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Abstract

With recent advances in natural language generation, risks associated with the rapid proliferation and mis-
use of generative language models for malicious purposes steadily increase. Artificial text detection (ATD)
has emerged to develop resources and computational methods to mitigate these risks, such as generating
fake news and scientific article reviews. This paper introduces corpus of artificial texts (CoAT), a large-
scale corpus of human-written and generated texts for the Russian language. CoAT spans six domains and
comprises outputs from 13 text generation models (TGMs), which differ in the number of parameters,
architectural choices, pre-training objectives, and downstream applications. We detail the data collection
methodology, conduct a linguistic analysis of the corpus, and present a detailed analysis of the ATD exper-
iments with widely used artificial text detectors. The results demonstrate that the detectors perform well on
the seen TGMs, but fail to generalise to unseen TGMs and domains. We also find it challenging to identify
the author of the given text, and human annotators significantly underperform the detectors. We release
CoAT, the codebase, two ATD leaderboards, and other materials used in the paper.

Keywords: text classification; artificial text detection; natural language generation evaluation

1. Introduction

Disclaimer: Parts of this section highlighted in italics are generated by ChatGPT to illustrate the
need for facilitating research in the detection of neural texts. We guarantee that the generated text
contains no misinformation and provide it solely for illustration purposes.

Modern text generation models (TGMs) excel at producing text that can be indistinguishable
from human-written texts, judging by its fluency, coherence, and grammar (Zellers et al. 2019;
Radford et al. 2019). While advanced TGMs are useful for many real-world applications, such
as text summarisation or machine translation, their risks are viewed as critical (Weidinger et al.
2021; Bommasani et al. 2021). Here are some of the most significant ones:

1. Biases and Stereotypes: Large-scale TGMs are trained on vast amounts of data, which means
that they can replicate existing biases and stereotypes that are present in the data. For example, if the
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training data contain gender bias or racial bias, the text generated by the model may also contain
such biases.

2. Misinformation and Fake News: Since TGMs can create convincing and coherent sentences,
they can also be used to generate false information and spread misinformation or fake news. This
could have serious consequences, such as spreading rumours, influencing elections, and inciting
violence.

3. Malicious Use: Large-scale TGMs could be used for malicious purposes, such as generating
convincing phishing emails, creating fake reviews to manipulate consumer opinion, or even creating
convincing fake personas to spread propaganda.

4. Ethical Considerations: The use of large-scale TGMs raises ethical considerations around the
use of data, privacy, and consent. There are also concerns around the impact of these models on the
job market, as they can automate tasks previously performed by humans.

The text highlighted in italics above is generated by ChatGPT?® prompted to review risks
associated with the rapid development of TGMs in an academic style. This text reads fluently
and naturally, adhering to the academic writing norms to a certain degree. It contains non-
trivial ideas such as referencing potential impacts on the job market and creating fake personas.
Opverall, this demonstrates how generated text can be smoothly integrated into an academic article,
compromising its authenticity.

The field of artificial text detection (ATD) (Jawahar, Abdul-Mageed, and Lakshmanan 2020)
aims to develop resources and computational methods to mitigate the risks of misusing TGMs.
With advancements of TGMs, the problem has received special interest in the community since
humans struggle to distinguish between natural and neural texts (Gehrmann, Strobelt, and Rush
2019; Ippolito et al. 2020; Karpinska, Akoury, and Iyyer 2021; Uchendu et al. 2021). Detection of
artificial texts has been framed in multiple ways, featuring various task formulations and labelling
schemes. The most standardised task is a binary classification problem with the goal of determin-
ing if the text is automatically generated or not (Adelani et al. 2020; Bahri et al. 2021). Uchendu
et al. (2020) studied the neural authorship attribution task aimed to single out one TGM that gen-
erated the text. Dugan et al. (2023) formulate the boundary-detection task: detect a change point
in the text, where a natural text transitions into a neural one.

Although ATD is rapidly developing, there is still a need for creating resources for non-English
languages that account for the diversity of the TGMs, natural language generation tasks, and text
domains (Uchendu et al. 2022). In this paper, we introduce corpus of artificial texts (CoAT), a
large-scale ATD corpus for Russian composed of human-written texts from publicly available
resources and artificial texts produced by 13 TGMs, varying in the number of parameters, archi-
tecture choices, pre-training objectives, and downstream applications. Each TGM is fine-tuned for
one or more of six natural language generation tasks, ranging from paraphrase generation to text
summarisation. CoAT provides two task formulations and public leaderboards: (i) detection of
artificial texts, i.e., classifying if a given text is machine-generated or human-written; (ii) author-
ship attribution, i.e., classifying the author of a given text among 14 candidates. The design of our
corpus enables various experiment settings, ranging from analysing the dependence of the detec-
tor performance on the natural language generation task to the robustness of detectors towards
unseen TGMs and text domains.

Contributions. Our main contributions are the following: (i) We create CoAT, a large-scale cor-
pus for artificial text detection in Russian (Section 3). (ii) We present a linguistic analysis of
the corpus, focusing on the distribution of stylometric features in human-written and machine-
generated texts (Section 4). (iii) We provide a detailed analysis of human annotators, non-neural,
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and transformer-based artificial text detectors in five experiment settings (Section 5). (iv) We
release CoAT,” source code,® and human evaluation project and provide two public leaderboards
on the Kaggle platformd.

2. Related work
2.1 Datasets and benchmarks

The community has put much effort into creating datasets and benchmarks for ATD tasks that
cover various domains and architectures of TGMs. The design generally includes collecting
human-written texts from publicly available sources and generating synthetic texts with a spe-
cific decoding strategy by (i) prompting a pretrained TGM without domain adaptation (e.g., with
a news article title; Uchendu et al. 2020, 2021), (ii) prompting a fine-tuned TGM (i.e., after con-
tinuing the pre-training on texts from the target domain; Gupta et al. 2020), and (iii) using a
TGM trained or fine-tuned for a particular text generation task (e.g., MT; Aharoni, Koppel, and
Goldberg 2014).

The GPT-2 output dataset is one of the first to address the detection of texts produced by
modern large-scale TGMs (Radford et al. 2018). The dataset’ consists of natural texts from
WebText (Reddit) and texts produced by multiple versions of the GPT-2 model fine-tuned on
WebText. Munir et al. (2021) and Diwan et al. (2021) extracted generated text from the subreddit
r/SubSimulatorGPT2. Users of this subreddit are GPT-2-based TGMs fine-tuned on the posts and
comments from a specific subreddit. The TweepFake dataset (Fagni et al. 2021) contains tweets
posted by 40 accounts, including statistical and neural TGMs and human users. Adelani et al.
(2020) propose a dataset for mitigating the generation of fake product reviews using out-of-the-
box TGMs and TGMs continuously pretrained on the target domain. Kashnitsky et al. (2022),
Rodriguez et al. (2022), and Liyanage et al. (2022) design datasets to detect artificially gener-
ated academic content and explore the robustness of trainable detectors towards unseen research
domains. The risk of spreading neural fake news and misinformation has facilitated the creation
of ATD resources in the news domain, such as the GROVER dataset (Zellers et al. 2019), the
NeuralNews dataset (Tan, Plummer, and Saenko 2020), and the “All the News” dataset (Gupta
et al. 2020).

A few recent works explore multi-domain ATD. Bakhtin et al. (2019) collect and generate texts
from news, multi-genre fictional books, and Wikipedia. Stiff and Johansson (2022) propose a
dataset comprising texts from news articles, product reviews, forum posts, and tweets.

Table 1 provides an overview of existing works that have explored artificial text detection
for languages other than English. Independent efforts have been made to develop datasets for
Bulgarian (Temnikova et al. 2023), Chinese (Chen et al. 2022), and Spanish (Sarvazyan et al.
2023). Wang et al. (2024a, 2024c) collect M4, a large-scale multilingual dataset, to test the gen-
eralisation abilities of artificial text detectors. Our work differs from related studies in that we
(i) create one of the first multi-domain and multi-generator large-scale corpora of artificial texts
for Russian, covering standard downstream natural language generation tasks and TGMs; (ii)
present a follow-up work on a shared task for artificial text detection in Russian (Shamardina
et al. 2022), increasing the corpus size and extending the experimental setup to analyse the lin-
guistic properties of human-written and machine-generated texts and explore the robustness of
various detectors towards the text domain and TGM size. The earlier CoAT version, namely, the

bhf.co/datasets/RussianNLP/coat
“github.com/RussianNLP/CoAT

dkaggle.com/competitions/coat-authorship-attribution
kaggle.com/competitions/coat-artificial-text-detection
fgithub.com/openai/gpt-2-output-dataset
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Table 1. Artificial text detection datasets and benchmarks for non-English languages. Notations:
H = human-written texts. M = machine-generated texts

# texts

Dataset/ Benchmark Paper Language H M #models #domains
Deepfake-BG Temnikova et al. (2023) Bulgarian 4,912 4,912 5 1
Generated essays Chen et al. (2022) Chinese 20,000 20,000 1 1
AuTexTification 1 Sarvazyan et al. (2023) Spanish 24,707 27,484 6 5
RUATD Shamardina et al. (2022) Russian 107,500 107,500 13 6
M4 Wang et al. (2024c) Chinese 3,000 6,000 2 1
Urdu 3,000 6,000 2 1
Arabic 3,000 6,000 2 1
Indonesian 3,000 6,000 2 1
Russian 3,000 6,000 2 1
CoAT (ours) Russian 123,241 123,241 13 6

RuATD subcorpus, has been included in M4 and used at SemEval-2024 Task 8 on multi-domain,
multimodel, and multilingual ATD (Wang et al. 2024b, 2024c).

2.2 Artificial text detectors

Feature-based detectors. Classical machine learning methods are widely employed for detect-
ing generated texts. Linear classifiers over TF-IDF character, sub-word, and word N-grams can
serve as lightweight and strong baseline detectors. (Manjavacas et al. 2017; Solaiman et al. 2019;
Ippolito et al. 2020).Badaskar et al. (2008) train detectors over morphological, syntactic, and
discourse features, such as POS tags, syntax-based LM’s grammaticality scores, and coherence.
Another group of features is based on stylometry, a branch of computational linguistics that relies
on statistical methods for authorship attribution and analysis of literary style (Holmes, 1994,
Abbasi and Chen, 2008; Abbasi and Chen, 2008). Stylometric features are used to train detec-
tors and characterise properties of machine-generated and human-written texts (Uchendu et al.
2020, 2021). Specific types of stylometric features can capture issues related to TGMs (Frohling &
Zubiaga, 2021): (i) lack of syntactic and lexical diversity (POS tags, named entities, and coreference
chains), (ii) repetitiveness (N-gram overlap of words and POS tags and counters of stopwords and
unique words), (iii) lack of coherence (the appearance and grammatical roles of named entities),
and (iv) lack of purpose (lexical features that represent spatial properties, sentiment, opinion, and
logic).

The feature-based detectors are interpretable, cost-effective, and helpful when the dataset size
is small (Uchendu, Le and Lee 2023). Stylometric detectors show usefulness in recognising texts
generated with certain decoding strategies (Frohling & Zubiaga, 2021) but are significantly infe-
rior in performance compared to Transformer-based detectors (Schuster et al. 2020; Diwan et al.
2021; Jones Nurse and Li 2022).

Transformer-based detectors. The current state-of-the-art approach is fine-tuning a pretrained
Transformer LM for the ATD classification task. Zellers et al. (2019) train a linear layer over
the hidden representations from the GROVER and GPT-2 TGMs. RoBERTa (Liu et al. 2019)
has demonstrated an outstanding performance with respect to many TGMs’ configurations and
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domains (Adelani et al. 2020; Fagni et al. 2021). The TGM-based detectors identify texts gener-
ated by the previous TGMs’ versions better than by the more recent ones, which confirms that
newer TGMs generate more human-like texts. Kushnareva et al. (2021) introduce the topolog-
ical data analysis (TDA) method for ATD, which combines properties of the feature-based and
Transformer-based detectors. The TDA features are extracted from the BERT attention matrices
that are represented as weighted attention graphs and used to train a linear detector. The fea-
tures include standard graph properties, descriptive characteristics of barcodes, and distances to
attention patterns (Clark et al. 2019). The TDA-based detectors outperform TE-IDF-based and
neural detectors and show better robustness toward the size of unseen GPT-style TGMs. The
Transformer-based detectors are highly effective in ATD tasks and generalisable to out-of-domain
sets but computationally expensive.

Zero-shot detectors. An alternative set of methods involves using probability-based measures
along with predetermined thresholds (Solaiman et al. 2019; Mitchell et al. 2023). These methods
enable the human-in-the-loop approach, in which a user can recognise whether a text is machine-
generated with the assistance of pretrained LMs. The GLTR tool (Gehrmann et al. 2019) facilitates
interaction between humans and models by presenting statistical characteristics of a text inferred
by the model, thereby enhancing the ability of humans to identify artificial texts. MAUVE (Pillutla
et al. 2021) is a statistical detector that determines the difference in distribution between human
and neural texts by utilising the KL-divergence. When MAUVE highlights differences between
human and neural texts, human identification of texts generated by GROVER and GPT-2 strongly
improves. Dugan et al. (2020) propose RoFT (Real or Fake Text), a tool that assists in distinguish-
ing between human-written and machine-generated texts. Their work highlights that TGMs have
the ability to deceive humans with just a few sentences. Gallé et al. (2021) explore unsupervised
ATD, employing repeated higher-order N-grams. Their findings indicate that certain well-formed
phrases occur more frequently in machine-generated texts compared to those written by humans.
Although zero-shot detectors tend to underperform compared to the other established methods,
they are beneficial in aiding humans to detect machine-generated texts.

3. Design

CoAT is composed of 246k human-written and artificial texts. The corpus creation methodology
includes three main stages: (i) collecting human-written texts, (ii) artificial text generation, and
(iii) post-processing and filtering.

3.1 Human-written text collection

We collect human-written data from six domains that cover normative Russian, general domain
texts, social media posts, texts from various historical periods, bureaucratic texts with complex
discourse structure and embedded named entities, and other domains specified in the task-specific
datasets, such as subtitles and web-texts. It is important to note that, in addition to linguistic and
stylometric features, texts vary in length (e.g., sentence-level vs. document-level) and peculiarities
inherent to the downstream tasks described in more detail below in Section 3.2.

Russian National Corpus. We use the diachronic sub-corpora of the Russian National Corpus
(RNC),® which covers three historical periods and represents the modern Russian language (“pre-
Soviet,” “Soviet,” and “post-Soviet”).

Social media. We collect posts published between 2010 and 2020 using the X (Twitter) API by
querying generic, frequently used hashtags. These hashtags are not tied to specific domains or
topics and include terms such as days of the week, months, seasons, holidays, or the names of the

8The Russian National Corpus is a representative collection of texts in Russian, counting more than 1,5B tokens and
completed with linguistic annotation and search tools. Available at ruscorpora.ru/en
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most popular cities in Russia. These texts are generally short, written in an informal style, and may
include emojis and obscene lexis. We anonymise the texts by excluding the user handles and IDs.
Wikipedia. We use paragraphs from the top 100 most viewed Russian Wikipedia pages spanning
the period of 2016-2021 according to the PageViews" statistics.

News articles. The news segment covers different news sources in the Taiga corpus (Shavrina and
Shapovalova 2017) and the corus library.' Since these corpora are publicly available, we addition-
ally parse more recent news articles from various Russian news websites published at the end of
2021 to prevent potential data leakage so that the test set, at the moment of creating the corpus,
does not contain samples that could not be retrieved from the news websites.

Digitalised personal diaries. We use texts from the Prozhito corpus (Melnichenko and Tyshkevich
2017), which includes digitilised personal diaries written during the 20th century.

Strategic documents. Here, we use strategic documents from the Ministry of Economic
Development of the Russian Federation (Ivanin et al. 2020). The documents are written in a
bureaucratic style, rich in embedded entities, and have complex syntactic and discourse structure.
Task-specific datasets. We collect gold standard references from the Wikimatrix (Schwenk et al.
2021) and Tatoeba (Tiedemann 2012) machine translation datasets since they are generally written
and/or validated by human annotators (Artetxe and Schwenk 2019; Scialom et al. 2020; Hasan
et al. 2021). To ensure that low-quality instances are not included in CoAT, we filter these datasets
based on the sentence length and remove duplicates before translating them into Russian.

3.2 Artificial text generation

We use human-written texts as the input to 13 TGMs varying in their number of parameters,
architecture choices, and pre-training objectives. Each model is fine-tuned for one or more of
the following natural language generation tasks: machine translation, paraphrase generation, text
simplification, and text summarisation. In addition, we consider back-translation and zero-shot
generation approaches.

Machine translation & back-translation. We use three machine translation models via the EasyNMT
framework) OPUS-machine translation (Tiedemann and Thottingal 2020), M-BART50 (Tang
et al. 2020), and M2M-100 (Fan et al. 2021). We select these models for their near state-of-the-
art performance in English-Russian translation, the ease of use of the EasyNMT framework, and
the diversity they offer in machine translation approaches OPUS-MT for one-to-one, M-BART50
and M2M-100 for many-to-many translations, with M-BART50 featuring a pretrained backbone.
We use subsets of the Tatoeba (Artetxe and Schwenk 2019) and WikiMatrix (Schwenk et al. 2021)
datasets to obtain translations among three language pairs: English-Russian, French-Russian, and
Spanish-Russian. In the back-translation setting, the input sentence is translated into one of the
target languages, and then back into Russian.

Paraphrase generation. Paraphrases are generated with models available under the
russian-paraphrasers library (Fenogenova 2021a): ruGPT2-LargeX ruGPT3-Large
(Zmitrovich et al. 2024), ruT5-Base-Multitask,! and mT5 (Xue ef al. 2021) of Small and
Large versions.

Text simplification. We fine-tune ruGPT3-Small (Zmitrovich et al. 2024), ruGPT3-Medium
(Zmitrovich et al. 2024), ruGPT3-Large, mT5-Large, and ruT5-Large (Zmitrovich et al. 2024) for
text simplification on a filtered version of the RuSimpleSentEval-2022 dataset (Sakhovskiy et al.

hpageviews.wmcloud.org
igithub.com/natasha/corus
igithub.com/UKPLab/EasyNMT
Khf.co/ai-forever/rugpt2large
Thf.co/cointegrated/rut5-base-multitask
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2021; Fenogenova 2021b). Fine-tuning of each model is run for 4 epochs with a batch size of 4,
learning rate of 107>, and weight decay of 1072

Text summarisation. We use two abstractive summarisation models fine-tuned on the Gazeta
dataset (Gusev 2020): ruT5-base™ and M-BART."

Open-ended generation. We generate texts in a zero-shot manner by prompting the model with
a beginning of the text and specifying the maximum number of 500 tokens in the model output.
The models include ruGPT3-Small, ruGPT3-Medium, ruGPT3-Large.

3.3 Post-processing and filtering

Each generated text undergoes a post-processing and filtering procedure based on a combination
of language processing tools and heuristics. First, we discard text duplicates, copied inputs, and
empty outputs, and remove special tokens (e.g., <s>, </s>, <pad>, etc.). Next, we discard texts
containing obscene lexis according to the corpus of Russian obscene words.” We keep transla-
tions classified as Russian by the language detection modelP with a confidence of more than 90%.
Finally, we empirically define text length intervals for each natural language generation task based
on a manual analysis of length distributions in razdel9 this library tokens. The texts are filtered
by the following token ranges: 5-to-25 (machine translation, back-translation, paraphrase gener-
ation), 10-to-30 (text simplification), 15-to-60 (text summarisation), and 85-t0-400 (open-ended
generation). Thus, we remove the possibility of using length as a feature to distinguish texts and
reduce the size of the corpus by approximately 30%.

4. Corpus analysis
4.1 General statistics

Number of texts. Tables 2 and 3 summarise the distribution of texts in CoAT by natural language
task, model, and domain. The number of human-written and machine-generated texts is balanced
within each natural language task and domain. Texts from the Russian National Corpus are the
most common in CoAT (20%). News articles make up a percentage of 19.6% of the total number
of texts, followed by strategic documents (18.5%) and texts from Wikipedia (17.5%). Digitalised
personal diaries comprise 10%, while texts from social media and machine translation datasets
account for 7% and 6%, respectively.

Length and frequency. Table 4 presents a statistical analysis of CoAT based on the frequency
and lexical richness metrics. We compute the token frequency in each text as the number
of frequently used tokens (i.e., the number of instances per million in the Russian National
Corpus is higher than one) divided by the total number of tokens in the text. The average
text length in razdel tokens is similar for the sentence-level natural language generation tasks
(back-translation, machine translation, and paraphrase generation), while texts produced by text
simplification and summarisation models are of 20.59 and 31.45 tokens on average, respectively.
The overall average text length is 49.64. The distribution of high-frequency tokens in human-
written and machine-generated texts is similar within each generation task, comprising of 88%
high-frequency tokens on average.

Lexical richness. We evaluate the lexical richness of the CoAT texts using three measures from
the lexicalrichness’ library: word count, terms count, and corrected type-token ratio (CTTR).

Mhf.co/llyaGusev/rut5-base-sum-gazeta
"hf.co/IlyaGusev/mbart-ru-sum-gazeta
°github.com/odaykhovskaya/obscene-words
Pgithub.com/fedelopez77/langdetect
dgithub.com/natasha/razdel
"github.com/LSYS/LexicalRichness
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Table 2. General statistics of CoAT by natural language generation task and model

Task Model # texts Domain Task Model # texts Domain
Back-translation Human 8,946 Russian National Corpus, Machine Human 7,026 WikiMatrix,
- M—BARTSO - 2,816 h Wikipedia, news articles, translation . M—BART50 o 2,385 N Tatoeba
N M2M100 ..... 3,063 N diaries, strategic documents, M2M—100 ” 2,331 ”
. OPUSMT o 3,067 B WikiMatrix, Tatoeba OPUS-MT 2,310
Open-ended generation Human 45,367 Russian National Corpus, Text Human 19,009 Russian National
ruGPT3-Large 16,210 social media, Wikipedia, summarisation o M;BARTH N 3,549 o Corpus, Wikipedia,
ruGPT3-Medium 14,470 news articles, diaries, MBART50 “ 5,788 h news articles, diaries,
ruGPT3Small h 14,687 strategic documents . .r.ufé—.B.as.e. ..... 9,672 b strategic documents
Paraphrase generation Human 22,838 Russian National Corpus, Text Human 20,055 Russian National Corpus,
. mT5Large o 2,516 h social media, Wikipedia, simplification v ‘nﬁst—L‘a‘rvgé o 2,805 social media, Wikipedia,
: mTSSmall o 5,676 N news articles, diaries, ruGPT3-Small 4,305 news articles, diaries,
ruGPT2-Large 5,626 strategic documents ruGPT3-Medium 4,364 strategic documents
ruGPT3-Large 3,590 TUGPT3-large 4,239
- rungase 5’430 . ruTsLarge ..... 4’342 .
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Table 3. Number of texts in each domain and task-specific dataset in CoAT

Strategic  News Digitalised  Russian Social Tatoeba WikiMatrix Wikipedia

docu- articles diaries National  media

ments Corpus
Back-translation 3,680 3,998 2,672 3,352 X 784 1,650 1,756
Machine translation X X X X X 2,424 11,628 X
Open-ended generation 17,154 19,288 3,026 23,412 7,312 X X 20,542
Paraphrase generation 9,042 9,684 6,160 7,554 5,598 X X 7,638
Text simplification 7,872 7,768 5,308 8,056 4,458 X X 6,648
Text summarisation 7,916 7,736 7,568 8,034 X X X 6,764
Overall 45,664 48,474 24,734 50,408 17,368 3,208 13,278 43,348

Table 4. Lexical richness metrics by natural language generation task in CoAT. Notations: %=the average
fraction of high-frequency tokens. H=human-written texts. M=machine-generated texts

% Words Terms CTTR
Avg. num tokens H M H M H M H M
Back-translation 16.23 90.0 91.0 13.02 13.34 1249 1250 243 240
Machine translation 15.37 90.0 90.0 1242 1246 1190 11.76 237 234
Open-ended generation 99.07 87.0 88.0 6480 90.26 47.74 7630 4.02 536
Paraphrase generation 15.73 88.0 88.0 13.08 1291 1254 12.54 243 245
Text simplification 20.59 88.0 89.0 16.51 1655 1540 15.05 2.64 2.58
Text summarisation 31.45 88.0 87.0 23.79 2716 21.64 2231 3.09 3.01
Overall 49.64 88.0 88.0 3429 4418 2733 37.88 315 3.62

The corrected type-token ratio is calculated as #/+/2 * w, where w is the total number of all words,
including functional, and ¢ is the number of unique terms in the vocabulary. We observe that the
ratio of the measures between the natural and artificial texts depends on the task. In contrast to
other natural language generation tasks, neural texts generated using the open-ended generation
approach are generally longer than the human-written ones, and receive higher richness metrics.
The reason is that the models try to generate texts up to the maximum number of 500 tokens, and
may produce non-existent words, degenerated textual segments, or rare words.

4.2 Linguistic analysis

Stylometric features. Stylometry helps characterise the author’s style based on various linguistic
features, which are commonly applied in the ATD and human and neural AA tasks (He et al.
2004; Lagutina et al. 2019; Uchendu et al. 2019, 2020). This section aims to analyse the stylometric
properties of human-written and machine-generated texts.

Following the motivation by Frohling and Zubiaga (2021), we manually inspect a subset of the
artificial texts to define stylometric features that potentially capture text generation errors (see
Table 5). The features can be informally categorised as follows:
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Table 5. Manually picked examples of text generation errors from the train set. The examples are automatically translated
into English for illustration purposes

Error Example

Inappropriate punctuation “OKOHYNII TUMHA3UIO IpH MOCKOBCKOM YUMIIMINE YKUBOIMCH., CKYJIbITYPBL..”

He graduated from the gymnasium at the Moscow School of Painting., Sculpture.

Non-existent words “Korka, COrjlaCHO MCJIAMCKUM IIPABUJIaM, CINTAETCs UCTHHHBIM »KUBOTHBIM B uchHacse.”

A cat, according to Islamic rules, is considered a true animal in isnasl.

iy « »
Repet|t|ons Yo BBI JejtaeTe 371eChb, 9YTO BbI JejlaeTe 3/1eChb, UTO BbI JeJjiaeTe.

What are you doing here, what are you doing here, what are you doing.

Abrupt ending “B xole IPOBEPKH yCTAHOBJIEHO HAJINYHe HapylIeHui pu”
During the inspection, the presence of violations in the
Nonsensical texts “gl Xo4y OBITH KaILyCTy, sl XOXKY 10 CTOpOHaM.”
I want to be a cabbage, | walk around.

Decoding confusions “<...> mpeJCTaBUTENb Ipecc-ciIyk0n1 BegoMcTBa Ppancya Buito ne Bunbesacsitsynammdmpriono”
<...>the representative of the press service of the department Francois Billou de
Villezasviyauiashfmrgpnb

Hallucination “There is evidence, uro B Hayase XX Beka TeaTp Bo3Bpamaercs <...>"

There is evidence that at the beginning of the XX century the theater returned <. .. >

Diverse errors ¢, GBIBAJIO: COBECTH 3aHAYUT MYYHUTb, CHBI HE CIIUTe, bory 6ory He MOIUIIbCS.”

it used to happen: conscience mean to torment, dreams do not sleep, you do not pray to
God God.

(1) Surface and frequency features: (i) the text’s length in characters (Length), (ii) the fraction
of punctuation marks in the text (PUNCT), (iii) the fraction of Cyrillic symbols in the text
(Cyrillic), and (iv) IPM.

(2) Count-based morphological features: the fraction of (i) prepositions (PREP) and (ii)
conjunctions in the text. The features are computed with pymorphy2 (Korobov 2015), a
morphological analyser for Russian and Ukrainian.

(3) Readability measures: (i) Flesch-Kincaid Grade (FKG), (ii) Flesch Reading-Ease (FRE),
and (iii) LIX adapted to the Russian language. We use the ruTS library (Shkarin 2023) to
compute the features.

Statistical analysis. Table 6 presents the summary of the stylometric feature values for the
human-written and machine-generated texts and each text generator independently.® The Length
is attributed to the natural language generation task; texts produced by MT and paraphrase
generation models will be naturally shorter. In contrast, ruGPT3-Small, ruGPT3-Medium, and
ruGPT3-Large generate longer texts, which is the case for the zero-shot generation setup. At the
same time, Cyrillic varies between the models and can be specific to text translations, decoding
confusions, copying parts of the input in another language, and hallucinations. We observe that
the percentage of high-frequent words (IPM) in the texts is similar among the generators. The
morphological and readability features differ on average between the TGMs and humans and
between the TGMs. The results are supported by the Mann-Whitney U test used to compare the
differences between the distributions of the stylometric features in human-written and machine-
generated texts. There is a significant difference between the mean values for all features except
for IPM and PREP, with o = 0.05.

$We use the weighted subset of 32,200 texts for the linguistic analysis.
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Table 6. The average values of the stylometric features in the corpus subset. Machine refers to the machine-
generated texts

Model Surface/Frequency Morphology Readability
Length  Cyrillic  PUNCT IPM CONJ  PREP FKG FRE LIX

Human 250.209 0.808 0.032 0.883 2.216 4531 11.286 32371 72.582
Machine 299.942 0.811 0.027 0.885 1.857 3.86 9.606 36.981 69.18
ruGPT2-Large 97.987 0.835 0.018 0.869 0.512  2.137 8.673 35,550 70.331
ruGPT3-Small 639.683 0.774 0.028 0.879 4540 9.530 10.337 43.367 67.428
ruGPT3-Medium 616.866 0.764 0.029 0.876 4.676 8.758 10.171 44.599 67.246
ruGPT3-Large 401.021 0.804 0.026 0.890 3.040 7.161 9.866 40.125 67.763

ruT5-Base 219.074  0.823 0.028 0.878 2.125 3.899 11.030 29.387 73.051

ruT5-Base-Multitask ~ 91.795 0.824 0.029 0.891 0.843 1.588 8.095 37.471 66.645

ruT5-Large 181.967  0.820 0.030 0.889 1937 3.192 13.402 23.434 77.657
mT5-Small 93.417 0.829 0.026 0.885 0.645 2.038 8.088 39.085 67.402
mT5-Large 101.100  0.824 0.028 0.891 0.936 1.908 8387 39.071 66.975
M-BART 223.297  0.831 0.027 0.867 1.799 4.251 12591 21.970 78.286
M-BART50 133318  0.791 0.032 0.878 1.176 2592 8730 41.758 68.171
OPUS-MT 93.816 0.815 0.031 0.908 0.984 1.612 7.660 42.977 63.869
M2M-100 95.911 0.810 0.031 0912 0929 1.644 7.859 41.965 64.596

Analysis of the feature space. We use the principal component analysis (PCA; Pearson 1901)
on the stylometric features computed on the weighted corpus subset. Figure 1 illustrates the 2-
dimensional distribution of the features by generative model. A large overlapped portion among
the texts indicates that the stylometric features may not be useful in solving the ATD tasks.

Discussion. The linguistic analysis indicates that distributions of most of the considered stylo-
metric features underlying the human-written and machine-generated texts are not the same (see
Figure 2). However, a substantial portion of the texts overlaps, meaning that the properties of the
texts are similar among the generators. We conclude, that due to this overlap, it might be chal-
lenging to distinguish between the human-written and machine-generated texts and identify the
author of a given text by utilising only stylometric features.

5. Experiments
5.1 Method

Non-neural detectors. We use two non-neural text detectors via the scikit-learn library
(Pedregosa et al. 2011): a data-agnostic classifier, referred to as “Majority,” that predicts the most
frequent class label in the training data, and a logistic regression classifier trained on TF-IDF
features computed on word N-grams with the N-gram range € [1;3], denoted as “Linear”.

Transformer-based detectors. We experiment with four monolingual and cross-lingual
Transformer LMs: ruBERT-base (Zmitrovich et al. 2024; 178M), ruRoBERTa-large (Zmitrovich

https://doi.org/10.1017/nlp.2024.38 Published online by Cambridge University Press


https://doi.org/10.1017/nlp.2024.38

Natural Language Processing 161

. ° Model
Human
M-BART
M-BARTS0
M2M-100
OPUS-MT
mT5-Large
mT5-5mall
nuGPT2-Large
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Figure 1. 2-dimensional distribution of the corpus subset using PCA.

I Human
B Machine
o010

Figure 2. The distribution of the FRE (left) and Cyrillic (right) features between the human-written and machine-generated
texts in the corpus subset. The difference between the mean values is statistically significant according to the Mann-Whitney
U test, with the p-values equal to 0.002 and 0.0, respectively.

et al. 2024; 355M), XLM-R-base (Conneau et al. 2020; 278M), and RemBERT (Chung et al. 2020;
575M).

Performance metrics. The accuracy score is used as the target metric in the binary classification
problems (Sections 5.2; 5.3; and 5.5), and macro-averaged F; is used as the target metric in the
multi-class classification problem (Section 5.4). The results are averaged over three restarts with
different random seeds.

Training details. We maximise the validation set performance by running a grid search over a
set of hyperparameters. We tune the L, regularisation coefficient C € {0.01, 0.1, 1.0} to train the
logistic regression model. We use the Transformer LMs’ weights and codebase for fine-tuning and
evaluation from the HuggingFace Transformers library (Wolf et al. 2020). The detectors are fine-
tuned for 5 epochs over the learning rate 10~°, with a fixed weight decay of 10~ and batch sizes
of 32 for RemBERT and 64 for the other LMs.
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Please define whether the text is written by a human or an Al system.
This is a toy example.

O Al

O Human
If there are any typos, please state them below:

Please check the task once again. Thank you!

Figure 3. The web interface used for human evaluation on the artificial text detection task.

Splits. CoAT is split into train, validation, and private test sets in the 70/10/20 ratio in a strati-
fied fashion (172k/24k/49k examples). We use the sets to create train, validation, and private test
subsets for each experiment described below: (i) artificial text detection (Section 5.2), (ii) artifi-
cial text detection by natural language generation task (Section 5.3, (iii) authorship attribution
(Section 5.4), (iv) robustness towards unseen TGM (Section 5.5.1), and (v) robustness towards
unseen text domain (Section 5.5.2).

In Sections 5.2, 5.3, and 5.5, we train or fine-tune binary classifiers to distinguish between text
written by a human and text generated with a TGM. In Section 5.4, the machine-generated label in
the artificial text detection task is broken into 13 model names in the authorship attribution task.
In each experiment configuration, we use the corresponding subsets of the CoAT train, validation,
and private test set splits, which are balanced by the number of examples per target class, natural
language generation task, TGM, and text domain.

5.2 Artificial text detection

Task formulation. This experiment aims to evaluate the performance of detectors in determining
if a given text is automatically generated or written by a human. This task is framed as a binary
classification problem with two labels: H (human-written) and M (machine-generated).
Splits. CoAT is split into train, validation, and private test sets in the 70/10/20 ratio in a stratified
fashion (172k/24k/49k examples).
Human baseline. 'We conduct a human evaluation on the artificial text detection task using a
stratifiedsubset of 5k samples from the test set. The evaluation is run via Toloka (Pavlichenko,
Stelmakh, and Ustalov 2021), a crowd-sourcing platform for data labelling.t The annotation setup
follows the conventional crowd-sourcing guidelines for the ATD task and accounts for method-
ological limitations discussed in Ippolito et al. (2020); Clark et al. (2021). We provide a full
annotation instruction in Appendix A and an example of the Toloka web interface in Figure 3.
The human evaluation project consists of an unpaid training stage and the main annotation
stage with honeypot task for tracking annotators’ performance. The honeypot tasks are manually
picked quality verification examples from the CoAT training set, which are mixed in with the main
unlabelled examples. We compute the annotation performance by comparing the annotators’
votes with the honeypot examples’ gold labels. Before starting, the annotator receives a detailed
instruction describing the task and showing annotation examples. The instruction is available any-
time during the training and main annotation stages. Access to the project is granted to annotators
ranked top-70% according to the Toloka rating system. Each annotator must finish the training
stage by answering at least 27 out of 32 examples correctly. Each of the trained annotators gets
paid. The pay rate is on average $2.55/h, which is twice the amount of the hourly minimum wage

ttoloka.ai
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Table 7. Accuracy scores of the detectors on the artificial text detection task

Majority Linear ruBERT ruRoBERTa RemBERT XLM-RoBERTa Human
0.50 0.733 0.856 0.876 0.866 0.859 0.66
1.0 V_/»»-/’”/M
| i
0.9 /:?;‘;?/
,-—::1,:—'—:‘:§;’/’
0.8 ep—— --e-- Human
ST . K
257 . e Linear
é ' [ it S T e ——- Majority
Y e hd ——- RemBERT
[y
—e- XLM-R
oS5t~ . ruBERT
0.4 ruRoBERTa
0.3_ T —
5-14 15-20 21-31 32-92 93-400
Text length

Figure 4. Macro-F1 scores of the detectors on the artificial text detection task grouped by five quintiles of the text length.

in Russia. We aggregate the majority vote labels via the dynamic overlap from three to five trained
annotators after (i) discarding votes from annotators whose annotation performance on the hon-
eypot tasks is less than 50% and (ii) filtering out submissions with less than 15 s of response time
per five texts.

Results. 'Table 7 presents the results of this experiment. Transformer-based detectors outperform
non-neural detectors by a wide margin with an average accuracy of 0.864. The highest accuracy
scores were achieved using ruRoBERTa, followed by RemBERT, ruBERT, and XLM-RoBERTa.
Notably, using monolingual ruRoBERTa and ruBERT led to a significant improvement in accu-
racy scores, despite having fewer parameters than XLM-RoBERTa and RemBERT. At the same
time, human annotators significantly underperform the detectors. The human evaluation yields
an overall accuracy of 0.66, which is 0.07 points lower than that of non-neural detectors and 0.2
points lower than that of neural detectors.

Effect of length. We divide the test set into five groups of equal size based on the text length
to examine the effect of text length on the performance. As depicted in Figure 4, the F1-macro-
scores of learnable detectors improved monotonically as the text length increases. For the shortest
texts, non-neural and neural detectors achieved F1-macro-scores of 0.6 and 0.75, respectively.
The scores increase significantly, resulting in near-perfect predictions of 0.95 to 0.99 for the
longest texts. The differences between the four Transformer-based detectors are most prominent
in shorter texts but became less significant as the text length increases.

Humans exhibit comparable or better performance than non-neural detectors when it comes
to texts that are up to 31 words. However, humans seem to face difficulty in classifying texts that
fall within the range of 32-92 words, while performing best in identifying the longest texts. A
possible explanation for this consistent performance of humans within the 0.6 to 0.75 range of
the macro-F1 could be that humans tend to rely more on surface-level features, which may have a
similar distribution across all text length groups.
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Discussion. The results demonstrate that state-of-the-art Transformer-based models can be rel-
atively successful in distinguishing human-written texts from machine-generated ones for the
Russian language. However, one can quickly notice a rather stark contrast between the best scores
obtained on the CoAT test set in binary setup (0.86 accuracy) and scores obtained for a simi-
lar setup in English (0.970 accuracy; see Uchendu et al. (2020) for reference). We attribute this
disparity not to the language discrepancy but primarily to the nature of the texts. In the English
setup, the average text length was 432 words, which is nearly nine times longer than the CoAT’s
50-word average. Our findings align with the works by Munir et al. (2021); Stiff and Johansson
(2022), which report that shorter texts are the most challenging for both human annotators and
computational methods.

The low results in human evaluation are consistent with recent works by Karpinska et al.
(2021); Uchendu et al. (2021), which underpin the difficulty of the generated text detection task
for crowd-sourcing annotators. These works advise hiring experts trained to evaluate written texts
or conduct multiple crowd-sourcing evaluation setups with extensive training stages.

5.3 Artificial text detection by task

Task formulation. In this experiment, we create six datasets with respect to each natural language
generation task. The detectors are independently trained and evaluated on the human-written and
machine-generated texts from the same task. This setup allows for estimating the complexity of
the tasks. The lower the performance scores, the more natural the TGMs in a particular task.
Splits. CoAT is split into train, validation, and private test sets in the 70/10/20 ratio in a stratified
fashion: 9.8k/1.4k/2.7k (machine translation), 12.4k/1.7k/3.4k (back-translation), 31.8k/4.4k/8.9k
(paraphrase generation), 26.6k/3.7k/7.3k (text summarisation), 28k/3.8k/7.9k (text simplification),
and 63k/9.2k/17.9k (open-ended generation).

Results. The results of our experiment are presented in Table 8. Averaged macro-F; scores are
presented in Table 9. We observe that the detectors’ performance rankings are consistent with
their performance in the artificial text detection setup (Section 5.2). ruRoBERTa consistently
outperforms the other detectors with an average macro-F; of 0.814, while other models show
moderate performance. Analysing the results by a natural language generation task, we find
that machine-translated texts are more difficult to detect, where the best detector performs only
slightly better than random prediction, with an accuracy of 0.621 and macro-F; of 0.612. Tasks
such as Back-translation, Paraphrase Generation, and Text Simplification are of intermediate
difficulty, resulting in an accuracy of 0.768 and macro-F; of 0.765 or above. Finally, we find that
Text Summarisation and Open-ended Generation are much easier to detect. In fact, the detec-
tors made near-perfect predictions in Open-ended Generation, with accuracies and macro-F;
scores reaching up to 0.99.

Discussion. We suggest that the diversity of TGMs’ output and the degree of control over the
outputs in the task affect the task difficulty. The TGM outputs of Machine Translation and
Paraphrase Generation are semantically constrained by the inputs, thus it is less likely for these
TGM to produce in-plausible or repetitive outputs. Open-ended Generation models suffer from
hallucination and repetitions, which at scale can be learnt by detectors. At the same time.

5.4 Authorship attribution
Task formulation. The author attribution task aims at determining the author of a given text.
The task is framed as a multi-class classification problem with 14 target classes: a human author

and 13 TGMs. In this experiment, we use the same dataset as in Section 5.2, but this time instead
of binary labels we use the source TGM'’s labels as prediction targets. In this setup, the dataset is
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Table 8. Macro-F; and accuracy scores by a natural language generation task

Task Model Macro-F;  Acc. Task Model Macro-F;  Acc.
Back-translation Majority 0.333 0.500 Paraphrase generation  Majority 0.333 0.500
Linear 0.664 0.665 Linear 0.677 0.677

ruRoBERTa 0.820 0.821 ruRoBERTa 0.844 0.845

RemBERT 0.792 0.792 RemBERT 0.822 0.822

XLM-RoBERTa 0.765 0.768 XLM-RoBERTa 0.815 0.816

Machine translation Majority 0.333 0.500 Text simplification Majority 0.333 0.500
Linear 0.557 0.557 Linear 0.660 0.660

FUBERT 0629 0630 rUBERT 0801  0.801

ruRoBERTa 0.675 0.677 ruRoBERTa 0.847 0.847

RemBERT 0.641 0.648 RemBERT 0.641 0.648

XLM-RoBERTa 0.612 0.621 XLM-RoBERTa 0.816 0.816

Open-ended generation  Majority 0.333 0.500 Text summarisation Majority 0.333 0.500
Linear 0.937 0.938 Linear 0.702 0.703

BERT 0997 0997 rUBERT 0862  0.862

ruRoBERTa 0.998 0.998 ruRoBERTa 0.884 0.884

RemBERT 0.997 0.997 RemBERT 0.880 0.880

XLM-RoBERTa 0.996 0.996 XLM-RoBERTa 0.870 0.869

Table 9. Averaged macro-F; by a natural language generation task

Majority Linear ruBERT ruRoBERTa RemBERT XLM-RoBERTa

Avg. macro-F; 0.333 0.700 0.817 0.845 0.796 0.812

imbalanced: 50% of samples are human-written and the other 50% of samples contain outputs of
13 TGMs. In this case, we rely on macro-Fj as the main performance metric.

Splits. CoAT is split into train, validation, and private test sets in the 70/10/20 ratio in a stratified
fashion (172k/24k/49k examples).

Results. Our findings, shown in Table 10, demonstrate that RuRoBERTa significantly outper-
forms other models with a macro-F; score of 0.521. RemBERT and ruBERT performed similarly
with macro-F; scores of 0.496 and 0.476, while XLM-RoBERTa achieved a lower macro-F; score of
0.451. These findings align with the results of artificial text detection (Section 5.2) and artificial text
detection by task (Section 5.3). In terms of TGMs, the neural detectors achieved the highest aver-
age performance of 0.75 F in detecting ruT5-Base, while the lowest average performance of 0.112
F; was observed in detecting ruT5-Large. However, the TGM size did not significantly affect the
performance of neural detectors in the ruGPT3 family, as the difference in F; between detecting
ruGPT3-Small and ruGPT3-Large was only 0.01. In summary, neural detectors exhibit signifi-
cantly higher accuracy in identifying human-written texts (with an average F; score of 0.866)
compared to determining the source TGM.

Discussion. Authorship attribution is important when legal requirements demand revealing text
generation models for transparency, claiming intellectual property, or replicating text generation.
The task of authorship attribution is more challenging than the binary artificial text detection task,
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Table 10. F; scores of the authorship attribution task by the target TGM
TGM Majority Linear ruBERT ruRoBERTa RemBERT XLM-RoBERTa
Human 0.667 0.749 0.860 0.882 0.868 0.856
ruGPT2-Large 0.0 0.23 0.652 0.675 0.685 0.652
ruGPT3-Small 0.0 0.48 0.651 0.778 0.677 0.652
ruGPT3-Medium 0.0 0.39 0.545 0.714 0.614 0.440
ruGPT3-Large 0.0 0.43 0.643 0.724 0.688 0.647
ruT5-Base 0.0 0.23 0.746 0.758 0.758 0.741
ruT5-Base-Multitask 0.0 0.0 0.217 0.231 0.218 0.158
ruT5-Large 0.0 0.0 0.122 0.121 0.122 0.083
mT5-Small 0.0 0.08 0.504 0.536 0.499 0.461
mT5-Large 0.0 0.0 0.229 0.243 0.252 0.138
M-BART 0.0 0.10 0.506 0.533 0.540 0.522
M-BART50 0.0 0.23 0.476 0.501 0.502 0.480
OPUS-MT 0.0 0.02 0.288 0.332 0.298 0.296
M2M-100 0.0 0.0 0.228 0.265 0.222 0.185
Macro-F; 0.05 0.21 0.476 0.521 0.496 0.451
Trained on: ruGPT3-Small Trained on: ruGPT3-Medium Trained on: ruGPT3-Large
0.975
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Figure 5. Results of testing the detectors’ robustness towards the size of unseen GPT-based text generation models.

as observed in recent works (Uchendu et al. 2020, 2021). The low-performance scores indicate
that it is challenging to differentiate between the TGMs, as they may lack distinct features that set
them apart from each other, which might align with the results of the corpus linguistic analysis in
Section 4.

5.5 Robustness

5.5.1 Size of unseen GPT-based text generaton models

Task formulation. This experiment setting tests the detectors’ robustness towards the size of
unseen GPT-based TGMs. The detectors are trained or fine-tuned on the human-written texts and
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texts generated by one of the GPT-based models (ruGPT3-Small, ruGPT3-Medium, and ruGPT3-
Large) as described in Section 5.1 and further inferred to detect texts from the out-of-domain
GPT-based TGMs, i.e., those that are not present the train set. Consider an example for the
ruGPT3-Small model, where we train the detectors on a mixture of human-written texts and texts
generated by only ruGPT3-Small, and evaluate the detectors on three mixtures of human-written
texts and texts generated by ruGPT3-Small, ruGPT3-Medium, and ruGPT3-Large.

Splits. CoAT is split into train, validation, and private test sets in the 70/10/20 ratio in a stratified
fashion: 26.2k/3.7k/7.7k (ruGPT3-small), 26k/3.7k/7.6k (ruGPT3-medium), and 28.4k/4k/8.2k
(ruGPT3-large).

Results. The results are presented in Figure 5. We observe that larger models’ outputs are more
challenging to identify as all figures show an evident drop in performance. However, training on
larger models’ outputs improves the detectors’ robustness, as lines in the left-most plot become
more flattened. Analysing the results by the detector, we find that all neural detectors achieve a
strong performance of more than 90% accuracy. ruRoBERTa performs on par with RemBERT
while having fewer parameters, and the linear detector receives moderate performance falling
behind the Transformers by a large margin.

Discussion. Overall, the results align with the works of Solaiman et al. (2019) and Kushnareva
et al. (2021). The ATD task can become more challenging with scaled TGMs since the TGMs’ size
directly determines the detector performance. However, the detectors receive the most optimal
performance concerning different TGMSs’ sizes when trained on outputs from the largest ones.

5.5.2 Unseen text domain

Task formulation. Here, we analyse whether the detectors are robust in classifying TGMs’ out-
puts from unseen text domains. Similar to Section 5.5.1, we train or fine-tune the detectors on
the human-written and machine-generated texts from one domain and evaluate them on the texts
from the other domains. Consider an example for the news domain, where we train the detec-
tors on a mixture of human-written and machine-generated texts from only the news domain,
and evaluate the detectors on six mixtures of human-written and machine-generated texts from
the domains of RNC, social media, Wikipedia, digitalised diaries (Prozhito), strategic documents
(Minek), and news.

Splits. CoAT is split into train, validation, and private test sets in the 70/10/20 ratio in a stratified
fashion: 30.8k/4.4k/10.2k (strategic documents), 34.7k/4.9k/8.5k (news articles), 17.2k/2.4k/4.9k
(digitalised diaries), 36.3k/5.2k/8.5k (Russian National Corpus), 12.5k/1.7k/2.9k (social media),
and 28.8k/4k/9.9k (Wikipedia).

Results. Figure 6 presents the results of this experiment. Overall, the detectors demonstrate
similar transferred performance across all domains. The in-domain performance is up to 90%
regardless of the detectors’ number of weight parameters and architecture. The detection is more
reliable when training on texts from News and Wikipedia as indicated by less spiky patterns in the
corresponding figures showing results for the models trained on these subsets. However, training
on texts from Minek, Prozhito, and Social Media may result in near-random performance on the
out-of-domain test sets, as corresponding figures show a single outstanding peak. We also observe
that ruRoBERTa receives higher transferred accuracy than the other detectors, as seen from the
purple dash-dotted line being on top of other lines in almost all patterns.

Discussion. While the TGMs are rapidly proliferating in different areas of life, the related ATD
research primarily focuses on one particular domain (see Section 2.1). The single-domain evalu-
ation limits the analysis of the detectors’ limitations. Several works report that existing detectors
exhibit inconsistent multi-domain performance (Bakhtin et al. 2019; Kushnareva et al. 2021). To
our knowledge, our work is among the first to analyse the detectors’ cross-domain generalisation.
We empirically show that the detectors fail to transfer when trained on specific domains, such as
strategic financial documents and social media posts.
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Figure 6. Results of testing the detectors’ robustness towards unseen text domains. Notations: Minek=strategic docu-
ments; Prozhito=digitalised diaries; RNC = Russian National Corpus.

6. Conclusion and future work

This work proposes CoAT, a large-scale corpus for neural text detection in Russian. CoAT com-
prises more than 246k human-written and machine-generated texts, covering various generative
language models, natural language generation tasks, and text domains. Our corpus promotes the
development of multi-domain artificial text detectors to warn humans about potentially generated
content on news and social media platforms, such as fake news, generated product reviews, and
propaganda spread with bots. We present a linguistic analysis of our corpus and extensively eval-
uate the feature-based and Transformer-based artificial text detectors. The key empirical results
indicate that humans struggle to detect the generated text. At the same time, the detectors fail to
transfer when trained on outputs from smaller TGMs and specific text domains.
In this paper, we explore multiple experimental setups in which we find the following:

(i) fine-tuning state-of-the-art Transformer-based models to determine whether the text was
written by a human or generated by a machine leads to satisfactory results but leaves room
for further improvement.

(ii) it is more difficult to detect texts generated by conditioned text generation models
compared to open-ended generation.

(iii) determining the source text generation model is more difficult than determining whether
the text was machine-generated.
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(iv) fine-tuned detectors are not robust towards the size of the text generation model. Larger
models are more difficult to detect.

(v) fine-tuned detectors are not robust towards the unseen text domain.

These observations underscore the challenge of implementing a trustworthy detector in real-
life applications, where there is no information available about the domain and potential text
generation model.

In our future work, we aim to explore ATD tasks in the multilingual setting. Another direc-
tion is to analyse the effect of the human evaluation design on the performance, e.g., the varying
number of training examples and providing the input texts in the sequence-to-sequence tasks.

7. Ethical considerations

Crowd-sourcing annotation. Responses of human annotators are collected and stored anony-
mously. The average annotation pay is double the hourly minimum wage in Russia. The anno-
tators are warned about potentially sensitive topics in data (e.g., politics, culture, and religion).

Social and ethical risks. The scope of risks associated with the misuse of generative language
models is widely discussed in the community (Weidinger et al. 2021; Bommasani et al. 2021).
This problem has been addressed from the perspective of responsible artificial intelligence devel-
opment: researchers and developers create new regulations and licenses (Contractor et al. 2022),
require outputs from the TGMs to be marked as “generated,” and propose “watermarking” tech-
niques to determine generated content (Kirchenbauer et al. 2023). While our goal is to propose
a novel large-scale ATD resource for the Russian language, we understand that the results of
our work can be used maliciously, e.g., to reduce the performance of the detectors. However,
we believe that CoAT will contribute to the development of more generalisable detectors for
non-English languages.

8. Limitations

Data collection. Learnable artificial text detection methods require human-written and machine-
generated texts. The design of the ATD resources is inherently limited by the availability of diverse
text domains and generative language models. In particular, such resources may suffer from
decreasing inclusivity of the models due to the rapid development of the field of natural language
generation. While we have addressed the diversity of the corpus in terms of the TGMs and text
domains, it is crucial to continuously update CoAT to keep it up-to-date with the recent TGMs
and conduct additional evaluation experiments.

Decoding strategies. The choice of the decoding strategy affects the quality of generated texts
(Ippolito et al. 2019) and the performance of artificial text detectors (Holtzman et al. 2020). The
design of CoAT does not account for the diversity of decoding strategies, limiting the scope of the
detectors’ evaluation. We leave this aspect for future work.
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Appendix A. Annotation protocols
Task overview. Choose between two judgements on the given text:

o The text is written by a human;
o The text is generated by an Al system.

Detailed task description. Follow the steps below:

« Carefully read the given text;
« Think about who could write this text;
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o If you suppose that the text is written by a human, choose the Human option;

o If you suppose that the text is generated by an Al system, choose the AI option;

Examples.

Input text: A eto moja semja moja semja moja semja (And this is my family my family my
family). Choose the AI option. The text contains obvious unnatural repetitions.

Choose the AT option. The text contains obvious unnatural repetitions.

Input text: The cat has managed to keep the behaviour pattern inherent in its wild ancestors.
She is almost as good at hunting as a wild cat, but at the same time she is able to peacefully coex-
ist with a person, show him emotional attachment, tenderness, or even show playful behaviour.
(Koshka sumela sohranit’ model’ povedenija, prisushhuju ejo dikim predkam. Ona pochti tak zhe
horosho ohotitsja, kak dikaja koshka, no v to zhe vremja sposobna mirno sosushhestvovat’ s che-
lovekom, projavljat’ k nemu jemocional’ nuju privjazannost’, nezhnost’ ili dazhe vykazyvat’ igrivoe
povedenie.)

Choose the Human option. The text sounds plausible and does not contain semantic violations.

Tips. You will get texts from multiple sources and in multiple genres. Texts may look like sam-
ples from newspapers, research papers, social media. Following features help recognise generated
texts:

« Inconsistent facts and incoherent writing;
« Violation of common sense and world knowledge;

« Unnecessary receptions and abrupt ending.

Following features are NOT helpful and can be present in human and Al texts:

« Spelling errors;

o Style fluency. Modern AI mimic human well and can write human-like texts in any genre.
It is easy to be fooled by an Al system, which is able to write a research paper!

Appendix B. Human performance

Annotators show mixed results depending on the task. Generally, larger models are harder to
detect than smaller ones. However, there is significant variation in accuracy when detecting
different models.
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Table B1. Human performance by models

Model Accuracy
Human 0.832
ruGPT2-Large 0.326
ruGPT3-Small 0.674
ruGPT3-Medium 0.708
ruGPT3-Large 0.492
ruT5-Base 0.481
ruT5-Base-Multitask 0.326
ruT5-Large 0.324
mT5-Large 0.409
mT5-Small 0.789
M-BART 0.360
M-BART50 0.730
OPUS-MT 0.551
M2M-100 0.472
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