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The t e r m ' c o v e r i n g ' is known to any s tudent who has seen the 
H e i n e - B o r e l t h e o r e m and he soon l e a r n s that it denotes a v e r y ba s i c 
and widely used concep t . Quite gene ra l l y , a family {X : a e A} of 

a 
s u b s e t s of X is a cover ing of the subse t Y of X if Y C ^ X • 

— aeA a 
The concept of packing i s p e r h a p s no l e s s f requent ly encounte red 

al though the t e r m has only a r a t h e r spec ia l i zed u s e . In g e n e r a l , a 
packing is any family of s u b s e t s {X : a e A} of a se t X which a r e 

p a i r w i s e d is jo in t . To m a k e this definit ion m o r e s i m i l a r to that of 
cover ing , we m i g h t define {X } to be a packing of the subse t Y of 

X if X O X H Y = 0 for a f p . This is intended to sugges t only 
a P 

that t h e r e is a c e r t a i n p a r a l l e l be tween the ideas of packing and 
cover ing but not a dual i ty in any t echn ica l s e n s e . 

A p a r t i t i o n of a se t X is s imply a family of s u b s e t s of X which 
is both a packing and cove r ing . 

As defined above, that is in a pu re ly s e t - t h e o r e t i c context , the 
concepts of packing and cover ing allow for l i t t le specu la t ion . However , 
j u s t as soon as we p lace any s t r u c t u r e on X and m a k e s o m e r e s t r i c t i o n s 
on the f ami l i e s {X } m a n y in t e r e s t i ng ques t ions a r i s e . It is in the c a s e 

of X, a euc l idean space , that p r o b l e m s of packing and cover ing have 
r ece ived a l m o s t exc lus ive a t tent ion (see , however , A . M . Macbea th [!])• 
Such p r o b l e m s a r i s e in a g r e a t v a r i e t y of ways and only in p a r t do they 
have m a t h e m a t i c a l o r i g i n s . T h e r e h a s , however , been a concen t r a t i on 
of effort on one se t of p r o b l e m s in p a r t i c u l a r ; n a m e l y that of packing and 
cover ing with equal s p h e r e s in a euc l idean s p a c e . The m a t h e m a t i c a l 
mo t iva t i on of th is was f i r s t felt by Minkowski and m u c h of the work in 
the subjec t m a y be cons ide red as r e su l t i ng f rom this p a r t of his l egacy . 
Exce l l en t accounts a r e given in the books by L. F e j e s - T o t h [2], 
J . W . S . C a s s e l s [3] and, m o s t r ecen t ly , C .A. R o g e r s [4] , 

In deal ing with packings and cover ings by equal euc l idean s p h e r e s , 
we a r e conce rned with f a m i l i e s which cons i s t of t r a n s l a t e s of the s a m e 
set , i . e. with f ami l i e s of the f o r m {S + x : x e L} w h e r e by S + x we 
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denote as u s u a l the s e t {y + x : y e S} . When {S + x : x e L} is a 
packing , we speak of S as a packing with r e s p e c t to L or an L-pack ing 
and say that L is a d m i s s i b l e with r e s p e c t to S; s i m i l a r l y for c o v e r i n g s . 
F ix ing S we al low L to r a n g e over a l l a d m i s s i b l e s e t s which have a 
dens i ty o r , in p a r t i c u l a r , over a l l a d m i s s i b l e l a t t i c e s and o r d e r t h e s e 
acco rd ing to the dens i ty A(L) of L. A(L) i s defined to be 

l im t # (L D A(T)) w h e r e A(t) i s the cube whose v e r t i c e s a r e the 
t-*oo 

2 poin ts ( + j t, . . . , + j t) and #(X) m e a n s the c a r d i n a l i t y of X. 

As a l r e a d y noted the c l a s s of l a t t i c e s p lays a s p e c i a l r o l e . 
However , f r o m the s tandpoin t p u r e l y of packing and cove r ing th is r o l e 
is not i n t r i n s i c a l l y c l e a r . F o r e x a m p l e , i t is wel l known that the 
dens i ty of the d e n s e s t l a t t i ce packing of s p h e r e s in E is a t ta ined by 

s e t s o the r than l a t t i c e s a l s o . M o r e o v e r , the dens i ty of L as j u s t 
defined and i ts a d m i s s i b i l i t y for a fixed S a r e not affected by the 
addi t ion to it in the c a s e of cover ing or de le t ion f rom it in the c a s e of 
packing of a r b i t r a r i l y m a n y poin ts in any bounded p a r t of the s p a c e . 

It is in an effort to gain a b e t t e r unde r s t and ing of the r o l e 
which l a t t i c e s , in p a r t i c u l a r , p lay in the t heo ry of pack ing and cove r ing 
that we in i t ia te the following inves t i ga t i on . 

Let X be a loca l ly c o m p a c t g roup with left Haa r m e a s u r e |JL . 
F o r any subse t L of X we ca l l a subse t C an L - c o v e r i n g if 
LC = X and P an L-pack ing if x P H y P = (fi for a l l x and y in 
L with x ^ y . Denote by C the c l a s s of m e a s u r a b l e s e t s which a r e 
bounded ( i . e . have c o m p a c t c l o s u r e ) and by U- the c l a s s of m e a s u r a b l e 
s e t s which have n o n - e m p t y i n t e r i o r . 

Def ini t ion. F o r any subse t L of X which is such tha t t h e r e is 
an L - c o v e r i n g in C we define the upper d i s p e r s i o n d isp(L) to be 
inf{|d(c) : C e C, C an L - c o v e r i n g } . 

F o r any subse t L of X which is such that t h e r e is an 
L-pack ing in LL we define the lower d i s p e r s i o n d isp(L) to be 
sup{|j.(P) : P e "IX, P an L - p a c k i n g } . 

We say that L is e q u i - d i s p e r s e d if d isp(L) = d isp(L) and l a t t i c e ­
like if t h e r e is a se t in C H U. which is both an L-pack ing and an 
L - c o v e r i n g . 

It is ea sy to show that in E if A(L) ex i s t s then disp(L) < 
- 1 n 

A(L) < d isp(L) . 

In g e n e r a l if A(L) = l im sup t " n # (L H A(t)) and A(L) = 

l im inf t # ( L O A(t)) i . e . A and A a r e r e s p e c t i v e l y the upper and 
lower d e n s i t i e s then 

d isp(L) < A(L)~ < A ( L ) " 1 < dTs7(L) 
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What of the inequal i ty disp(L) <̂  d isp(L) in g e n e r a l ? It obviously 
holds for any c o m p a c t g r o u p . Thus, if P is an L-pack ing then s ince 
P e U, | i (P ) > 0 and, s ince # (L) |i (P) < |i (X) , # (L) is f in i te . 
F o r any L - c o v e r i n g C, |i (X) = |i (LC) < # ( L ) | i ( C ) . Thus 
|JL (P) < \x (X) / # (L) < (JL (C). We have in addi t ion the following r e s u l t . 

THEOREM 1. Let_ X be a local ly compac t group with left 
i nva r i an t Haar m e a s u r e [i and let L be a subse t of X for which both 
upper and lower d i s p e r s i o n s a r e defined. J: L has the p r o p e r t y 

- 1 - l 
L L = L L then disp(L) > disp(L) . 

P roof . We want to show that for any L - c o v e r i n g C and 
L-pack ing P , JJL(C) > JJL (P) . 

Since |JL is r e g u l a r ( see for example [5, p . 224]) we can, for any 
e > 0, find an open se t U and a compac t se t K such that 

U D C, |JL(U) < [L(C) + e 

and 

K C P , \x (K) > n ( P ) - € . 

Since LU c o v e r s K and K is compac t , t h e r e is a finite se t of 
e l e m e n t s in L say x , , . . . , x such that K C x J U U . . . U x U . 

I n 1 n 

-1 - 1 - 1 
The condit ion that L L = L L p rov ides that P is an L -pack ing , 

n a m e l y : 

( L _ 1 L - {e}) P Pi P = 0 

i m p l i e s that 

( L L " 1 - {e} ) P H P = 0 . 

_ i 
It follows that {x . (K O x. U) : i = 1, . . . , n } = 

l i 

- 1 
{x . K O U : i = 1, . . . , n} is a d is jo in t fami ly of subse t s of U. Hence 

|i (K) = |i { U (K O x. U )} < S p. (K Pi x. U) 

= 2 f i (x" 1 K O U) = |d { U (x" 1 K Pi U ) } 

< |i (U) . 

673 

https://doi.org/10.4153/CMB-1968-080-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1968-080-1


Thus (x (P) - c < \x (C) + e and this for any e > 0 implies that 
|a(P) < |i(C).* 

Note that if C and P are respectively an L-covering and an 
L-packing, then for any x e X, Cx and Px are again an L-covering 

and an L-packing respectively. Now suppose that X is not unimodular. 
Since, whenever defined, disp(L) is finite we must in this case have 

disp(L) = 0. Also disp(L), when defined, is positive so that 
disp(L) = + oo . Thus for any L for which both upper and lower 
dispersions are defined the inequality in question certainly does not 

hold. As a consequence, we have : 

COROLLARY. Jf X contains a subset L for which upper and 
-1 -1 

lower dispersions are defined and LL = L L then X is unimodular. 

This result in the case when X satisfies the second axiom of 

countability and L is a subgroup is due to C. L. Siegel [6, Lemma 5]. 

-1 -1 
If X is abelian then the condition LL = L L in the theorem 

is always satisfied. Whether or not this condition is removable when 
X is any unimodular group is an open question. 

In regard to the question of whether upper and lower dispersions 

are attained the next two theorems give affirmative answers under 

certain special hypotheses. 

THEOREM 2. Let X be a locally compact group and L â  
discrete subgroup of X. Then disp(L) is defined and it is attained. 

Proof. That L is discrete is equivalent to the existence of an 
open L-packing so that certainly disp(L) is defined. 

We consider first the case in which disp(L) is finite. 

For any positive 6 there exists for each L-packing P in "LC 
a bounded (indeed compact) subset K of P such that u (K) >_ \i (P) - € ; 

this by the regularity of (JL . K is clearly an L-packing, furthermore 

we can assume that K is in XL since we can adjoin to it any bounded 
neighbourhood contained in P. There exists therefore a sequence 
{K : n = 1, 2, . . . ) of bounded L-packings in \JL such that 

n A 

u(K ) > disp(L) - - . 
n — L n 

*The referee remarks that essentially the same proof yields: Let X 
be a locally compact group with left invariant Haar measure. Let 

L be a subset of X and suppose disp(L) and disp(L~ ) are defined. 
_ i 

Then disp(L) >_ disp(L ). 
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Let P and P be any L -pack ings ; then it is c l e a r that 

P = P U (P - L P ) is again an L -pack ing . (in fact for a r b i t r a r y 

L, P . U ( P . - L L P J ) is an L-packing whenever P and P a r e . ) 
1 2 1 1 2 

Suppose fu r the r that P and P a r e bounded and in U . Then s ince 

L is d i s c r e t e only a finite n u m b e r of t r a n s l a t e s x P with x G L have 

n o n - e m p t y i n t e r s e c t i o n with P • le t t he se be x . P , , . , . ^ P . 
2 1 1 r 1 

It follows that P^ - L P , is m e a s u r a b l e and hence that P is m e a s u r a b l e . 
2 1 

Since P D P . , P is in I t and s ince P C P , U P „ it follows .that P 
1 1 2 

is bounded. M o r e o v e r 

h x ( P 2 " L P l ) = ^ ( P 2 ) _ ^ [ < x l P l U - - - U x r P l ) n P 2 ] 

= ^ ( P 2 ) - 2 ^ ( x . P ^ P 2 ) 

= ,I(P2) - sjx (P l n( x "Jp 2 ) 

= H-(P2) - H-[Pln(x-1
1P2u...Ux^p2)] 

> H ( P 2 ) - ( . ( P ^ 

and s ince P and P - L P a r e d is jo int it follows that |JL(P) _> |JL(P ). 

Now let M, = K, and M = M U (K - LM J n = 2, 3 . . . . 
1 1 n n - 1 n n - 1 

The sequence {M : n = 1, 2, . . . } is an expanding sequence of bounded 
n 1 

L -pack ings in XL and |JL(M ) _> disp(L) - — , n = 1, 2 Since the 

union of any expanding sequence of L-pack ings is aga in an L-pack ing , 
U M is an L - p a c k i n g . It is f u r t h e r m o r e in "UL hence LX(UM ) < d i s p ( L ) . 

n n — L-
But n (UM ) > d isp(L) - - for n = 1, 2, . . . , hence u (UM ) = d i s p ( L ) . 

n "- n n l -

In the c a s e that di,sp(L) = + oo t h e r e ex i s t s a sequence of 
L -pack ings in \ 1 , { P : n = 1, 2, . . . ) such that u P > n. Arguing 

n J n 
as in the finite c a s e we find that we m a y a s s u m e that P is bounded 

n 
n = 1, 2, . . . . The second s tep is then a lso app l i cab le : we can a s s u m e 
tha t the sequence is an expanding one . It then follows that LJP is an 
L-pack ing in XX such that |JL(LJP ) = d i sp (L) . 

n 

THEOREM 3 . Let X be a local ly compac t group with left Haar 
m e a s u r e JJL and L a s u b s e m i g r o u p of X containing the identi ty with 
the p r o p e r t y that the bounded s u b s e t s of L a r e f in i te . Jf d isp(L) JL£_ 
defined then it i s a t t a ined . 
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Proof . Let { C : n = 1, 2, . . . } be a s equence of L - c o v e r i n g s 
____ ^ 

in C such that UL (C ) < d isp(L) + — , n = 1, 2, . . . . 
n — n 

F o r any two L - c o v e r i n g s in C, say D and D , we can m a k e 

the following c o n s t r u c t i o n . Le t x D , , . . . , x D , be the f ini te ly m a n y 
1 1 r 1 

t r a n s l a t e s xD , x e L which have n o n - e m p t y i n t e r s e c t i o n with D . 

Pu t S = x D H D and S = x D H [D - (S U . . . U S , J ] for 
1 1 1 2 k k l L 2 1 k- 1 

k = 2, . . . , r , then D = S U . . . U S . Le t S = x" ] S , U . . . U x S , 
2 1 r 1 1 r r 

then S C D . F u r t h e r m o r e , s ince L con ta ins the ident i ty , 

LS = LLS ; but LLS D -^D = X hence S is an L - c o v e r i n g . It is 

m o r e o v e r in C. Also 

H(S) < S ^ x ' J S j ) = S|o.(S.) = ji(D2) 

s ince S, , . . . , S a r e p a i r w i se d i s jo in t . 
1 r ^ J 

Denoting the se t S obtained in th is way by D © D we r e p l a c e 

{C : n = 1, 2 } by { C : n = 1, 2, . . .} in which C' = C. ; 
L n n 1 1 
C = C1 * C , k = 2, 3 Then { C : n = 1, 2, . . .} is a nes t ed 

k k - 1 k n 
1 

sequence of L - c o v e r i n g s in C and (JL(C ) < d isp(L) + — for n = 1,2, 
Let C = C) C then C is c e r t a i n l y in C; we c l a i m tha t C is a l s o 

n 
an L - c o v e r i n g . F o r let x be any point in X . T h e r e is a pos i t ive 
f inite n u m b e r of t r a n s l a t e s y C , y e L say y t C ' , . . . y C ' which 

n n i n n r n 
n 

conta in x for e ach n . The f ini te s e t s {y , , . . . , y } n = 1, 2, . . . , 
n l nr 

n 
a r e nes ted and none is e m p t y . It fol lows that they have at l e a s t one 
e l e m e n t in common , ca l l it y . Then x e yC ' for a l l n , hence 

n 
x G yC. Thus C is an L - c o v e r i n g and \x(C) _> d i sp(L) . But 

1 
(JL(C) £ d isp(L) + — for n = 1, 2, . . . , so \i(C) - d i sp(L) and the 

proof is c o m p l e t e . 

We r e m a r k that while the union of an expanding sequence of 
L - p a c k i n g s is aga in an L-pack ing , the i n t e r s e c t i o n of a nes ted s e q u e n c e 
of L - c o v e r i n g s is in g e n e r a l not an L - c o v e r i n g . F o r e x a m p l e , le t 
X = R, the addi t ive r e a l s , let L be the i n t e g e r s and as L - c o v e r i n g s 
take {R - (-n, n) : n = 1 , 2 , . . . } ; for a second e x a m p l e let L be the 

1 1 
r a t i o n a l s and as L - c o v e r i n g s take { ( - " " » " " ) : n = 1, 2, . . . } . 

n n 
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We have made no assumptions in the theorems above regarding 
the cardinality of the topology of X. We conclude by noting that when 
X satisfies the second axiom of countability, Siegel has shown 
[6, p. 678] that if L is a discrete subgroup then it has a fundamental 
domain. Thus, if disp(L) is defined then disp(L) = disp(L) and 
these are attained on a set in C O U . 

We wish to thank the referee for his helpful cr i t icisms and comments. 
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