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The integral equation of the title is

(1)

It was studied in [4], though h(x) was written as x~1g(x~1) there, and using a method
involving orthogonal Watson transformations, it was shown there that if h e L2(0, °°), then
the equation has a solution /eL2(0, °°), and that / is given by

In this paper, using the techniques of [3], we shall show that the equation can be
solved for h in the space £^v of [3] for l<p<°o, ft>0, and that for these spaces,
which include L2(0, °°), / is given by the simpler formula

/ (x)=f ((t/x)erfc((logt/x)1/2)--n--1/2(logt/xr1/2)h(()dt/t + h(x) (x>0). (3)

We shall further show that these results can be extended to the spaces S6W^P of [3]. This
forms the content of our theorem below.

Our notation in this paper will be that of [3]; particular notations from [3] that we use
frequently are S£^p, i?w,(i,p, si, 5lp, M and [X]. We shall also use some results from [2], and
it must be noted that the spaces L^p of [2] are slightly different from the spaces <£^p of
[3], and the results adjusted accordingly.

We shall write (1) as

h = Kf, (4)
where

and

= | (log t/x)-1/2/(r) dt/t (x>0), (6)

and similarly we shall write (3) as

f = Lh, (7)
where

L = L0 + I, (8)
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and

(Loh)(x) = J (((/x)erfc((logt/x)1/2)-7r-1/2(logt/x)-1/2)h(t)dt/t, (x>0). (9)

First we need a lemma.
LEMMA. If l^p<oo, ju,>0, K0 andLo6[L^p] and iffeL^, where l < p < 2 , n > 0 ,

then

(MKof)(s) = s-ll2(Mf)(s), Rcs = n, (10)

and
( 44 T f ^ c ^ — f 1 4- v^^\~~^~( 44 -f\( c\ T3^c — it / "I "I \
\Jvvl-~iQj J \ ! > ) — ^ X i i i ) V,^**-/ }\& )j INC o — fjb, \L ±J

Proof. Clearly

(Kof)(x) = k(x/t)f{t) dtit,

where
-1))-1'2 (0<x<l),

(x>l).

Thus, if /x>0,

J x»-' dt = ^'m. (12)

Hence, by [2, Lemma 3.1], -Koeti^p], (l<p<o°). Also, by the same calculation as (12)
with fj. replaced by s, if Re s > 0

— c-l/2cs~1k(x)dx =

and thus, by [2, Lemma 4.1], (10) holds.
Similarly

(L0/)(x)=| l(x/t)f(t) dt/t,

where
l{x)jx erfc log x ^

Now, integrating by parts, if u > 0

erfcu = 27r-1/2| e~'2dt = 2
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so that

where u = (logCx"1))1'2, and thus l{x)<0, x>0 . Hence if JLI>0

j x11"1 |I(x)| dx = - [ x^-^x"1 erfc((log x-1)1'2)- Tr^log^"1))-1 ' 2) dx

- ' V erfc t1/2 dt + -n--1/2| x^QogU-1))-1 '2 dx

2(^1 / 2 +1)"1 + ft"1'2 = (ft1/2+1)"1 (13)

from [1, 4.12(10)] and (12). Hence, by [2; Lemma 3.1], L0&[ie^p\ (l<p<«>). Also, by a
similar calculation as (13), if R e s > 0 , then

and thus, by [2, Lemma 4.1], (11) follows.
We can now state our Theorem.

THEOREM. J / l<p<oo, /x>0, then K and L e[^p];K and L map SS^P one-to-one onto
itself; and

KL = LK = I. (14)

Further, i / l < p < o o j / x > 0 and weSlp, then K and L can be extended to ^w>M.,p and if their
extensions are still denoted by K and L respectively, then K and L e [i?w,pL,p], K and L map
•S?W,M.,P one-to-one onto itself; and (14) continues to hold.

Proof. Since Ko and L o e [ ^ , p ] for l<p<°° , ju.>0, so are K and L. If /x>0 and
/ G ^ . 2 , then from (10) and (11), if Re s = ix

{MKLf){s) = (s-1/2+l){MLf)(s) = (s"1/2+ I)( l -(s1 / a + mCtf /Xs)

= (Mf)(s),

so that KLf = f, and similarly LKf = f. Hence, on £8^2 (14) holds. But from [2, Lemma
2.2], i P ^ n i f ^ n i P ^ p is dense in if^p, (l£p<oo), and thus since both sides of (14) are
operators in [^,p] , (14) holds on 3?^. It follows from this that K and L are one-to-one
onto on <£M. For if ge<S^,p, (l<p<«>, /x>0), and we let f = Lg, then Kf = KLg = g, so
that X is onto, and if Kft = Kf2, feL^, (i = l,2), then f1 = LKfl = LKf2 = f2; similarly
for L.

From (10), if feSe^, ( l < p < 2 , M,>0), then

= m(s)(Mf)(s) and UL/)(s) = (l/m(s))(i/)(s), (15)

where m(s) = s~1/2 + l. Clearly m is holomorphic in 0 = a(m)<Res</3(m) = o°. Also if
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0<a1<a2, then in ff1<Res<cr2, m(s) is bounded. Further \m
O(|r|-1) as |f|->°°. Thus me si, with a(m) = 0, j3(m) = °°. In an exactly similar way
\/mes£ with a(m) = 0, /3(m) = °°. Hence by [3, Theorem 1], there are operators Hm and
HVm e [Se W>(M>] for 1<p<c°, /u,>0, we2IP and such that for / e S£^p, with /x>0, K p < 2

(^Hm/)(s) = m(s)U/)(s) and ( i H 1 / J ) ( S ) = (l/m(S))(l/)(s). (16)

Comparing (15) and (16), it is clear that on i?^p, ( K p <2, /x >0), Hm = K and H1/m = L,
and this must hold on all -Sf̂ p, (fA>0, Kp<<»), since IZ^n&^p is dense in .2?^ and all
operators in question are in [iPp.,p]. Thus we can extend K and L to i?w>M,p for l < p < « j

fx>0, ws9lp as members of [ifw,^>p] by defining them to be Hm and H1/m respectively,
and then by [3, Theorem 1], K and L are one-to-one onto. KL = HmHl/m = Hm(Hm)~l = /
and similarly LK = I. Thus the theorem is proved.

COROLLARY. If heJ£^p, where l < p < o o ) /x>0, equation (1) has a unique solution
given by (3); iffelf^p, where l < p < ° o , JLI>0, equation (3) has a unique solution
given by (1). / / l < p < ° ° , M - > 0 , we2lp, and heJ£w^p, the equations h = Kf and

h= Lf have unique solutions f e if w>M.,p given by f = Lh and f = Kh respectively.

We conclude by remarking that when K and L are extended to ^W,^,P. then Kf for
/ei?Wj(M, is not necessarily represented by equation (1), and similarly Lh for he££wixp is
not necessarily represented by equation (3). By examining the adjoint of K representa-
tions of K can be found on i?w>H.>p and similarly for L.
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