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WAVELET BASES FOR A UNITARY OPERATOR

by S. L. LEE, H. H. TAN and W. S. TANG

(Received 16th August 1993)

Let T be a unitary operator on a complex Hilbert space JV, and X, Y be finite subsets of Jf. We give a
necessary and sufficient condition for T^X): = {Vx:neZ,xeX} to be a Riesz basis of its closed linear span
<TZ(X)>. If T^X) and T^Y) are Riesz bases, and <Tz(A')>c<T^y)>, then X is extendable to X' such that
T^X') is a Riesz basis of <r2i(y)>. The proof provides an algorithm for the construction of Riesz bases for
the orthogonal complement of <T^X)> in <T2(K)>. In the case X consists of a single B-spline, the algorithm
gives a natural and quick construction of the spline wavelets of Chui and Wang [2, 3]. Further, the duality
principle of Chui and Wang in [3] and [4] is put in the general setting of biorthogonal Riesz bases in Hilbert
space.

1991 Mathematics subject classification: 41A15, 41A30, 42C05, 42C15.

1. Introduction

Mallat [12] has introduced a general method for the construction of orthonormal
wavelet bases via the multiresolution approximation, and Daubechies [5] has con-
structed an important class of compactly supported orthonormal wavelets, which are
very efficient for numerical computations and image decomposition and reconstruction
(see [1, 6]).

Translates of a uniform B-spline form a Riesz basis of its closed linear span in L2(R),
the space of square integrable functions. Orthonormalization of the B-spline basis leads
to the Lemarie wavelets [11]. However the process does not preserve the simple and
rich properties of uniform B-splines (see Schoenberg [15], and the references therein),
which could be useful in practice. This has led Chui and Wang ([2, 3, 4]) to consider
cardinal spline wavelets which generate Riesz bases of their closed linear spans.

The spline wavelets of Chui and Wang are closely related to cardinal spline
interpolation. In an attempt to construct spline wavelets based on cardinal Hermite
interpolation, Goodman, Lee and Tang [8] have introduced wavelet bases generated by
translating a finite set of functions. Coincidently, a result of Robertson [14] on
wandering subspaces for unitary operators provides a general setting for orthonormal
wavelets in Hilbert space. This provides a link between orthonormal wavelets and
unitary operators, and the main object of this paper is to extend the link in order to
provide a better perspective to spline wavelets, in particular the elegant results of Chui
and Wang [2, 3].

In Section 2, we give a characterization of Riesz bases generated by a unitary
operator T on a finite set Y in a Hilbert space. In Section 3, we show that if
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): = {T'y.neZ,yeY} is a Riesz basis of its closed linear span <7*z(y)> and likewise,
T\X) is a Riesz basis of <TZ(X)>, where X is another finite set, and <Tz(X)>c
<TZ(Y)\ then X is extendable to X' such that T^X') is a Riesz basis of TZ(Y). Our
proof is constructive, and provides an algorithm for the construction of Riesz bases for
the orthogonal complement of <TZ(.Y)> in (TZ(Y)). This result is analogous to the
main theorem of Robertson [14]. Some identities related to duality are also obtained in
Section 3. Section 4 deals with Riesz bases of wavelets in Hilbert space. We extend the
duality principle of [3] and [4] to the general setting of biorthogonal Riesz bases in
Hilbert space. Explicit construction of Riesz bases for the orthogonal complement of
T\X) in T^Y) is given in the case X consists of one vector. In Section 5 we show how
the spline wavelets of Chui and Wang are derived naturally from the general theory.
Spline wavelets can be useful in numerical computation because of the availability of the
cardinal interpolant and the ease with which B-spline series can be evaluated. The
problem of matrix compression by wavelets is discussed in the last section.

Throughout this paper, the inner product of any two vectors x and y in a Hilbert
space is denoted by <x,.y>. We let L2(0,2n) be the space of all square integrable
27t-periodic complex-valued functions on the real line R, and let L2(0, 2TT) (respectively
I^x,(0,2n)) be the set of all row vectors with s components (respectively all mxs
matrices with entries) in L2(0,2n). We denote by lm the m x m identity matrix. Given
two Hermitian m x m matrices A and B, we write A ̂  B if the matrix B — A is positive
semidefinite.

2. Characterization of Riesz bases for a unitary operator

Let T be a unitary operator on a complex Hilbert space #F. For K c j f w e shall write

Tz(V): = {T"v:neZ,veV},

and let <TZ(K)> denote the closed linear span of TZ(V).
Let Y = {yl,...,ys}czjff, and suppose that

«yk,T"yj>)tteZel2(Z), fc,; = l,...,s.

Then

neZ

for k, /= l , . . . , s . Let

neZ

(2.1)

Then for almost all 6, Q>r{0) is a Hermitian matrix. Let A/0), j=l,...,s, be its
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eigenvalues. The main result in this section is the characterization of T^Y) as a Riesz
basis of its closed linear span.

Theorem 2.1. The set TZ(Y) is a Riesz basis of (T^Y)} if and only if there are
positive constants Cx and C2 such that

W (2.2)

for almost all 9 and for j=l,...,s, or equivalently, ClIs^<bY(9)^C2l!lfor almost all 6.

To set up the proof of Theorem 2.1 we shall first consider some related results.

Lemma 2.1. Suppose T^Y) is a Riesz basis of (T^Y)} and let F:
be defined by

F(v):=t % <v,T'yjyryj, ue<Tz(y)>. (2.3)
neZ

Then F is a positive, bounded invertible operator which commutes with T.

Proof. The fact that F is positive, bounded and invertible is well-known (see [16, p.
185]). The commutativity of F and T follows by applying (2.3) to FT(v), by virtue of the
fact that T is unitary. •

For any finite set Y = {yi,...,ys}czje such that T^Y) is a Riesz basis of (Tz(Y)y, we
define

and denote

y/. = F-l(yj), j=l,...,s. (2.4)

By Lemma 2.1

Tnyj=r-lTnyj, neZ, j= l,...,s.

Equations (2.3) and (2.4) give

neZ

from which we obtain
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< A, Tnyj> = <5o. A . ; , neZ,k,j=l,...,s. (2.5)

Thus TZ{Y) and TZ(Y) are biorthogonal Riesz bases of (T\Y)y. Any t>e<Tz(y)> can
be written as

j=l neZ

7=1 neZ

Proposition 2.1. For any finite set YcJti?, Oy(0) is positive semi-definite for almost
all 9.

Proof. Let 6e R and A = (<x,-)*= t e Cs. Then

AOY(d)A* = X O , T"i;>einfi (2.6)
neZ

where

Since «y t , T">>,»nEZ6/2(Z) for /c,/= l, . . . ,s, so is the sequence «u, T"i;»neZ. Hence the
expression on the right of (2.6) defines a function / in L2(0,2n) with Fourier coefficients
/(n) = <u,T"v}, neZ. We shall show that / is nonnegative. Indeed for any finite
sequence (cn) of complex numbers,

Therefore (/(n))neZ ' s a positive definite sequence. By a well-known theorem in Fourier
analysis ([7, p. 116]), / is nonnegative almost everywhere. •

We need a property that is weaker than that of a Riesz basis.

Lemma 2.2. Let (fn)neZ be a sequence in #P. The following conditions are equivalent.
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(1) IK/./B>|2<°o for every / e JK
neZ

(2) There exists a positive constant M such that

|</,/n>|2^M||/||2 for every fe X.
neZ

(3) There exists a positive constant M such that

for every finite sequence (cn) of scalars.

(4) There exists a positive constant M such that

2

y cf •
neZ neZ

/ O ra / / ( c ) n e Z e / 2 (Z) .

(5) ZB 6 Zcn/n converge in JSC for every (cn)ne2£/2(Z).

Proof. The proof of the equivalence of conditions (1), (2) and (3) can be found in
[16, p. 154-155]. Suppose that (3) holds. If (cn)neZe/2(Z), then (3) implies that the
partial sums of Y,nez

c
nfn f ° r m a Cauchy sequence in jf. Therefore (5) holds. Taking

limits in the inequality in (3) gives (4). The implication (4) => (3) is obvious. It remains to
prove that (5)=>(1).

Fix feJf. Take any (cn)neZe/2(Z). For any neZ, choose 6ne\0,2n) so that

By (5), the series Xn,=zCne''9n/n converges to some vector g in Jf, and

Z |c.</,/.>|= £
neZ neZ

<«>.

Hence« / , / n » n 6 Z 6 / 2 (Z) . D

Remark 1. A sequence (/n)n6Z in Jt? satisfying condition (1) in Lemma 2.2 is called a
Bessel sequence (see [16, p. 154]). Under the assumption that (fn)neZ is a Schauder basis
of Jf, the equivalence of conditions (3) and (5) can be found in [16, p. 37].

We next give a sufficient condition for a sequence {T"x)neZ, xeJf, to satisfy the
conditions of Lemma 2.2.

https://doi.org/10.1017/S0013091500019064 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019064


238 S. L. LEE, H. H. TAN and W. S. TANG

Lemma 23. Let xejV. Suppose that ((.x,T"xy)neZ is in /2(Z) and there exists a
positive constant B such that

£ <x,Tnx>eine^B
neZ

for almost all 9. Then

for every finite sequence (cB) of scalars.

Proof. Let <H(0)=L,ez<*> T"x)eine. By Proposition 2.1, <D(0)̂ O for almost all 6. Let
v=Y,ciT'x, where (c() is a finite sequence. Then

:£c/<x,T"~'x>, neZ.

Hence «u,T"x»BeZe/2(Z),

E <u, r"x>e'"e = (£ cne'
B9)<I>(0) a.e.

neZ

and

|
BEZ

Then

2. n
Proof of Theorem 2.1. Let (a{)neZ e 12(Z), j = 1,..., s, and suppose that

7=1 neZ

converges in X and «u,TI1>'J»n6Ze/2(Z), ; = l,...,s. Let

R E Z

neZ
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A: = (AjYj=1 and V: = (VjYj=1eU(0,2n). Then

V = A<ttY. (2.7)

Let U be the unitary matrix such that

By (2.7),

VV* = BD2B*, (2.8)

where

Integrating (2.8) gives

IIM|2=iT I WIW* (2-9)
1=1 z « 0 ]=l

Suppose TZ(Y) is a Riesz basis of <TZ(7)> and let TZ(Y) be the dual basis. Then
there are positive constants K, L, K, L such that for any sequences (aJ

n)nsZel2(Z),
j—l,...,s, the vector

j=l neZ

= 1 Z <v,Tyjy
j = l neZ

satisfies

j= 1 neZ j= 1 neZ

and

kVl (2.11)
1=1 neZ j=l neZ

Since £j=i M 2 = S - i L..z|<», T"yj>\2, it follows from (2.9), (2.10) and (2.11) that

f Z Z k N ^ 7 I U0f\BM2*>Si t Z HY- (2-12)
•^7=1 neZ ^ ^ 0 7 = 1 ^ - j ^ l neZ
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But

I Zkl2=tW2=EIW.
j=l neZ j=\ j=l

which, by (2.12), gives

yE 2\\B}(dfde^t *l HWHQtM^k t TlWl2^- (2.13)
L j = \ 0 j = l 0 " • j = l 0

The inequalities hold for all BjeL2(0,2n), j=l,...,s. Hence

for almost all 6. Since A,{0)^O, we obtain (2.2).
Conversely, suppose that (2.2) holds. Let <i>j(O): = Yjn£ziyi,Tnyjyeine be the (;,))-entry

of the matrix Or(0), j=\,...,s. Let U(8) be the unitary matrix such that <Uy(0) =
^(0),...,As(0)) 1/(0)*. Then for j = l , . . . , s ,

fc = l

where e7 is the row vector (<5,k)JUi a n d (t/jt(0))fc=i is the jth row of U(9). Since
Z U i | ^ j k ( » ) | 2 = l, by (2.2),

<D/0)gC2 a.e. for j=l,...,s.

By Lemma 2.3 and Lemma 2.2,

neZ

a n d Y»eza»T"yj converges in Jf for (a>n)neZe 12(Z), j=l,...,s.
By (2.9), we have for any

» = £ Z « ^ % (aJjneZ6/2(Z), ; = l , . . . , s ,
j = l neZ

t Z|ai|2. (2.14)
j = l neZ j=l j= l neZ

Now,
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Ml2=<»,»>

= 1 T.ai<v,T'yJy
j=\ neZ

1/2

* ( l Ekl'Y'Yl
\ j = l neZ / \j=l

/ ' \l/2/ »

= ( Z S k l 2 ) ( I l
l /2

and applying (2.14) leads to

neZ

On the other hand,

7=1 neZ 5: E
j = l neZ

By (2.15)

j
\\j=l HEZ

which together with (2.16) leads to

(
2\J=l ne

1/2

241

(2.15)

(2.16)

(2.17)

Combining the first inequality in (2.14) and (2.17) gives
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IHI'^I Zkl2- (2-18)
neZ

The inequalities (2.15) and (2.18) show that {Vyy. neZ, j= l , . . . , s} is a Riesz basis of
D

Proposition 2.2. Suppose TZ(Y) and Tz{f) are biorthogonal Riesz bases of (TZ(Y)}.
Then

<DiTl = <Df. (2.19)

Proof. For v e Z and k,l=l,...,s,

j=l neZ

j=l neZ

Now,

I ( Z <h, T-yjWA (I <y,, ryj>e'A

(
j=J \veZ

1 E l<Sk,
j=\ VEZ neZ

which shows that

The result follows since <t>Y is Hermitian. D

3. Extension of Riesz bases for a unitary operator

Throughout this section, let X = {xl,...,xr} and Y = {yu...,ys} be finite subsets of JV
and suppose T^X) and TZ(Y) are Riesz bases of <T^(X)> and <Tz(y)> respectively.
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Our main results here are the following analogues of Robertson's theorems [14] on
wandering subspaces for unitary operators.

Theorem 3.1. Suppose s = r and <Tz(X)>c<Tz(y)>. Then <Tz(A-)> = <Tz(y)>.

Theorem 3.2. / / <TZ(X)> is a proper subset of (TZ(Y)}, then there exists
xr+le(Tz(Y)>, xr+1±<Tz(X)> such that T\XKJ {xr+l}) is a Riesz basis of

Theorems 3.1 and 3.2 can be proved by applying Robertson's theorems and a
modified form of the Fuglede-Putnam theorem ([8, Lemma 2.1]). However, we shall
prove them directly among other related results as they are of independent interest.

Since TZ(X) and T^Y) are Riesz bases of their respective closed linear spans, there
exist X = {Xl,...xr}<z<Tz(X)> and Y = {y1,....,ys}<z(Tz(Y)} such that

<x t , TVJC,> = <50 ,8k ,, v e Z , k , / = l , . . . , r , (3.1)

<ymyTvyn} = dOvSmn, v e Z , m , n = l , . . . , s . (3.2)

Therefore, Tz(£) and TZ(X) are biorthogonal Riesz bases of <TZ(A')>, and Tz(f) and
TZ(Y) are biorthogonal Riesz bases of <Tz(y)>.

For any subset V = {vl,...,vm} of <TZ(Y)>, where 1 ^m^s, let

neZ

neZ

for k= l , . . . , m , / = l , . . . , s , and

T h e n P K , /%, e L* x s(0, 2TT).

Proposition 3.1. For any V = {vu...,vm}cz<,Tz(Y)y,

Py = Py<by. (3.3)

If in addition «t)k,Tvi;,»v£Z6/2(Z), fe,/=l,...,m, then

PyP* = <S>v. (3.4)

Proof. The equation (3.3) is proved in the same manner as Proposition 2.2, using
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j=l neZ

whereas (3.4) is obtained using

= 1 Z <vk,T
myJX'rvhT'yjy D

;=1 neZ

Proposition 3.2. / / < TZ(X) > e= < Tz( Y) >,

/r, 0.5)

w/iere /r is t/ie r x r identity matrix.

Proof. The proof is the same as before, using (3.1). We shall omit the details. •

Corollary 3.1. / / <Tz(X)>c:<rz(y)> and r=s, then Px, Pg, Px and Px are invertible,
and

Px^Pl Pxl = P*x. (3-6)

Furthermore,

PxPx = <t>r, (3.7)

PXPX = <*>?• (3.8)

Proof. If r = s, (3.6) follows from (3.5). By (3.3) and 3.6

which gives (3.7). Finally, (3.8) follows from (3.7), (2.19) and (3.6). •

Corollary 3.2. / / < TZ(X)> c <T^ Y)> and r = s, tftc/i

X (3.9)

(3.10)
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Proof. By (3.3) and (3.4)

which is (3.9), since <bY is Hermitian. The relation (3.10) can be derived in the same
manner. •

Proof of Theorem 3.1. Let ye<Tz(y)> with y±<Tz(A')>. Then for all veZ and

= y y<

= Z Z <y>Tnyj><TV~nxk,yj>- (3-ii)

Let

y(0): = f Z <y. T"^>«"*Y • (3-12)

Then yeL2(0,27r). By (3.11)

y(0)P^(0)*=O.

Since P^0) is invertible for almost all 0, Y(0)=0 a.e. If follows from (3.12) that

Hence y=0. •

Corollary 3J. / / <TZ(X)> <= <Tz( Y)> t̂ en r ̂  s.

Proof. Suppose r>s, and let X' = {xu...,xs}. Then TZ(X') is a Riesz basis of
<7%r')> and <Tz(X')>c:<rz(y)>. By Theorem 3.1, <Tz(X')> = <rz(y)>. But T^X') is
not complete in <TZ(X)>. Hence there exists x*0, such that xe<Tz(X)>c<rz(y)> and
x 1 <TZ(A")> = <TZ(7)>, which is impossible. •

Proof of Theorem 3.2. Suppose <TZ(X)> is a proper subspace of <TZ(Y)>. By
Theorem 3.1 and Corollary 3.3, r<s. Take any 0e[O,27t). The rxs matrix Px(0) =
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rxs n a s a t m o s t r a n k r- Hence there exists a unit vector Y(6) =
(Y^O),..., YJ(6))eC (considered as a row vector) so that

Y(e)Px{e)* = O. (3.13)

Since Xj=i!^^)|2 :=l> the functions Yi thus defined are bounded functions in L2(0,27t).
Let

neZ

where (a{,)neZel2(Z) for j=l,...,s, and let

Then xr+le<J~z(Y)y, ai
n = ixr+l,Vyi'} for n e Z , j=l,...,s, and using the notation

before Proposition 3.1,

= Py(6),

where V={xr+1}. As in the proof of Theorem 3.1, (3.13) implies that

=0, veZ ,*=l , . . . , r . (3.14)

Since TZ(Y) is a Riesz basis of (Tz(Y)y, by Theorem 2.1, there exist positive
constants C, and C2, and a unitary matrix t/(0) such that

0) , . . . , )4fli) U(0)*

and

d g A ^ ^ Q , j=l,...,s, (3.15)

for almost all 0. By Proposition 3.1, for almost all 9,

Py(O)Py(0)* =

i
7 = 1

where

g(0)=(gl{6),... ,
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Since Py(0) is a unit vector in C5 and 1/(0) in unitary, S=i |g/0) | 2 = 1. B v (315) a n d

(3.16),

C1^Py(e)Pv{d)*^C2 a.e.. (3.17)

Hence the function PVPV is a bounded function in L2(0,27t), with <xr+1,Tvxr+1> as its
vth Fourier coefficient, for every veZ. Therefore, «xr + 1 ,Tvxr + 1»v e Ze/2(Z) and if
<M0): = E»eZ<*r+i, r x r + 1 ) e " 9 , then

By (3.17),

Cjg<I>K(0)^C2 a.e.. (3.18)

Let X' = XKJ V. By (3.14), we have

I 0

Therefore the eigenvalues of Q>x{0) comprise those of <t>x(d) and Q>y(d). Since TZ(X) is a
Riesz basis of <TZ(X)>, by Theorem 2.1 and (3.18), TZ{X') is a Riesz basis of <TZ(A")>.

•
Corollary 3.4. / / <TZ(A')> is a proper subspace of (Tz(Y)y there exist xr+1,...,x,

such that Tz{Xu{xr+1,...,xs}) is a Riesz basis of(Tz(Y)}. Furthermore

where Tz{xj} 1 T^X) and Tz{Xj} 1 Tz{x,}, for all j , / = r + l , . . . , s , ; # / .

Let V be a finite subset of <Tz(y)>. Using the notations introduced before
Proposition 3.1, we give another characterization for T^V) to be a Riesz basis of

Proposition 3J. Let V = {vt,..., vm}c<T^Y)>, w/ierc l ^ m £ s . 77ie following con-
ditions are equivalent:

(1) T^V) is a Riesz basis of <TZ(K)>.
(2) T/iere exist positive constants A and B such that

m ^ v v ^ m a.e..

(3) There exist positive constants A and B such that
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a.e..

Proof. Since T^Y) is a Riesz basis of <Tz(y)>, by Theorem 2.1, there exist positive
constants Ct and C2 such that

a.e.. • (3.19)

By (3.3),

PvP* = Py<l>\P*.

Hence by (3.19),

P P y P y &.C., (3.20)

which implies the equivalence of (2) and (3).
If {<vk,T"vt))neZel2(Z), k,l=\,...,m, then by Proposition 3.1,

and so by (3.19),

P P y P y . (3.21)

Therefore Theorem 2.1 and (3.21) give the implication (1)=>(3). Conversely, suppose
that condition (2) holds (and so does (3)). These imply that all the entries in the
matrices Pv and Pv are bounded functions in L2(0,2n). For fc,/=l,...,m, the (M)-entry
of PyP* is an L2-function with (vk,T

vv,} as its vth Fourier coefficient, for veZ. Hence
«uk, Tvi;,»V6Ze/2(Z). Conditions (3.21), (3) and Theorem 2.1 then give (1). •

4. Wavelets in Hilbert space

Let T be a unitary operator on a complex Hilbert space Jf, and suppose
X = {xu...,xr}<=Jf such that T^X) is a Riesz basis of KO: = <TZ(X)>. Let D be a
unitary operator on 3tP such that

TD=DY" (4.1)

for some peZ, \p\> 1, and

VoCzV^-DVo. (4.2)

Then
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= {{TmDTlxi:meZ, ;= l , . . . , r , /=0 , . . . , |p | - l}>, (4.3)

and Tzi{DT'xj:j=l,...,r,l = O,...,\p\-l}) is a Riesz basis of Vv By Corollary 3.4, there
exists r = {z,,...,zr(lpl_1)}£V1 such that Tz{zj} 1 Vo, T

z{Zj} 1 Tz{z,} for j*l,
^ u r) is a Riesz basis of K, and

Let Wo be the orthogonal complement of Vo in Vi. Then

and TZ(H is a Riesz basis of Wo.
We shall henceforward assume that p = 2. In this case we have the following two-scale

relations

j j (4-4)
j = l neZ

I Y t j J , k=l,...,r, (4.5)
j = l neZ

and decomposition relations

DTlxk=t Z{<DT'-2»xk,xj>T''xj+<DT'-2°xk,zj>T%}, 1=0,1, (4.6)

where J?: = {x1,...,jc,}, ?: = {zu...,zr), and Tz(^) and TZ(X) are biorthogonal Riesz
bases of Vo, and T^f) and T^T) are biorthogonal Riesz bases of H .̂ Using the
notations of Section 3, and letting

by (3.3) of Proposition 3.1, we can express (4.4) and (4.5) in the equivalent form

Px,r = Px,r<l>r- (4-7)

Similarly by (3.7) or Corollary 3.1, the decomposition relation (4.6) is equivalent to

•r^ufi'iur (4.8)
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By Proposition 2.2 and Corollary 3.1, we have the dual relations

Px»r = Pxut*t (4.9)

<J>f=fLA u r - (4.10)

The duality principle for the case of cardinal spline wavelets was first considered by
Chui and Wang [3].

Let us now further assume that r = l , that is, there exists a vector <f> in JC such that
Tz({(t>}) is a Riesz basis of K0: = <rz({(/>})>,

TD = DT2

and

Then there exists another vector $ in Vo such that Tz({$}) is biorthogonal to Tz({<f>}).
Furthermore, letting

then

and

are biorthogonal Riesz bases of Vx. The space F, can be expressed as

neZ

(4.12)

neZ neZ J

Since <j> and $ are in Vu they can be written as

4>=YdcttDT"<l>, or (4.13)
neZ

<j>=ZcJ)'r$, and (4.14)
neZ
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<?= £ JBZ>7>, or (4.15)
REZ

$= I dnDT"$, (4.16)
neZ

where the filter coefficients (cn)BeZ, (cn)neZ, (dn)neZ, (3n)neZ are in /2(Z).

Proposition 4.1. The filter coefficients satisfy

I cn_2A= X cn_2Jn = 50,k, keZ. (4.17)

neZ neZ

Proof. By (4.13H4.16),

<TV,^>=ZcB_2i5:=Xc(1-2*3:, fceZ. (4.18)
neZ neZ

The results follow since <Tk<f>, $} = 6Oik. D

A similar argument leads to:

Proposition 4.2. Let f and g be vectors in Vlt such that

neZ neZ

and

g= X b~nDT»4>= E I
neZ REZ

Then g is orthogonal to {Tkf: k e Z}

** Z a»-2A=0 forallkeZ
REZ

° E fl«-2*^t=0 forallkeZ.
neZ

The orthogonal complement Wo of Ko in K, can be characterized as follows.

Proposition 43. T/ie space Wo is given by

:g= X BnDT»<t>, ^ |6 n | 2 <oo ,
REZ neZ
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I cB.2^=0VfeeZ,or £ 4,_2kFB = 0Vfeez}, (4.19)
neZ neZ )

and also by

:g= 1 bnDT"$, £ |bB|2<oo,
neZ « E Z

£ (4.20)
neZ neZ J

Proof. Since Vo — (Tz({<l>})y = (Tz({<p})}, the assertions follow from Proposition 4.2
and (4.12) to (4.16). D

Let ge Vlt and

neZ neZ

where XB«z|5np<oo and Xn6z|fen|2<0°- Using the notations in Section 3, if Y:
{^o,^!} and ?: = {&,,#!}, then

) = f
and

1 2B+ y ) (4.21)
neZ

B2n+le'A. (4.22)
neZ

Theorem 4.1. Let ge Vx. The following conditions are equivalent:

(1) The set Tz{{g}) is a Riesz basis ofW0.
(2) The vector g satisfies the condition in (4.20), and there exist positive constants A

and B such that

(3) The vector g satisfies the conditions in (4.19), and there exist positive constants A
and S such that

a.e..
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Proof. By Propositions 3.3 and 4.3, we have (1)=>(2) and (2)o(3) . Conversely,
suppose that (2) holds. This implies that geW0, and T^g}) is a Riesz basis of

>, which is a subset of Wo. Therefore we have

= V0@ <Tz({g})> cr V, = <Tz(y)>.

By Theorem 3.1, the above inclusion is in fact an equality. Hence <Tz({g})> = Wo and so
(1) holds. •

The next theorem shows the construction of four vectors each of which satisfies the
conditions in Theorem 4.1.

Theorem 4.2. With <f> and $ given by (4.13) to (4.16), let

fj= YJ ( — I) n+1c-n+iDT"(l>, (4-23)
HEZ

(4.24)
JEZ

, and (4.25)
HEZ

(4.26)
neZ

Then Tz({fj}), Tz({^}), Tz({<?}) and Tz({f/}) are all Riesz bases of Wo. Furthermore,
Tz({n}) is biorthogonal to Tz\{fj}), and Tz{^}) is biorthogonal to z $

Proof. We first prove that Tz({fj}) is a Riesz basis of Wo. For every fceZ,

neZ neZ

neZ

By (4.20), ^eW0. Since Tz({0}) is a Riesz basis of <TZ({0})>, by Proposition 3.3, there
exist positive constants A and B such that

w a.e.. (4.27)

By (4.13) and (4.22),

neZ neZ
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By (4.23) and (4.21),

e—( V r oine V
— I ~ Z, c-2n+le >2^

neZ neZ

oin9
e

Hence

P.J8)P,J0)* =

Then by (4.27), we have

neZ

,-infl

neZ

^B a.e..

Hence by Theorem 4.1, T^jv}) is a Riesz basis of Wo. The assertions involving \ji, if and
?; are proved similarly.

For every keZ, by (4.18) and (4.17),

<Tkr,,fj>= I ( - l ) - n

neZ

— ZJ
 C - / i

neZ

neZ

Hence
similar.

is biorthogonal to TZ(<»J}). The proof for the case involving ij/ and fy is

•
We now consider the special case when Tz({#}) is orthonormal.

Corollary 4.1. Let Tz({0}) be an orthonormal basis of Vo, and let

Then

if

neZ

neZ

neZ
(4.28)

(4.29)
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I (4.30)
neZ

f/ien T^ji/'}) is an orthonormal basis of Wo.

Proof. The assertions are easy consequences of Theorem 4.2. •

Remark 2. The assertions in Corollary 4.1 can be proved directly without recourse
to Fourier analysis.

Remark 3. For the case of orthonormal wavelet basis in L2(R), Corollary 4.1 is well
known (see for example [5, 12, 13]).

We now give a general discussion on the decomposition and reconstruction formulae
involving the scaling function <j>, wavelet functions i/> and r\, and their duals which are
defined as in (4.13H4.16) and (4.23H4.26).

Suppose the Jth level "averages"

of a vector / are available. Here </>, v: = DJTv<p.
One can then apply the following decomposition formulae

Ep«-2W+ i. (4-31)
IeZ

v*/+1, v = 0 , . . . ,2 ' - l (4.32)
I E Z

for j = J — l,...,0 to obtain the "averages" (s{) and "details" (t{) for the next J lower
levels of resolution. The sequences (p()i6z and (,q,)leZ are the decomposition sequences.
After some appropriate filtering processing of the pyramidal structure of the "details"
and the "averages", one can recover si through the use of the reconstruction formula

,-2,t/ (4-33)
IEZ IeZ

for v=0,...,2J—l, j = O,...,J—l. The sequences (a,)leZ and (b,),eZ are the reconstruction
sequences.

The sequences (p(),6Z and {at)uz are obtained from the two-scale relations for 4> and
$. Using (4.13) and (4.16), we have

P, = f,, /eZ, (4.34)

a, = d,, IeZ. (4.35)

https://doi.org/10.1017/S0013091500019064 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019064


256 S. L. LEE, H. H. TAN and W. S. TANG

The sequences {qi)ieZ and (fe;)leZ are obtained from the two-scale relations for the
wavelet function and its dual. For \l> and $, using (4.24) and (4.25), we obtain

q, = ( - l ) - ' + 1 c _ ( + 1 , leZ, (4.36)

b, = (-l)-'+1J^Tu /eZ. (4.37)

For t\ and rj, using (4.23) and (4.26), we obtain

<?/ = (-l)-'+1rf_) + 1, isZ, (4.38)

b,=(-l)- ; + 1c_( + 1, /eZ. (4.39)

5. Cardinal spline wavelets

It is well known that the uniform B-spline Nk of order k defined by

^ , = ^0 .1 , (5.1)

and

N^N^^N^ fc = 2,3,..., (5.2)

generates a multiresolution approximation (Vm)meZ of L2(R) ([13, 2]). Indeed for a fixed
k, Tz{Nk} is a Riesz basis of V0: = (Tz{Nk}} and Vm: = DmV0, where

Tf(x) = f(x-l) (5.3)

and

/ ) , /£L2(R). (5.4)

By Lemma 2.1, F: V0->V0 such that

Y (5.5)

is a positive, invertible operator which commutes with T. A straightforward calculation
gives

F ( £ anT"/0 = I f I avN2k(n + k - v)) T"Nk. (5.6)
\neZ / neZ\v6Z /

The fundamental spline

V E Z
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satisfies

L2k(n) = d0 „

(see [15, 2]). It follows from (5.6) that

Nk: = F-\Nk)=Y.a-ink)T"'Nk. (5.7)
neZ

By the discussion following Lemma 2.1, Tz{Nh} and Tz{Nk} are biorthogonal Riesz
bases of Vo. This was obtained by Chui and Wang [2] by a direct computation.

We use the notations in Section 4, with (j> = Nk. A Riesz basis for the orthogonal
complement Wo of Vo in Vv is not unique. By the well known relation

k(2x-n), (5.8)
V

and comparing coefficients with (4.13) we have

C~n =[0, otherwise. ( 5 9 )

With the function rj defined by (4.23), a straight forward computation gives

fj(x) = 2~k+\- l)*LS{(2x-1), (5.10)

which is a scalar multiple of the spline wavelet r\k(x) = L%kX2x— 1) of Chui and Wang [2].
Using (5.8), we obtain

,k fk\.. ,.

otherwise.

With the function ^ defined by (4.24), (5.11) yields

^(x)=-2-t+l2£ (-l)v

v + 0

which is related to the compactly supported spline wavelet

Ux) = 2~k+i t (-l)vN
v = O

(5.12)
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of Chui and Wang [3] by $(x) = -i//k(x + k-l).
By a similar computation, we obtain the sequences for the filter coefficients in (4.15)

and (4.16), viz.

IEZ \n~2lj
(5.13)

uz \n~"/

and

£ ( ( , ), (5.14)

J = O\JJ

The functions $ and r\ in (4.25) and (4.26) are then given by

= 2-k+i(- l)k £ «j»»L!S(2x-1 +20, (5.15)
uz

- l + v-2/). (5.16)
v = l leZ

Note that tj/(x) is related to the dual wavelet $k(x) of Chui and Wang [3] by
$(x)=-\]/k(x + k-l). By Theorem 4.2, T^rj}) and T\{i\}) are biorthogonal Riesz
bases of Wo, and likewise for Tz({i/r}) and T 2 ^ } ) .

Using the sequences in (5.9), (5.11), (5.13) and (5.14), the decomposition and
reconstruction sequences for these two wavelets i// and r\ can be obtained via (4.34)-
(4.39). In this case, the sequences (c,),eZ and (c,),6Z are finite while (d,)uz and (3t)uz are
infinite sequences which depend on the B-spline coefficients (oc\2k))leZ of the fundamental
function L2k. The sequence (a\2k))ieZ satisfies the infinite linear system of equations

5l0. jeZ, (5.17)
leZ

and has the properties

a<"» = a«_2}», keZ

and

«!2t) = O(|rt|-l<l), /-»±oo

where rk is the largest root less than — 1 of the Euler-Frobenius polynomial of degree
2k-2 with coefficients (2k-l)\N2k{j), j=l,...,2k-l (see [15, p. 38]). The absolute
value of a|2k) decreases exponentially with increasing |/|. In numerical computations, we
truncate the sequence to (a}2k))fl_M. This results in a finite section of the linear system
(5.17) which is diagonal dominant and can be efficiently solved by exploiting the
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symmetric nature of the sequence. Consequently the other sequences which depend on
(otj2t)) are also truncated accordingly.

Note here that we have two sets of decomposition and reconstruction formulae for
use in numerical applications, one for the <j>-\]/ pair and the other for the <p-rj pair. For
each of the two sets of formulae, two out of the four decomposition and reconstruction
sequences are finite. For the first set, this same feature is seen in [3]. However, for the
second set, if one were to interchange the roles of r\ and rj as would be the case in [2],
only one out of the four sequences would be finite.

Determination of si

One of the advantages of using spline wavelets is the ease with which the "averages"
s{, can be computed from the data using the cardinal spline interpolant. Suppose that
the values of a function /eL2(R) are available at the points 2~Jv, veZ. Let

(5.18)
VEZ

be the cardinal spline interpolant of /, where Lk(x) is the order k fundamental spline and
k is assumed to be an even integer [15]. Obviously fj(x) e Vj and we can express

/ / * ) = £ S^.nM, (5.19)
REZ

where

sJn = 2-J<2 J fA2-Jx)4>{x-ri)dx.
- 0 0

A direct computation using (5.18) and the relations

and

)= E «}""*(
jeZ

leads to

< = 2-J'2 £ /(2-'v)I <xf>N2k(k/2 +
veZ jeZ

Remark 4. In [10], a periodized version of wavelet algorithms is applied to the
transformation and compression of matrices. A linear system in which the matrix
satisfies a discrete analogue of the Beylkin-Coifman-Rokhlin condition (see [1]) is
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transformed by the wavelet decomposition algorithm and compressed. An approximate
solution of the original linear system is then recovered from the solution of the
compressed system by the reconstruction algorithm. Numerical results show that a
judicious choice of compactly supported non-orthonormal spline wavelets of Chui and
Wang [3] and those constructed in this section performs better in matrix compression
than the compactly supported wavelets of Daubechies [5]. A detailed discussion can be
found in [10].
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