp[§ /h dZ\/—Q(Z)}+C4[—Q(5)]‘”4exr> [—é /h cW—Q(z)]
(7.4)

for Q(3) < 0, where the bounds of integration, a and b, are arbitrary. For U”(3) < 0 and
0(3, €) introduced in (7.1), Alexakis et al. (2004b) used the physical optics approximation
on three intervals, defined in figure 9, and obtained three solutions of the form of (7.3)
or (7.4), in which they neglected the fact that ¢ < 1 within Q(3, €). Then, they had to
match those solutions in order to determine the integration constants Ci, Co, etc. The
common matching procedure takes place at the simple turning point 5, (e.g. Bender &
Orszag 1999). However, they needed inner solutions near the critical level, 5., and it is at
this juncture that the appeal of the WKB method is understood. Indeed, they found that the
solution of the Rayleigh equation near the singularity can be represented in terms of Bessel
functions for 5 > 5., and in terms of modified Bessel functions for 5 < 5.. Moreover, the
outer limits of those inner solutions formally match the inner limits of the physical optics
approximations. Unfortunately, however, the distance between the critical point 5. and
the turning point 3, actually shrinks as € tends to zero. For instance, in the case of the
exponential profile U(z) = 1 — e™3, we have

5% — 3¢ = In(1 + €). (7.5)

Hence, the interval where Q < 0 cannot be taken as an outer region. In fact, as seen
in figure 7, the numerical solution of the Rayleigh equation does not exhibit oscillatory
behaviour.

In the vicinity of the critical level, 3., we introduce the inner variable

z = —%(5 — 5¢); (7.6)

in terms of which the inner solutions are
Xint (Z2) = VZIAJ1(2NZ) + BY1(2v/2)]  forz > 0, (7.7)
and  yin—(2) = V—Z[CL,(2v/=2) + DK1(2/-2)] forz <0, (7.8)

where A, B, C and D are complex constants, and J; and Y; (/1 and Kj) are the Bessel
functions (modified Bessel functions) of order 1. For the solution to be continuous and its
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Figure 8. Comparison of the growth rate of gravity waves obtained by Alexakis et al. (2004b) with the
predictions of our short wavelength asymptotic treatment (cf. (3.13)) and the growth rate calculated from the
exact (hypergeometric) solution for a wind profile U(z) = U (1 — e ¢/da) and a density ratio r = 0.5.

0>0 Q<0 0>0

Figure 9. The three intervals in the WKB approach of Alexakis et al. (2004b) where 3, is a simple turning
point.

derivative to have the correct behaviour at 5 = 5., we must establish some relationships
between these constants. Although this was not done explicitly by Alexakis et al. (2004b),
we could use their final matching formulae to determine such relations to find them to be
incompatible with the following:

o T ) ) ) T
Ii(3) = —iJ1(G3) and K (3) = —5[11(—15) —1iYi(=i3)], —m <arg(y) < 7
(7.9)
We find that
2
C=—-A+iB and D=—-=B. (7.10)
TT

To check the consistency of these results, we use (7.10) for the numerical integration of the
Rayleigh equation and retrieve the growth rates calculated by Beji & Nadaoka (2004).

8. Conclusion

We have studied the effect of a shear flow on interfacial capillary—gravity waves when
their wavelength is much smaller than the characteristic length scale of the flows in the
fluids bounding the interface. Using the dimensionless inverse wavenumber as a small
parameter, € = 1//, we asymptotically solved the eigenvalue problem for the stability of
an arbitrary parallel flow U = U(z)x through a two-fluid interface with a density ratio
that is not necessarily small. We constructed uniformly valid composite solutions of the
governing Rayleigh equation, where the real part of the eigenvalue is a power series
in €. We showed that including the effect of surface tension changes the nature of the
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leading-order solution, and that exponentially small terms must be considered in order
to have a non-zero imaginary part of the solution. From a physical view point, there is
a prograde mode whose phase speed is greater than the speed of the water surface, Us,
and a retrograde mode whose phase speed is smaller than Us. When the velocity of the
shear flow equals the phase speed of one these modes, there is a critical layer where the
flow transfers energy to the wave. If the critical layer is in the air (water), this is called
the Miles (rippling) instability. The only case considered in the literature thus far is when
the prograde mode undergoes the Miles instability and the retrograde mode undergoes the
rippling instability. In § 5 we studied the situation where the prograde mode can undergo
both instabilities and the retrograde mode is neutral. In the short-wave limit, we found
that (i) the effect of the shear on the phase speed of the two modes depends only on the
derivatives of U at z = 0%; and (ii) the Miles and rippling instabilities have a growth
rate of the same form. Indeed, the interaction between the shear flow and the waves is
mostly reduced to a narrow region around the critical level, an internal boundary layer
of thickness € where the solution of the Rayleigh equation has a self-similar structure.
Heuristically speaking, the waves are barely influenced by the flow outside of this region.
Nonetheless, we showed that there are significant effects on dispersion and growth rates
when the characteristic velocity of the shear flow is large and the density ratio is close to 1.
Finally, we showed how the WKB approach to solving the Rayleigh equation breaks down.
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Appendix A. Solution of (2.11) at the singular point 3 = 3,

The regular singular point 5 = 3. is located in the inner region where the solution at order
€ is given by (6.33), which we reproduce here:

ué’/ ‘ 2x 5~ 5
Fi1(Z2) = —— dxe”E{(2x), where Z = (A1)
ué —5c/€ €
is the inner variable.
A.l. Imaginary part
From the series representation of the exponential integral
+00 (—x)"
Ei(x) = —yg —Logy) — ) —-, Jarg)| <, (A2)
—~ nn!
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where yr = 0.577 is the Euler constant, we see that x = 0 is a logarithmic branch point
for the integral in (A1). The only contribution to the imaginary part of F| arises from the
integration of Log(x) along the branch cut. Namely, if ® is the Heaviside step function,
then

Z VA 0
Im!/ dxeszl(Zx)} = i@(—Z)n/ dxezx:I:@(Z)n/ dxeX, (A3)

—5c/€ —5c/€ —3c/€

where we select the plus sign when U.. > 0, and the branch cut is just above the negative
real axis, and the minus sign otherwise. From (A3), we find

"
_r e 0z asdey gz <o,

2 U
Im{F(2)} = p (A4)
—— S (1 —e /e if Z > 0.
AT
Then, upon taking the limit Z — 0, we obtain
u; R
In{f ()} = —e > —C-(1 — &~ 2/) + 0(e?), (AS)

2y

It is interesting to take the outer limits Z — =£o00 of the expression (A4). In particular, if
the matching was done properly, these should be equal to the inner limits of the imaginary
parts of the lower and upper outer solutions, viz.

lim TG = =0 e 25/e and  lim Im{fAG)) = — & S (1 e2ley,
sose T 2 s 2wy
(A6a,b)
In each case, we shall check that
im € _ oo, (A7)
e—0t €

which is the condition of separation of the boundary layer of thickness € from the lower
boundary. Thus, we consistently retrieve a zero imaginary part in the lower outer region.
We recall that the upper outer solution is given by (6.31)

iy = L [T W@ A8
fl(S)—_E/O Zm’ 3> 3c- (A8)

According to the Sokhotski—Plemelj theorem

) 1 5 B u//(z) 1 /(g . u//(z) . u//

lim —= d =——P | d —im——, V3> 3.,

C0+ 2f0 UG-G +icy 2 Jo “um—c My V0T
(A9)

where P denotes the Cauchy principal value. Hence, the imaginary part in the upper outer
region is constant, equal to the upper outer limit of Im{F } up to exponentially small terms.
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A.2. Real part

At the leading order, we have
f(5e) =1+ 0(e). (A10)

Here, we calculate the next-order contribution to the real part. For convenience, we define

J(Z) = Re { / ’ dxe®™E; (2x)}, (Al1)
—3c/€
and we express the exponential integral using the Ramanujan series as
too ln=D2)
Ei(x) = —yg —Log(x) +¢ 2 )" = [E] ) T (Al12)
n=1 j=0

where |x] denotes the floor function. This series converges faster than (A2). We perform
a direct integration as

Z +0o z
J(2) = —/ dxe”(yg +In(2) + In |x|)+§ S—,/ dxe’x", (A13)
niJ_s./e
n=1 oc

—3c/€

and after some algebra, we obtain

1
J(2) = {[yE +In@)][e2/¢ — ¥’ 4+ e %/ In [i] — |z
€

2
25¢
+E; - | E\2|Z)) ¢ +S2), (Al4)
with
= Fn+1,-Z)—T(n+1, 35./€)
s@ =3 (1" ’ 5 (A15)
n!
n=1
in which
400
I'(a,x)= / der e, (A16)
X
is the upper incomplete gamma function. Note that
F'n+1,00=n! and s2,_1 =52, VpeN (Al7a,b)
and that
5 K1 s
lim E;(25./¢) — E121Z]) — ¢ 1n|Z] = —In [—‘] fema/e Y [—‘] o (Al8)
Z—0 € i—le n!
Therefore
. 1 25¢ —25./€ ¢
limJ(Z) = —~ (ye +1n| 22| ) (1 — e 2 )+R[—]. (A19)
Z—0 2 € €
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Figure 10. The ‘remainder’ R(¢) given by (A20).

We define the ‘remainder’ as

et +00 +00

I 1,
RO == %sn - Z(—l)“%sw (A20)
n=1 n=1

which is a negligible quantity for ¢ > 1, as shown in figure 10. Discarding the
exponentially small terms, we arrive at

u// 2 c
Re(f(50)) = 1 + 317 (yE +In [ j D +0(ed). (A21)

Appendix B. Global property of the solution of the Rayleigh equation
The dimensionless Rayleigh equation is

U’ ()

" 2 _ _ : —
X (5)—[é +m]x(5)—0, x(©0) =1, 51}3100)((5)—0, (BD)

where C, = C,(#) is a known function. Assuming that there is a unique level 5. > 0 such
that U(5.) = C,, Miles (1957) showed that

"

u
Im{'(07)} = —n—% x|, (B2)
|

where the subscript ‘c’ denotes evaluation at 5 = 3.. The derivation of the global property
(B2) is analogous to the canonical derivation of Rayleigh’s inflection point theorem
as follows. Multiply the Rayleigh equation (B1) by the complex conjugate of x(3),
integrate by parts, use the boundary conditions to evaluate the integrated term and take
the imaginary part; the result follows from the Sokhotski—Plemelj theorem.
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Here, we show that our asymptotic solution for short waves satisfies (B2). For 5 > 0, we
let

x(3) =e 3/f(5), withe = 1/A. (B3)

We take the derivative of the composite solution, f;f,1(5), obtained in (6.34) and obtain

u// 2% ) B u//(o—i-) u// €
/ +y oc 25¢/ D S
Junig 1 (07) = ——uf |:E1 (_e ) =+ 1n:| e 25c/€ ¢ 20,(0) uz 25 (B4)

c

where we select +im if U > 0, and —im otherwise. The contribution to the real part of
the exponential integral multiplied by the decaying exponential is negligible, and hence is
discarded in (3.4) and (3.6).

We use (B4) to calculate the left-hand side of the identity (B2)

1/

w .
Im{x'(0)} = Im{f;,;; ;| (0")} + hot. = —nﬁ e 2ae/e, (B5)

Using the results of Appendix A, we have
Xe = e/ {1+ O(e)). (BO)

Using (B6) on the right-hand side of (B2), we recover the left-hand side of (BS).

Appendix C. Short wavelength cutoff of the rippling instability

As shown in figure 4, the rippling instability has a short wavelength or high wavenumber
cutoff when the effect of surface tension is taken into account. Following Young & Wolfe
(2014), we denote this cutoff k,,,, where the subscript ‘neut’ denotes neutral. In other

words, the wave with wavenumber k', is marginally stable because its phase speed equals
the lower bound of the velocity profile in the water, namely

e () = _lim U() = U, (C1)

e

where all variables are dimensional. Hence, using (3.11) for the phase speed of short waves,

kt. L=k}, is solution of
% 1+r 2(1+ )k 2J/SA+n vV
For convenience, we introduce the following notation:
~ S ~ 11— woO™) —ru ot Us—U_
S = Cg=ltre 4 MO O g g YTV
147 1+7r 1+7r
(C3a—d)

We assume a wind-induced current in the water so that B > 0. Following Young & Wolfe
(2014), we let the inverse Weber number be a small parameter, & < 1, and solve (C2) in
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the form
= A - G -
VSEB—-——=]=8k+=, SKI1 C4
( 2 k) + 2% < (C4)
Taking the square of this result and letting X = Sk we obtain
saT 3¢
X|[B———| =[X+-2|, S« Cs
% + oy < (C5)

Equation (C5) can be readily solved using regular perturbation theory. We seek solutions
in the form

X =Xo+ SX1 + 0(S?). (C6)
We find
AB+ G
Xo=® and X, =-22+G (C7a,b)
2Xo — B2
and infer
B*14+r UWO)=rUO) 1-rC
At = — — — 4+ 0(3S). C8
neut CS) (1 + r)@ 1+r@2 + ( ) ( )
For the double exponential profile introduced in § 2.3 we find
1 I—r(Ry = 1)/R 1 -

neut — S 1 +r 1 +r
which is a generalization of (5.10) in Young & Wolfe (2014).
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