ELEMENTS OF PACKING AND COVERING
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The term 'covering' is known to any student who has seen the
Heine-Borel theorem and he soon learns that it denotes a very basic
and widely used concept. Quite generally, a family {X :ao e A} of

o
subsets of X is a covering of the subset Y of X if Y C UA X -
— ae o

The concept of packing is perhaps no less frequently encountered
although the term has only a rather specialized use. In general, a
packing is any family of subsets {XQ: a ¢ A} of a set X which are

pairwise disjoint. To make this definition more similar to that of
covering, we might define {X_ } to be a packing of the subset Y of

X if X M XB (MY =¢ for o # . This is intended to suggest only
@

that there is a certain parallel between the ideas of packing and
covering but not a duality in any technical sense.

A partition of a set X is simply a family of subsets of X which
is both a packing and covering.

As defined above, that is in a purely set-theoretic context, the
concepts of packing and covering allow for little speculation. However,
just as soon as we place any structure on X and make some restrictions
on the families {Xa} many interesting questions arise. It is in the case

of X, a euclidean space, that problems of packing and covering have
received almost exclusive attention (see, however, A.M. Macbeath [1])
Such problems arise in a great variety of ways and only in part do they
have mathematical origins. There has, however, been a concentration
of effort on one set of problems in particular; namely that of packing and
covering with equal spheres in a euclidean space. The mathematical
motivation of this was first felt by Minkowski and much of the work in
the subject may be considered as resulting from this part of his legacy.
Excellent accounts are given in the books by L. Fejes-Toth [2],

J.W.S. Cassels [3] and, most recently, C.A. Rogers [4].

In dealing with packings and coverings by equal euclidean spheres,
we are concerned with families which consist of translates of the same
set, i.e. with families of the form {S +x :x ¢ L} whereby S +x we
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denote as usual the set {y +x:yeS}. When {S+x:xecLl} isa
packing, we speak of S as a packing with respect to L or an L-packing
and say that L is admissible with respect to S; similarly for coverings.
Fixing S we allow L to range over all admissible sets which have a
density or, in particular, over all admissible lattices and order these
according to the density A(L) of L. A(L) is defined to be

lim t # (LM A(T)) where A(t) is the cube whose vertices are the
t—>00

Zn points (+ % t,e.., + % t) and #(X) means the cardinality of X.

As already noted the class of lattices plays a special role.
However, from the standpoint purely of packing and covering this role
is not intrinsically clear. For example, it is well known that the
density of the densest lattice packing of spheres in E3 is attained by

sets other than lattices also. Moreover, the density of L as just
defined and its admissibility for a fixed S are not affected by the
addition to it in the case of covering or deletion from it in the case of
packing of arbitrarily many points in any bounded part of the space.

It is in an effort to gain a better understanding of the role
which lattices, in particular, play in the theory of packing and covering
that we initiate the following investigation.

Let X be a locally compact group with left Haar measure .
For any subset L of X we call a subset C an L-covering if
LC =X and P an L-packing if x P(Vy P =¢ for all x and y in
L with x # y. Denote by C the class of measurable sets which are
bounded (i.e. have compact closure) and by U the class of measurable
sets which have non-empty interior.

Definition. For any subset L of X which is such that there is
an L-covering in C we define the upper dispersion disp(L) to be
inf{p(c) : C € C, C an L-covering} .

For any subset L of X which is such that there is an
L-packing in W we define the lower dispersion disp(L) to be
sup{p(P) : Pe W, P an L-packing}.

We say that L is equi-dispersed if disp(L) = disp(L) and lattice-
like if there is a set in C () W which is both an L-packing and an
L-covering.

-1It is easy to show that in En if A(L) exists then disp(L) <
A(L) © < disp(L) .
In general if A(L) = lim sup £ # (LM A(t)) and A(L) =
.. -n . —
lim inf t = # (L) A(t)) i.e. A and A are respectively the upper and

lower densities then

disp(L) < A(L) ! < At < dEep(L)
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What of the inequality disp(L) < disp(L) in general? It obviously
holds for any compact group. Thus, if P is an L-packing then since
PelW, p(P) >0 and, since # (L) p(P) < p(X), # (L) is {finite.
For any L-covering C, p(X)=p(LC) < # (L) p(C). Thus
p(P) < p(X)/ # (L) < p(C). We have in addition the following result.

THEOREM 1. Let X be a locally compact group with left
invariant Haar measure p and let L be a subset of X for which both
upper and lower dispersions are defined. If L has the property

Lot o ot

L then disp(L) > disp(L).

Proof. We want to show that for any L-covering C and
L-packing P, p(C) > p(P).

Since p is regular (see for example [5, p. 224]) we can, for any
¢ > 0, find an open set U and a compact set K such that

UDC, p(U)<p(C) +¢
and
KCP,p(K)>p(P) -c.

Since LU covers K and K is compact, there is a finite set of

elements in L say ppeeon X such that K Cx1 uuU... U x U.

-1 -1 -1
The condition that LL =~ = L "L provides that P is an L -packing,
namely:

(L'L-{e) PN P=0
implies that
(LL™ - {e}) PN P=¢ .
It follows that {x'i1 (KM =x, U):ri=1,...,n} =

{x_i1 KMNU:i=1,...,n} is a disjoint family of subsets of U. Hence

p(K)

p{U(Kmin)}f_ Zp (KM x, U)

1]
i)

Z (x'i1 KM U)

p(U) .

p{U (x_1i KM U)}

IA
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Thus p(P)- ¢ < p(C) + ¢ and this for any ¢ > 0 implies that
p(P) < p(C).*

Note that if C and P are respectively an L-covering and an
L-packing, then for any x ¢ X, Cx and Px are again an L-covering
and an L-packing respectively. Now suppose that X is not unimodular.
Since, whenever defined, ML) is finite we must in this case have
disp(L) = 0. Also disp(L), when defined, is positive so that
disp(L) = + ©o. Thus for any L for which both upper and lower
dispersions are defined the inequality in question certainly does not
hold. As a consequence, we have:

COROLLARY. If X contains a subset L for which upper and

1 = L_1L then X is unimodular.

lower dispersions are defined and LL

This result in the case when X satisfies the second axiom of
countability and L is a subgroup is due to C.L. Siegel [6, Lemma 5].

-1 -1
If X is abelian then the condition LL =~ = L "L in the theorem
is always satisfied. Whether or not this condition is removable when
X 1is any unimodular group is an open question.

In regard to the question of whether upper and lower dispersions
are attained the next two theorems give affirmative answers under
certain special hypotheses.

THEOREM 2. Let X be a locally compact group and L a
discrete subgroup of X. Then disp(L) is defined and it is attained.

Proof. That L is discrete is equivalent to the existence of an
open L-packing so that certainly disp(L) is defined.

We consider first the case in which disp(L) is finite.

For any positive ¢ there exists for each L-packing P in W

a bounded (indeed compact) subset K of P such that p(K) > p(P) - ¢;
this by the regularity of p. K is clearly an L-packing, furthermore
we can assume that K is in W since we can adjoin to it any bounded
neighbourhood contained in P. There exists therefore a sequence
{Kn tn=1,2,...} of bounded L-packings in W such that

. 1
w(K ) > disp(L) - — .

*The referee remarks that essentially the same proof yields: Let X
be a locally compact group with left invariant Haar measure. Let

L be a subset of X and suppose disp(L) and disE(L-i) are defined.
Then disp(L) > disp_(L-i).
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Let P1 and P2 be any L-packings; then it is clear that
P = P1 U (P2 - LPi) is again an L-packing. (In fact for arbitrary

-1
L, P_-L
P1 ( 2
Suppose further that P1 and P2 are bounded and in & . Then since

L is discrete only a finite number of translates XP1 with x ¢ L have

LP1) is an L-packing whenever P1 and P2 are.)

non-empty intersection with PZ; let these be x'll'-’1 veees X P1 .
It follows that P2 - LP1 is measurable and hence that P is measurable.
Since P D P , P isin W and since P C P, U P, it follows.that P

is bounded. Moreover
,l(p2 - LP1) = p.(PZ) - }L[(X1P1 U...erp1)ﬂ P, ]
= p.(PZ) - Zp (xiP1m PZ)
_ -1
= (P, - Zp (PN (x [P,

-1 -1
= p(P,) - p[P1m(x 1pzu...Ux rPZ)]

(Y

MPZ) - “(Pi)

and since P1 and P2 - LP1 are disjoint it follows that w(P) > p(PZ).

) n=2,3 ...

Nowlet M, =K, and M =M U((K - LM
1 1 n n-1 n n-1
The sequence {Mn tn=1,2,...} is an expanding sequence of bounded
1
L-packings in W and p.(Mn) > disp(L) - ; , n=1,2, ... . Since the

union of any expanding sequence of L-packings is again an L-packing,
UMn is an L-packing. It is furthermore in W hence p(UMn) < disp(L).

But p.(UMn) > disp(L) - '1% for n=1,2, ..., hence p(UMn) = disp(L).

In the case that disp(L) = + o there exists a sequence of
L-packings in W, {Pn :n=1,2, ...} such that an > n. Arguing

as in the finite case we find that we may assume that Pn is bounded

n=1,2, ... . The second step is then also applicable: we can assume
that the sequence is an expanding one. It then follows that UPn is an

L-packing in W such that p(UPn) = disp(L).

THEOREM 3. Let X be a locally compact group with left Haar
measure p and L a subsemigroup of X containing the identity with
the property that the bounded subsets of L are finite. I disp(L) is
defined then it is attained.
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Proof. Let { Cn tn=1,2,...} be a sequence of L-coverings

in C such that p(Cn) < disp(L) +%, n=1,2, ...

For any two L-coverings in C, say D1 and DZ' we can make
the following construction. Let xiD1 e, er1 be the finitely many
translates xD, , x ¢ L. which have non-empty intersection with D

1 2°
P = D = _ !
ut S1 %, 10 D2 and Sk kaif\[D2 (Si\J..—.ikJSk_1)] for—1
=2,..., r, then D_= SU...US . Let S=x ,5 U...Ux "5,
2 1 r 171 ror

then S C D1 . Furthermore, since L contains the identity,

LS = LLS; but LLS D LD2 =X hence S is an L-covering. It is

moreover 1in c. Also
1 1 1 2

since Si’ ..., S are pairwise disjoint.
r

Denoting the set S obtained in this way by D1 ° D2 we replace
. - 1. - : : (- .
{Cn.n 1,2,...} by {Cn.n 1,2, ...} in which C1 Ci’

C1’<:C1'<-1° Ck, k=2,3,... . Then {C_;l: n=1,2,...} 1is a nested

-—_ 1
sequence of L-coverings in C and p(Ci})_<_ disp(L) + o for n=1,2,...
Let C=/)C' then C is certainly in C; we claim that C is also
n

an L-covering. For let x be any point in X . There is a positive

ini ! L Y ' which
finite number of translates nd, y € say ynicn anncn whic
contain x for each n. The finite sets {Yni' e, ynrn} n=1,2,...,
are nested and none is empty. It follows that they have at least one

element in common, call it y. Then x ¢ yCr'1 for all n, hence
x ¢ yC. Thus C is an L-covering and u(C) > ch(L) . But
w(C) < m(L) +i for n=1,2,..., so u(C) = disp(L) and the
proof is complete.
We remark that while the union of an expanding sequence of
L-packings is again an L-packing, the intersection of a nested sequence

of L-coverings is in general not an L-covering. For example, let
X = R, the additive reals, let L be the integers and as L-coverings

take {R - (-n,n) :n=1,2,...}; for a second example let L be the
. 1 1
rationals and as L-coverings take {(- o’ ;) tn=1,2,...} .
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We have made no assumptions in the theorems above regarding
the cardinality of the topology of X. We conclude by noting that when
X satisfies the second axiom of countability, Siegel has shown
[6, p. 678] that if L is a discrete subgroup then it has a fundamental
domain. Thus, if disp(L) is defined then disp(L) = disp(L) and
these are attained on a setin C () W.

We wish to thank the referee for his helpful criticisms and comments.
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