ON AN INTEGRAL EQUATION OF SUB-SIZONENKO
by P. G. ROONEY
(Received 2 June, 1982)

The integral equation of the title is

h{x)= w“/zjm(log t/x)7V2f (1) dift + f(x), (x>0). 1)

It was studied in [4], though h(x) was written as x~'g(x™") there, and using a method
involving orthogonal Watson transformations, it was shown there that if h € L,(0, =), then
the equation has a solution fe L,(0,®), and that f is given by

fx)= % Jj {L’; . erfc(u'’?) du —erfc((log t/x)”z)}h(t) dt+1ih(x). 2)

In this paper, using the techniques of [3], we shall show that the equation can be
solved for h in the space £, of [3] for 1=p<oo, >0, and that for these spaces,
which include L,(0, ), f is given by the simpler formula

flx)= Jm((t/x)erfc((log 1x)"2) = w2 (log tx) VDR() dift +h(x)  (x>0).  (3)

We shall further show that these results can be extended to the spaces &£,,,., of [3]. This
forms the content of our theorem below.

Our notation in this paper will be that of [3]; particular notations from [3] that we use
frequently are £, ,, £., .0, &, U, M and [X]. We shall also use some results from [2], and
it must be noted that the spaces L, , of [2] are slightly different from the spaces £, , of
[3], and the results adjusted accordingly.

We shall write (1) as

h=Kf, (4)
where
K=Ky+I, (5)
and
Kof))= [ Goggw 0 ane x>0, ®)
and similarly we shall write (3) as
f=Lh, (N
where
L=Ly+I, (8)
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and
(Loh)(x) = Jw((t/x)erfc((log t/x)"?) — Y (log t/x)" V) h(t) di/t, (x>0). 9)
First we need a lemma.

LEMMA, If 1=p <o, u>0, K, and Loe[L, ] and if fe L
then

where 1=p=<2, u>0,

P>

(UKof)(s)=s""*(Mf)(s), Res=n, (10)

and
(MLof)(s)=—(1+s"?) 7 (Mf)s), Res=p. (11)

Proof. Clearly

(Kof)(x) = L k(I F() dif,
where
Y (log(x™Y))"Y? 0<x<1),

k(")z{ 0 (x>1).

Thus, if &>0,

J x* 7k (x)| dx = ,"—1/2[)

0

1

o

x*(log(x™") ™2 dx = w-WL eI dr=p 2 (12)

Hence, by (2, Lemma 3.1], Ko€[£,,,], (1=p <x). Also, by the same calculation as (12)
with p replaced by s, if Re s>0

(Mk)(s) = J:ox“‘k(x) dx =512,

and thus, by {2, Lemma 4.1], (10) holds.
Similarly
(L= [ 160110

where
I ){x‘1 erfe((log(x ™))%} — = 2(log(x "))~/ 0<x<1),
¥ 0 (x>1).

Now, integrating by parts, if u>0

® 2 1 2
erfcu =2ﬂ_1/2-[ e’ dt=2'n'_”2{—§ e

u—i-‘; e dt/tz}

= w'l/z{u'le""— J e dt/tz},
u
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so that

x~ ' erfe((log(x ™)) — w2(log(x 1))~ V2 = —x'l'rr'mj e~ dt/t?,

u

where u = (log(x~*))'?, and thus I[(x)=<0, x>0. Hence if &.>0

me“" H(x)| dx = — J:x“_‘(x’1 erfc((log x™")?) — = *(log(x ")) ""?) dx
0

* 1
= —j e e erfc t1/2 dt+7T—llzj xu—l(log(x—l))_lﬂ dx
0 o

=—u PP+ 1)+ = (w2 )7 (13)

from [1, 4.12(10)] and (12). Hence, by [2; Lemma 3.1], Lye[Z, ], (1=p <«). Also, by a
similar calculation as (13), if Re s >0, then

() (s)=—-1+s"»71,

and thus, by [2, Lemma 4.1], (11) follows.
We can now state our Theorem.

THEOREM. If 1=p<o, u>0,thenKand L e[¥, ]; K and L map ¥, , one-to-one onto
itself; and

KL=ILK=1 (14)

Further, if 1<p <o, u>0 and we ¥, then K and L can be extended to %£,,,, , and if their
extensions are still denoted by K and L respectively, then K and L €[%,,,,,], K and L map
Lo One-to-one onto itself; and (14) continues to hold.

Proof. Since K, and Lye[%,,] for 1=p<o, u>0, so are K and L. If >0 and
fe¥£,,, then from (10) and (11), if Res=p.

(UKLF)(s) = (s7*+ 1)(MULF)(s) = (s + 1)(1 = (s + 1)) Mf)(s)
= (Uf)(s),

so that KLf=f, and similarly LKf =f. Hence, on %, , (14) holds. But from [2, Lemma
22), £,..NL,.NEL,, isdense in £, ,, (1=p <), and thus since both sides of (14) are
operators in [£, ], (14) holds on £, . It follows from this that K and L are one-to-one
ontoon &, . For if ge ¥, ,, (1=p<w, u>0), and we let f=1Lg, then Kf=KILg=g, so
that K is onto, and if Kf,=Kf,, fieL,,, (i=1,2), then f, = LKf, = LKf, = f,; similarly
for L. :

From (10), if fe £, ,, (1=p=2, n>0), then

“w,p>

(UKSf)(s)=m(s)(#f)(s) and (HLf)(s)=(1/m(s))(HUf)s), (15)

where m(s)=s""?+1. Clearly m is holomorphic in 0= a(m)<Re s <B(m)=c. Also if
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0<0,=0,, then in o;<Re s=<0,, m(s) is bounded. Further |m'(o+it)|=5|o+it|>*=
O(|t|™) as |t|—> . Thus me o, with a(m)=0, B(m)=». In an exactly similar way
1/m e o with a(m)=0, B(m)=c. Hence by [3, Theorem 1], there are operators H,, and
Hyjp €[£u pplfor 1<p<ow, u>0, we, and such that for fe £, ,, with £ >0,1<p=2

(UH,f)(s)=m(s)(#f)(s) and (MHmf)(s)=(1/m(s))(Hf)(s). (16)

Comparing (15) and (16), it is clear thaton £, ,, 1 <p=2, u>0), H,=K and H;;,, =L,
and this must hold on all £, ,, (# >0, 1 <p <), since £,,N¥, , is dense in £, , and all
operators in question are in [£, ,]. Thus we can extend K and L to £,,,,, for 1<p <o,
p>0, we, as members of [£,,, ] by defining them to be H,, and H,,, respectively,
and then by [3, Theorem 1], K and L are one-to-one onto. KL = H,,H,,,, = H,.(H,,) '=1
and similarly LK = I. Thus the theorem is proved.

CorOLLARY. If he 2, ,, where 1=p <o, u>0, equation (1) has a unique solution
feZ,, given by (3); if fe £, ,, where 1=p<w, u >0, equation (3) has a unique solution
he%,, givenby (1). If 1<p<o, u>0, we,, and he £,,,.,, the equations h = Kf and
h = Lf have unique solutions fe &£, , , given by f=Lh and = Kh respectively.

We conclude by remarking that when K and L are extended to £,,,,, then Kf for
fe&...p is not necessarily represented by equation (1), and similarly Lh for he %, , is
not necessarily represented by equation (3). By examining the adjoint of K representa-

tions of K can be found on &£, , , and similarly for L.
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