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Summary

Many biological processes, from cellular metabolism to population dynamics, are characterized by
particular allometric scaling relationships between rate and size (power laws). A statistical model for
mapping specific quantitative trait loci (QTLs) that are responsible for allometric scaling laws has
been developed. We present an improved model for allometric mapping of QTLs based on a more
general allometry equation. This improved model includes two steps: (1) use model II regression
analysis to estimate the parameters underlying universal allometric scaling laws, and (2) substitute
the estimated allometric parameters in the mixture-based mapping model to obtain the estimation
of QTL position and effects. This model has been validated by a real example for a mouse F2

progeny, in which two QTLs were detected on different chromosomes that determine the allometric
relationship between growth rate and body weight.

1. Introduction

Among a vast range of species from microorganisms
to the largest mammals, many biological variables
seem to bear a specific quarter-power scaling re-
lationship to overall body size (Fig. 1A). For ex-
ample, various biological times (e.g. lifespan and the
time between heartbeats) scale with body mass to
the 1/4 power, and resting metabolic rate scales with
body mass to the 3/4 power (McMahon, 1973;
Calder III, 1984; Schmidt-Nielsen, 1984; Enquist
et al., 1998, 1999; Brown & West, 2000). Several at-
tempts have been made recently to derive such general
allometric scaling laws based on maximum efficiency
(West et al., 1997, 1999a ; Banavar et al., 1999), which
has been regarded as the fundamental design principle
for biological systems. Andresen et al. (2002) argued
that maximum efficiency built on evolutionary
(Bonner & Horn, 2000) as well as thermodynamic
grounds (Dewey & Donne, 1998) may suffer from in-
ternal inconsistencies when it is used to explain scaling
laws.

Allometric scaling laws can be described math-
ematically by a power function B=aMb, where B is
a biological variable, M is the body weight, a is the
constant and b is the scaling exponent. Allometric
relationships result from the regulation of scale and
proportion in living organisms and are thought to
have a genetic component (Wu et al., 2003). Wu et al.
(2002) presented a basic statistical framework for
mapping quantitative trait loci (QTLs) responsible for
universal quarter-power scaling laws of structure and
function with the entire body size. A key issue for
QTL mapping of allometry is how to explain the
genetic value of a biological variable in terms of that
of body weight under the scaling relationship. Wu
et al.’s model takes advantage of a linear relationship
between B and M after the power function is log-
transformed and, therefore, is statistically straight-
forward to derive. When more complicated power
functions, for which the log-transformation cannot
lead to a linear relationship, are needed to describe
allometric scaling laws, a different model based on
Taylor’s approximation is developed (Ma et al.,
2003).

Although Taylor’s approximation can establish
a general model for allometric mapping, its actual

* Corresponding author. Tel: +1 (352) 3923806. Fax:
+1 (352) 3928555. e-mail : rwu@stat.ufl.edu

Genet. Res., Camb. (2006), 87, pp. 207–216. f 2006 Cambridge University Press 207
doi:10.1017/S0016672306008172 Printed in the United Kingdom

https://doi.org/10.1017/S0016672306008172 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672306008172


application presents a significant problem. The ex-
pression of the B mean as a function of the M
mean depends on the order with which Taylor’s
series is expanded. Although the expansions of
higher order can theoretically result in a more precise
description of the B–M relationship than those of
lower order, the former tend to be computationally
more expensive than the latter. Because the pre-
cision of the model and computational efficiency are
equally important, it would be difficult to make a
compromise between these two aspects for a practical
problem.

In this article, we develop an ad-hoc model for
genetic mapping of general allometric scaling laws,

aimed at the simultaneous improvement of the pre-
cision of the model and computational efficiency. Our
model includes two different steps. First, model II
regression analysis based on a loss function is used to
fit observed bivariate data using a known allometric
equation (Ebert & Russell, 1994). According to allo-
metric scaling laws, differences among different
organisms can be described by the same power func-
tion. Thus, it is reasonable to assume that different
genotypes at an underlying QTL share a common
power function which can be described by the same
set of parameters. Second, the estimated parameters
for the power function are substituted in a QTL
mapping framework built on the finite mixture model.
Instead of the estimation of all parameters, we need
to estimate only the parameters describing the QTL
effects on the dependent variable (i.e. body weight)
and QTL position. A reduced number of model
parameters being estimated increases the precision of
parameter estimation. We derived the observed in-
formation matrix to investigate the precision of our
statistical model. A worked example for mouse body
weight growth illustrates the usefulness of model. In
this example, we have identified two QTLs on differ-
ent mouse chromosomes that regulate the allometric
scaling relationship between growth rate and body
weight.

2. Linear model for allometry mapping

Assume that our mapping population is an F2 pro-
geny of size N founded by two inbred lines. In this F2

population, we measure one biological variable, B,
and body weight, M, for each individual and con-
struct a genetic map based on polymorphic markers.
Suppose these two measured traits B and M are re-
lated by a power equation,

B=aMb: (1)

The estimation of the constant parameter a and ex-
ponential power b in this equation is obtained by a
linear regression following the log-transformation, i.e.

ln(B)=a+bln(M)

or

y=a+bx, (2)

where y=ln(B) and x=ln(M). An interval mapping
approach has been developed to locate QTLs that
affect allometric scaling laws based on this log-
transformed linear regression function (Wu et al.,
2002). We will modify this approach by making ap-
propriate transformations to minimize the number of
unknown parameters being estimated. An in Wu et al.
(2002), two common mechanisms for trait corre-
lations, pleiotropic and linkage, will be considered.
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Fig. 1. Allometric scaling laws across different species
(A) (downloaded from http://biology.unm.edu/jhbrown/
Research/Scaling/Scaling.htm) and within species (B).
Three different genotypes in (B) are assumed, coded by
r, # and +. The log-transformed genotypic values for
the three genotypes are distributed along a straight line.
If the coordinates of the three genotypic means do not
overlap, this means that there exists a gene to affect the
allometric law.
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(i) Pleiotropic model

The pleiotropic model proposes that a common QTL
affects variation in both log-transformed traits x and
y. At a putative QTL, the F2 population can be sorted
into three genotype groups, QQ, Qq and qq, coded by
2, 1 and 0, respectively. These three groups form three
clusters in the coordinate of x and y. If the allometric
change of trait y with respect to trait x, as described
by equation (1), results from the pleiotropic effect of
this QTL, then the three points, each representing a
pair of the expected mean values of the two traits in
one genotype group, should be significantly different
from each other but should be on the same line de-
scribed by the log-transformed allometry equation
(2) (Fig. 1B). With such a linear relationship, the
expected mean value of the transformed trait y can be
predicted exactly from the mean value of the trans-
formed trait x.

The differences in x or y among the three QTL-
genotypic means reflect the magnitude of the genetic
effects of the QTL on the corresponding trait. Denote
a and d as the additive and dominant effects of the
QTL on x. Thus, the phenotypic values of the two log-
transformed traits for individual i are expressed by
linear statistical models,

xi=m+jia+fid+exi ,

yi=a+bxi+ey
i=a+b( m+jia+fid )+bexi +e y

i ,

where m is the overall mean for x ; ji and fi are
the dummy variables indicating the QTL genotype of
individual i, with ji denoted as 1 for QQ, 0 for Qq
and x1 for qq and fi denoted as 1 for Qq and 0 for
QQ or qq ; ei

xyN(0, sx
2 ) and ei

yyN(0, sy
2) are the error

terms for traits x and y, respectively, which are
correlated among individuals with correlation coef-
ficients R. Because the genetic effects are fixed effects,
the variances for traits x and y and their correlation
can be expressed, respectively, as

v2x=s2
x,

v2y=b2s2
x+s2

y,

r=
bsx+Rsyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s2

x+s2
y

q :

Let mj
x and mj

y be the mean values of x and y for QTL
genotypes j ( j=2, 1, 0), respectively. According to
equation (2), the relationship between the means of
the two transformed traits can be modelled by

my
j=a+bmx

j , (3)

for QTL genotype j.
Suppose that the QTL is bracketed by two flanking

markers M1 and M2 with recombination frequency of

r. The recombination frequencies between M1 and the
QTL and between the QTL and M2 are r1 and r2, re-
spectively. The QTL position can be specified using r1
or r2. The conditional probability of a QTL genotype
given each of the nine two-marker genotypes can be
derived and expressed as a function of r, r1 and r2. We
use pj|i to denote such a conditional probability for
individual i to carry QTL genotype j.

A conventional allometry mapping model, ad-
vocated by Wu et al. (2002), estimates allometry
coefficients, QTL effects, QTL position and residual
(co)variance, arrayed by a unknown vector V=( m, a,
d, a, b, r1, sx

2 , sy
2, R)T. The likelihood of the sample of

bi-variate measurements can be expressed by a mix-
ture model as

L(Vjx, y)=
Yn
i=1

g
2

j=0
pjji fj (xi, yi)
� �

(4)

where the two-dimensional normal density, fj (xi, yi),
is expressed as

fj(xi, yi)=
1

2pvxvy
ffiffiffiffiffiffiffiffiffiffiffiffi
1xr2

p exp

(
x

1

2(1xr2)

r
xixmx

j

vx

� �2

x2r
(xixmx

j )(yixm y
j )

vxvy
+

yixm y
j

vy

� �2
" #)

:

The maximum likelihood estimators (MLEs) of the
unknown vector V can be obtained by differentiating
the log-likelihood function (equation (4)) with respect
to each unknown, setting the derivatives equal to zero
and solving the log-likelihood equation. By definingY
jji

=
pjji fj (xi, yi)

g2
j0=0 pij k fj k(xi, yi)

� � , (5)

which could be thought of as a posterior probability
that individual i has QTL genotype j, the EM algor-
ithm is implemented to solve the likelihood function.
The posterior probabilities,

Q
jji, are calculated for

each individual and each QTL genotype in the E step
and they are then used to obtain the MLEs of each
parameter contained in V in the M step which are
derived from the log-likelihood equations. For de-
tailed iterative EM steps, refer to Wu et al. (2002).

(ii) Linked QTL model

The allometric scaling of organisms may also be af-
fected by two QTLs that are genetically linked on the
same chromosome, one exerting an effect on trait x
and the other on trait y. Under such a linked-QTL
model, two putative QTLs may be located within
the same marker interval or in different marker in-
tervals. We consider a special linkage model in which
each of the two linked QTL affects a different trait
x and y.
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Consider two linked QTLs of which one (P) affects
trait x and the other (Q) affects trait y. Let j1 denote a
QTL genotype PP, Pp and pp, coded as 2, 1 and 0,
respectively. Similarly, we use j2 to denote QTL geno-
types QQ, Qq and qq, coded as 2, 1 and 0. If the two
QTLs are located in different marker intervals, two
different pairs of flanking markers should be used
simultaneously to specify the likelihood of the data.
Denote by H1 the matrix for the conditional prob-
ability of QTL genotypes at P given the marker
interval M1–M2. Similarly, the matrix for the con-
ditional probability of QTL genotypes at Q given
the marker interval N1–N2 is denoted by H2. The
conditional probability of joint QTL genotypes at
P and Q given the two marker intervals can be ex-
pressed as

H1 �H2,

where � is the Kronecker product. If two linked
QTLs are located within the same marker interval, the
conditional probability of joint QTL genotype given
the marker genotypes is derived.

Under our linkage model, the additive and domi-
nant effects of QTL P on x are denoted by a and d,
whereas the additive and dominant effects of QTL Q
and y are denoted as a+ba and a+bd, respectively.
The likelihood of the data under the linked-QTL
model can be expressed as

L(V)jx, y)=
Yn
i=1

g
2

j1=0
g
2

j2=0
pj1j2ji fj1j2(xi, yi)
� �

(6)

where the vector V contains the same unknowns as in
the pleiotropic QTL model, except with one more
parameters describing the position of the second
QTL, pj1 j2ji is the conditional probability of the joint
QTL genotype j1 j2 given a specific individual i
that carries a known marker genotype and fj1 j2 (xi, yi)
is the joint normal distribution of x and y for a joint
QTL genotype. Similarly, the EM algorithm can be
used to estimate the unknowns under the linkage
model.

(iii) Precision analysis

After the point estimates of parameters have been
obtained by the EM algorithm, it is necessary to de-
rive the variance–covariance matrix and evaluate the
standard errors of the estimates. Because the EM al-
gorithm does not automatically provide the estimates
of the asymptotic variance–covariance matrix for
parameters, an additional procedure has been devel-
oped to estimate this matrix (and thereby standard
errors) when the EM algorithm is used (Louis, 1982;
Meng & Rubin, 1991). Meng & Rubin (1991) pro-
posed a so-called supplemented EM algorithm or
SEM algorithm to estimate the asymptotic variance–

covariance matrices. However, in this study, Louis’
(1982) approach is used to calculate the standard
errors for the MLEs of QTL parameters for allometry
mapping.

(iv) Hypothesis tests

Several hypotheses about the QTL affecting quarter-
power scalings of organisms can be formulated for our
model. These hypotheses include: (i) there is a QTL in
a linkage group that affects two traits, (ii) this signifi-
cant QTL is pleiotropic with effect on both traits, or it
actually presents two linked QTLs (one affecting each
trait), and (iii) under a best-fitting model, the QTL
detected affects the two traits in a quarter-power
scaling. In addition, we can ask whether the normal-
ization constant a is a characteristic of species or
populations (Niklas, 1994). This can also be tested
to find out whether the mapping population used
conforms to a general scaling pattern. However, a
recent survey by Niklas & Enquist (2001) suggested
that all plants have similar allometric exponents and
normalization constants and, therefore, comply with
a single allometric formula.

The evidence for QTL on traits x and y can be tested
by hypothesizing a single QTL versus no QTL on a
linkage group, i.e.

H0: a=d=0

H1: At least one of these equalities above

does not hold:

8><>: (7)

The H0 states that no QTL affects trait x (the reduced
model), whereas the H1 proposes that there is such a
QTL (the full model). The test statistic for testing the
hypotheses (7) is calculated as the log-likelihood ratio
of the reduced to the full model :

LR=�2[lnL(eVVjx, y)xlnL( bVVjx, y)], (8)

where eVV and bVV denote the MLEs of the unknown
parameters under H0 and H1, respectively. Under
the null hypothesis, the LR is asymptotically x2-
distributed with two degrees of freedom. An empirical
approach for determining the critical threshold is
based on permutation tests. By repeatedly shuffling
the relationships between marker genotypes and
phenotypes, a series of maximum log-likelihood ratios
are calculated, from the distribution of which the
critical threshold is determined.

To test whether this detected QTL affects allometric
scaling laws, we need to perform two additional tests
for the significance of the exponential power b. The
first is to test b=0 versus bl0, which is associated
with the pleiotropic effect of this QTL on trait y.
The second is to test b=k versus blk, where k is a
multiplier of a quarter such as 1/4 or 3/4. Only after
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both the null hypotheses above about x and y are
rejected, is the underlying QTL suggested to be
pleiotropic for allometric scaling laws.

If a marker interval is detected to carry two QTLs
each affecting a different trait, it is important to test
whether the correlation between the two traits is due
to the pleiotropic effect of the same QTL or the link-
age between the two QTLs. Let two QTLs have pos-
itions symbolized by p(1) for the QTL associated with
trait x and p(2) for the QTL associated with trait y.
Whether or not these two QTLs are actually the same
can be tested by formulating the hypotheses
p(1)=p(2) versus p(1)lp(2). If the null hypothesis is
accepted, this means that the pleiotropic effect of
QTLs has a more important contribution to trait
correlation than the linkage. But its rejection, i.e. the
existence of the two QTLs, may result from two possi-
bilities : (1) each QTL affects a different trait and (2)
each QTL affects two traits simultaneously. These two
possibilities can be further tested by formulating two
alternative hypotheses. If the first possibility is true,
the linkage is more important than the pleiotropy in
affecting the trait correlation. If the second possibility
is true, both the pleiotropy and linkage are important.

(v) An improved mapping model

In the previous sections, we described a conventional
approach for allometry mapping. In this section, an
improved model is proposed to increase the compu-
tational efficiency of allometry mapping. This im-
proved model is based on a two-step estimation
process. In step 1, the power parameters that govern
allometric scaling laws are estimated by a regression
model. In step 2, by substituting the estimated power
parameters in the mapping model constructed by a
mixture model, the effects and position of the under-
lying QTL are estimated using the EM algorithm. As
shown in equations (1) and (2), the log-transform-
ation makes two allometrically related traits linearly
related and, at this time, the power parameters can be
estimated, using a least squares approach, as

�bb=
ngn

i=1xiyix
�
gn

i=1xi

��
gn

i=1yi

�
ngn

i=1x
2
ix

�
gn

i=1xi

�2 ,

�aa=
1

n
g
n

i=1
yixb g

n

i=1
xi

� �
:

By viewing �aa and �bb as the constants, we define a
new variable

zi=yix�bbxix�aa, (9)

which is normally distributed as N(0, sz
2). It can

be seen that xi and zi are independent. The joint
distribution of xi and zi for the three different QTL

genotypes can be written as

f2(xi, zi)=f2(xi)*f(zi)

=
1

2psxsz

r exp x
1

2

(xixmxa)2

s2
x

+
z2i
s2
z

� 	
 �
,

f1(xi, zi)=f1(xi)*f(zi)

=
1

2psxsz

r exp x
1

2

(xixmxd)2

s2
x

+
z2i
s2
z

� 	
 �
,

f0(xi, zi)=f0(xi)*f(zi)

=
1

2psxsz

r exp x
1

2

(xixm+a)2

s2
x

+
z2i
s2
z

� 	
 �
:

The likelihood of the unknown parameters given the
observed trait x and the newly defined variable z can
be written under the pleiotropic (equation (4)) or
linked QTL model (equation (6)). The maximization
of this likelihood with respect to the unknown
parameters leads to the following log-likelihood
equations for the pleiotropic model, expressed as a
function of the posterior probabilities (equation (5)) :

m=
1

2

gn

i=1xi

Q
0ji

gn

i=1

Q
0ji

+
gn

i=1xi

Q
2ji

gn

i=1

Q
2ji

" #

a=
gn

i=1xi

Q
1ji

gn

i=1

Q
1ji

x
1

2

gn

i=1xi

Q
0ji

gn

i=1

Q
0ji

+
gn

i=1xi

Q
2ji

gn

i=1

Q
2ji

" #

d=
1

2

gn

i=1xi

Q
0ji

gn

i=1

Q
0ji

x
gn

i=1xi

Q
2ji

gn

i=1

Q
2ji

" #

s2
x=

1

n
g
n

i=1

Y
2ji

(xixmxa)2+
Y
1ji

(xixmxd)2

"

+
Y
0ji

(xi+m+a)2

#

s2
z=

1

n
g
n

i=1
(yix�aax�bbxi)

2:

The EM algorithm is implemented to estimate these
parameters. Compared with the traditional model,
this improved model estimates fewer parameters
and, thus, is expected to provide more power to detect
allometric QTLs.

3. Non-linear model for allometry mapping

Although the simple allometry equation (1) has been
used to model allometric scaling relationships, it is
limited for the precise description of many important
biological phenomena. For example, this equation,
which forces two variables to pass through the origin,
i.e. when x=0 then y=0, cannot describe the relation-
ship between two developmentally asynchronous fea-
tures, such as reproductive timing and body weight.

To accurately describe the scaling relationship be-
tween any biological traits, we need to extend the
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simple allometry equation to accommodate general
biological phenomena. We propose a two-step pro-
cedure to estimate the position and effects for a QTL
that affects more general allometric scaling laws.

(i) Step 1: Modelling general allometry equations

A number of mathematical equations have been
proposed by earlier biologists to describe general
allometric scaling relationships. Among them, three
representative allometry equations are:

y=
axb+c (Robb, 1929)

a(xxc)b (Reeve & Huxley, 1945)

a(xxc)b+d (Lumer, 1937),

8><>: (10)

where Lumer’s four-parameter equation can be
viewed as the most general. Ebert & Russell (1994)

introduced a model II non-linear regression analysis
to estimate the parameters contained in the allometry
equations (10). Unlike model I regression that mini-
mizes the squared distance between the coordinate of
a data pair on the y-axis and the function, model II
regression minimizes the area connecting the co-
ordinates of the data pair and the function and thus
deals with variation in both traits. Model II regression
analysis assumes an equal error variance for both
traits and is a special case of more general error-
in-variables models (Seber & Wild, 1989).

Consider an individual i from a mapping popu-
lation of size N. The observations of this individual
for traits xi and yi present a point (A) with the co-
ordinate (xi, yi) as shown in Fig. 2. To detect an
allometry curve that has a minimum deviation to this
coordinate, we define four more points B, C,D and E,
whose coordinates are expressed as

B= xi,a(xixd)b+c)
� �

C=(zi, yi)

D=(xi, 0)

E=(zi, 0),

where

zi=

yixc

a

� �1
b

Robb equation

yi
a

� �1
b+c Reeve–Huxley equation

yixc

a

� �1
b+d Lumer equation:

8>>>>>>><>>>>>>>:
The area of the rectangle ADEC is

Ai(ADEC)=yijzixxij:

The area under the curve, BDEC, is

0

A

B

C

D E

Fig. 2. The diagram for calculating the area under a curve
using the loss function approach. Adapted from Ebert &
Russell (1994).

Ai(BDEC)

=

Z zi

xi

(axb
i +d)dxi Robb equationZ zi

xi

a(xixc)bdxi Reeve–Huxley equationZ zi

xi

a(xixc)b+d
� �

dxi Lumer equation

8>>>>>>>><>>>>>>>>:

=

a

b+1
xd+1
i x

yixd

a

� �b+1
b

�����
�����+d xix

yixd

a

� �1
b

�����
����� Robb equation

a

b+1
(xixc)b+1x

yi
a

� �b+1
b

���� ���� Reeve–Huxley equation

a

b+1
(xixc)b+1x

yixd

a

� �b+1
b

xc

�����
�����+d xix

yixd

a

� �b+1
b

xc

�����
����� Lumer equation:

8>>>>>>>>>><>>>>>>>>>>:

(11)
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We define the absolute value of the difference be-
tween Ai (ADEC) and Ai (BDEC), i.e. area

Ai(ABC)=Ai(ADEC)xAi(BDEC),

as the loss function for individual i. The loss function
for all individuals is expressed as

A(ABC)= g
n

i=1
Ai(ABC): (12)

The estimates of a, b, c and d fitting the allometry
equation can be obtained by minimizing the loss
function defined by areas (12). It is impossible to de-
rive their analytical solutions for this non-linear
function. However, their numerical solutions can be
obtained by using the simplex algorithm (Nelder &
Mead, 1965). The advantage of the simplex algorithm
is that it is derivative-free and easy to implement with
current software, such as Matlab. A reason for cau-
tion with this algorithm is the possibility of obtaining
local optimal solutions for the loss function (12). By
carefully selecting the initial values, however, this
problem can be the minimum if there exist global
optimal solutions. If no global optimal solutions exist,
we can take the minimum in the space of these par-
ameters.

For a practical data set, it is essential to determine
the best allometry equation that can describe the
allometric scaling relationship. The criterion for the
determination can be based on the values of loss
function summed over all individuals. For the same
value of the loss function, an allometry equation with
fewer parameters is better than those with more
parameters.

(ii) Step 2: The mapping process

As pointed out above, the parameters, a, b, c and d,
for more general allometry equations are regarded as
universal parameters and they should be the same
among different QTL genotypes. After these par-
ameters have been estimated frommodel II non-linear
regression by minimizing the loss function (12), we
substitute these estimates, indexed by �aa, �bb, �cc, and �dd, to
the likelihood functions described by equation (4) or
(6). Before doing so, we take a simple change of more
allometry equations for individual i :

ln(yix�cc)=�aa+�bb ln(xi) Robb equation

ln(yi)=�aa+�bb ln(xix�cc) Reeve–Huxley equation

ln(yix�dd)=�aa+�bb ln(xix�cc) Lumer equation

8><>:
or

ln(yki)=�aa+�bb ln(xi) Robb equation

ln(yi)=�aa+�bb ln(xik) Reeve–Huxley equation

ln(yki)=�aa+�bb ln(xik) Lumer equation

8><>: (13)

where ‘ k ’ denotes the transformation of the two traits.
Because �aa, �bb, �cc, and �dd can be regarded as known
constants obtained from model II regression analysis,
xik and yik can be calculated and display the same
statistical distribution as raw data xi and yi. Thus, the
new relationships described by equation (13) are
identical to a linear log-transformed allometry equa-
tion (2). By using the improved model as described
above, we estimate the remaining parameters VR=
(m, a, d, sx

2 , sz
2, r1)

T. The existence of the underlying
QTL for more general allometry equations can be
tested by formulating the hypotheses H0 : a=d=0
versus H1 : at least one equality does not hold.

4. Results

The model proposed here is used to map age-depen-
dent QTLs in a model system: the mouse. Cheverud
et al. (1996) constructed a linkage map composed of
19 chromosomes based on 75 microsatellite markers
in 535 F2 progeny population derived from two
strains, Large and Small. The F2 hybrids were
weighted at 10 weekly intervals starting at age 7 days.
The raw weights were corrected for the effects of each
covariate due to dam, litter size at birth, parity and
sex. The growth rate at each time interval [t, t+1] was
calculated for each mouse my subtracting body
weight at time t from body weight from time t+1.
The mean growth rate across all the time intervals
was then calculated for each mouse. Since we did not
observe a marked trend that the variance increases
with the mean, the model II non-linear regression is
used to estimate the parameters for the equation that
specifies the allometric relationship between growth
rate and body weight (Niklas, 1994).

The four allometry equations (1) and (10) were used
to fit the relationship between the growth rate and
body weight. By comparing the values of loss function
among these equations, Robb’s equation was found
to be the most parsimonious. Based on Robb’s equa-
tion, we estimated the three parameters underlying
the allometry equation ~aa=0�024, ~bb=0�68 and
~cc=x0�016. As shown by their sampling errors, these
parameters estimates have reasonable precision
(Table 1). It is interesting to find that the estimated b
value is not significantly different from 0.75, which
supports the three-quarter law for a biological process
to scale with body weight (West et al., 1997).

These estimated parameters from model II re-
gression by minimizing the loss function (12) were
substituted in the mapping model build by a log-
transformed linear regression model as shown by
equation (13). Through such a substitution, we only
need to estimate the remaining parameters including
the QTL position, QTL effects for body weight, and
the residual (co)variance matrix between growth rate
and body weight. We scan all the 19 chromosomes for
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the existence of QTLs affecting the allometric scaling
relationship between growth rate and body weight.
Fig. 3 gives the profile of the log-likelihood ratio (LR)

test statistics for claiming the existence of QTLs
across the entire mouse genome. There are two peaks
for the LR profile: one (16.47) between markers
D6Nds5 and D6Mit15 on chromosome 6 and the
other (22.46) between D7Nds1 and D7Mit17 on
chromosome 7. These two LR values are well beyond
the genome-wide critical threshold (13.1) at the 0.001
significance level determined on the basis of permu-
tation tests. These tests suggest the existence of two
QTLs that are located at the positions corresponding
to the peaks of the profile.

The genetic effects of these two QTLs on body
weight and other model parameters were estimated in
Table 1. In general, the estimates of these parameters
in this mouse example from our model exhibit good
precision. The QTL detected on chromosome 6 affects
body weight in a partially dominant manner, whereas
the QTL on chromosome 7 displays a strong domi-
nant or overdominant effect on body weight. Our
detection is broadly consistent with simple interval
mapping analysis of the same material by Cheverud
et al. (1996). Of 16 chromosomes observed to carry the
QTLs for body weight, the QTLs on chromosomes 6
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Fig. 3. The profiles of the log-likelihood ratios (LRs) between the full and reduced (no QTL) model for allometric scaling
of mean growth rate to body weight across the entire genome using the linkage map constructed from microsatellite
markers (Cheverud et al., 1996). The genomic positions corresponding to the peaks of the curves are the maximum
likelihood estimators of the QTL positions. The genome-wide threshold values for claiming the existence of a QTL are
shown as the horizontal lines. Tick marks on the x-axis represent the positions of markers on the linkage group, the names
of which are given by Cheverud et al. (1996).

Table 1. Estimates of genetic effects at two detected
QTLs on chromosome 6 and 7 and the residual (co)
variance matrix between two allometrically related
traits x and y in the F2 mouse progeny

Parameter Chromosome 6 Chromosome 7

m̂ 3.91 3.90
â 0.35 0.25
d̂ 0.19 0.26
ŝ2
x 0.006 0.006

ŝ2
y 0.007 0.007

R̂ 0.62 0.62

â 0.024
b̂ 0.68
ĉ x0.02

The maximum likelihood estimates (MLE) of parameters
are symbolized by hats, and the estimates by model II re-
gression are symbolized by breves.
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and 7 were detected with larger LOD scores, explain-
ing larger percentages of the observed variation, than
those on the other chromosomes.

5. Discussion

Even though understanding the regulation of
allometry would have broad implications for fur-
thering our knowledge of developmental ontogeny,
regeneration, population growth and evolutionary
processes (West et al., 1997, 1999a, b), it is unfortunate
that no general genetic model exists to mechanistically
explain scaling laws. R. Wu and co-workers have, for
the first time, incorporated allometric rules in a QTL
mapping framework (Wu et al., 2002; Ma et al.,
2003). Their models were validated by a real example
from forest trees in which a QTL was detected to
govern the allometric relationship of third-year stem
height with third-year stem biomass. The result sug-
gested that the QTL detected from the model is one
specifically responsible for the allometric scaling. In
this article, we proposed an improved model for
mapping specific QTLs that are responsible for
allometric scaling laws based on more general
allometry equations.

Compared with previous models (Wu et al., 2002;
Ma et al., 2003), our model is advantageous in several
respects. First, it significantly reduces the number of
parameters to be estimated, thus increasing compu-
tational efficiency. The derivation of our model is
based on the fundamental principle for allometric
scaling with which a particular biological variable (B)
scales as one-quarter or three-quarters of body weight
(M) across an incredible range of species (Fig. 1A).
Reduced from interspecific to intraspecific allometric
scaling, these quarter-power laws can be seen across
different genotypes (Fig. 1B). If there is a particular
QTL that affects allometric scaling laws, the means of
different QTL genotypes should have significantly dif-
ferent coordinates for traits B and M but they should
be located on a common straight line. As a result of
this, we can first estimate the allometry parameters
based on all genotypes using a conventional statistical
method, such as least squares analysis, and then sub-
stitute these allometry parameters in a maximum-
likelihood-based QTL mapping framework built by a
mixture model. With the estimates of allometry
parameters, we further make a simple transformation
to remove the covariance between the response vari-
able and body weight. A reduced number of the
parameters about the QTL effects, QTL position and
residual variances between the two traits are esti-
mated by implementing the EM algorithm.

Second, our model take advantage of the log-linear
property of the power equation as used in Wu et al.
(2002). For more general allometry equations (10),
this property is not applicable, in which Taylor series

of different orders were used to approximate the geno
typic means of the response variable based on body
weight (Ma et al., 2003). Whereas a lower-order ap-
proximation may lead to system errors, a higher-order
approximation demands substantial computational
load. The model proposed in this article does not
rely on Taylor’s approximation. Third, our model
divides the whole estimation procedure into two steps
and, therefore, can be readily extended to any com-
plicated allometry equations involving multivariate
variables.

Our model has been tested by an example of a
mouse F2 progeny. Using this model, we detected two
QTLs that govern allometric scaling laws between
growth rate and body weight. These two QTLs de-
tected on chromosomes 6 and 7were in agreement with
the results from interval mapping of single growth
traits (Cheverud et al., 1996). It has been shown that
these two chromosomes are more likely to carry more
significant QTLs than other chromosomes.

There are several areas in which our model can be
modified. First, for model II non-linear regression
used to estimate the allometry parameters (Ebert &
Russell, 1994), we assume that error variances for traits
x and y are equal. Although this may be reasonable in
certain situations, incorporation of specified error
variances of x and y is necessary for general allometry
issues. Second, to better characterize the genetic
architecture of allometric scaling laws, we should
include modelling and analysis of epistatically inter-
acting QTLs. Growing evidence has been observed
for the role of epistasis in organ development
(Cheverud, 2000; Wolf et al., 2000). Third, for sim-
plicity, the example used to test our model deals
with the allometric scaling between mean growth rate
and body weight. However, growth rate is an age-
dependent trait. The integration of age-specific
allometric relationships in the QTL mapping frame-
work will provide great insights into the genetic mech-
anisms for the developmental control of allometric
scaling laws.
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