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Abstract. This paper contains a rediscussion of the period-luminosity relation of type I-cepheids. 
Special attention is paid to the radius and its variation. 

In my contribution I would like to draw your attention to a parameter which can be 
used for the classification of the Cepheid variable stars and for more precise deter
mination of the period-luminosity, (P9 Mv\ relation. Let us start with the formula 
relating three quantities: MV9 R and Fv 

Mv = - 2.5 l o g / v - 5 log/? + const. (1) 

We may expect that every (P9 Mv) relation should be connected with the corresponding 
(P9 R) and (P, Fv) relations, and that we can try to deduce Mv using the radii of Cep
heids. 

The radii of Cepheids have been calculated many times mostly by means of some 
modification of Wesselink's method. I have used the following procedure: The ob
served changes of magnitude in the V and B systems are due to the changes of the 
fluxes Fv and FB and the radius R 

AV = -2.5A l ogF v - 5 logf 1 + — ) (2) 

AB = - 2.5 A log FB - 5 log^l + —J (3) 

A (B - V) = 2.5 A log Fv - 2.5 A log FB. (4) 

The radius R and its changes AR are defined by the position of the layer in the atmo
sphere with a constant value of optical depth. Therefore the last relation is correct 
when this layer is the same for both optical systems. According to Wesselink's as
sumption we have for the period of each Cepheid a flux-colour relation :FV=FV(B—V). 
So for A(B— V)=09 also A l o g F K = 0 and consequently A \ogFB = 0. In this case we 
have 

AV = AB = -5\og(l for A(B-V) = 0. (5) 

In order to increase the accuracy we have used the relation 

fB+V\ ( AR\ 
A^ ___J = - 5 1 o g ^ + —J, for A(B-V) = 0. (6) 
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It seems very convenient to fix one system of the geometric displacements AR obtained 
from radial velocity integration. Let us measure all AR from Rmax 

AR = R — * 

Then the expression in formula (6) can be written 

/ AR\ 2.17 
(7) 

where the correcting factor c depending on AR/R^ can be calculated with the ap 
proximate value of Rmax (see Opolski, 1973). Now by introducing the 'rectified dis 
placement' r 

r = ARc, 

we have the formula 

JB+V\ Ar 
A\—-J = AmR = -2.11—, for A(B-V) = 0. 

(8) 

(9) 
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Fig. 1. Photometric relative displacement AmR and geometric displacement Ar as functions of (B- V) 
for S Cep. 
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This relation can be represented graphically (see Figure 1). Let us draw a loop de
scribed by a star on the diagram with the axes (B+ V)/2 and (B- V). The width of 
the loop measured perpendicular to the (B— V) axis is determined by the points with 
equal (B- K), so for them A(B- K) = 0 and A((B+ K)/2), denoted by AmR, is just 
the value occurring in the formula (9). This value represents the photometric relative 
displacement resulting from the geometric one ARjRmZLX and expressed on the magni
tude scale. 

Similarly, we can draw a loop on the r vs. (B— V) plane and determine the difference 
Ar for the same value of (B— V). So we obtain the value of Rmax from the formula (9) 

K m a x = - 2 . 1 7 - ^ . (10) 
AmR 

This calculation can be repeated for every value of (B— V) or, using the whole areas 
of the loops, Pm and Pr: 

b b 

Pm = j AmRd(B-V), Pr = JArd(B-V) (11) 

Rmax = -2.l1P-r. (12) 

In order to make the photometric relative displacement AmR more easy to observe 
and to compare with other stars, we plot the values AmR in the lower part of the dia
gram as a function of (B— V). Similarly the corresponding values of Ar are to be seen 
below the loop Pr. Both curves should have the same shape and differ only in the 
scales of AmR and Ar. 

The values of maximum radius can also be calculated by the numerical method 
presented already by the author (Opolski, 1973). In this method, the general relation 
between flux and colour introduced by Wesselink is specified in the form: 

- 2.5 A l o g i y = kA(B-V)9 (13) 

where A: is a constant. The correctness of this assumption can be proved for the 
majority of Cepheids (see Figure 2). But some of them, e.g. SV Vul, do not follow this 
relation. As a consequence of equation (13), we have 

- 2.5 A \ogFB = (k + 1) A (B - V), (14) 

- 2.5 A ( l 0 g / V + l 0 g ^ ) = (Jfc + 0.5) A(B — V) (15) 

A\ogFv = -^-A\ogFB. ( 1 6 ) 
k + 1 

and 

Therefore in our computations we have used the formula 

B + V\ Ar 
= (k + 0.5) A (B - V) - 2.17 , (17) 
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cT Cep 
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&V = -2.5*logFv - 2 . 1 7 ar 
Hmax. 

&B= - 2.5MogFB - 2 . f ? &r 
HmQx. 

Alog % = a&log% ; a * 0.6 

Fig. 2. The V vs. B diagram for S Cep shows the linear relation: A log/V = a A logFB. The loop is 
caused by the contribution of the displacement Ar. 

where the differences between the individual values and their means have been in
troduced. 

For each star a set of 20 equations for phases 0.00, 0.05, 0.95 has been solved 
and the two unknown quantities k and RmskX determined. Then the phases of Ar were 
shifted and the set of equations solved again. This procedure was repeated until the 
best accuracy was obtained. 18 stars with reliable radial velocities and photometry 
have been treated in this way. All numerical data are listed in Table I with the follow
ing notation: l o g i ^ is the logarithm of Rmax expressed in km; logA(R) the logarithm 
of the amplitude of the geometric displacement AR in km; A(R)jRmax the geometric 
relative displacement; AmR the mean photometric relative displacement 

Pm Pm 

= — — - — = — — (18) 
R A(B-V) b-a v 9 

and A(B—V) the amplitude of the (B- V) variation. 
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LogP Logi?max LogA(R) —— AmR A{B-V) 

Group 0 

RT Aur 0.571 7.935 6.316 0.024 0^038 07*41 
T Vul 0.647 7.824 6.439 0.041 0.085 0.33 
FF Aql 0.650 7.858 6.167 0.020 0.042 0.16 
S Cep 0.730 7.696 6.548 0.071 0.093 0.45 

Group I 

U Aql 0.847 7.497 6.681 0.153 0.173 0.36 
V Aql 0.856 7.678 6.666 0.097 0.167 0.43 
WSgr 0.881 7.659 6.690 0.107 0.160 0.43 
W Gem 0.898 7.588 6.692 0.128 0.197 0.37 
S Sge 0.923 7.728 6.714 0.097 0.138 0.42 
£ D o r 0.993 7.785 6.763 0.095 0.142 0.37 
CGem 1.007 7.733 6.684 0.089 0.094 0.29 
XCyg 1.214 7.968 7.240 0.187 0.306 0.58 
T Mon 1.432 8.124 7.425 0.200 0.268 0.60 
/Car 1.551 8.164 7.387 0.167 0.294 0.48 
SV Vul 1.654 8.185 7.629 0.278 0.264 0.69 

Group II 

K Pav 0.958 7.371 6.681 0.204 0.326 0.50 
YOph 1.233 7.530 6.709 0.151 0.115 0.29 
W Vir 1.237 7.597 7.137 0.346 0.633 0.53 

The (P, Rmax) relations represented in Figure 3 show a complicated structure. One 
can distinguish three regions: The (P9Rmax) relation for classical Cepheids, marked 
as I, is defined by the stars near l og i? m a x = 7.7 and XogP =0 .9 and reaches to log i? m a x = 
= 8.2 for XogP = 1.6. Below are situated two typical stars of population II, W Vir and 
K Pav, and unexpectedly also Y Oph. They have radii smaller by A l o g / ? m a x = 0 . 4 
than the Cepheids in region I. But above the typical Cepheids I there are 3 stars with 
radii greater by about A l o g / J m a x = 0 . 3 . This group has been denoted as type 0. For 
these stars the radii seem to diminish as the periods increase. The star S Cep falls near 
this group. 

All the stars in Figure 3 are labelled with the corresponding values of A(R)IRmax. 
Taking these numbers into consideration we can say that, for a given period, the 
greater the smaller A(R)/RmsiX. So we can easily distinguish the three (P9Rmax) 
relations from each other by means of the values A(R)IRmax which change in a charac
teristic manner. 

The geometric relative displacements A(R)IRmfiX can be obtained only for stars with 
known radial velocities. The number of these stars is very limited and there is no hope 

TABLE I 
Radii and relative displacements of Cepheids 
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that the situation in this respect will soon improve. On the other hand, the number of 
accurate photometric measurements is increasing continuously and it would be very 
advantageous to get more information from these data. Therefore, we tried to replace 
the geometric relative displacement, A(R)IRmSiX, by the mean photometric one, AmR. 
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Fig. 3. Period-radius relations for Cepheids with the separation of the 0, I and II groups. The stars 
are labelled with the amplitude of their relative geometric displacement A(R)/Rm&x. 

From the comparison of both values, it is possible to establish a relation 

J m R = 1 . 5 - ^ . (19) 
Kmax 

Figure 4 shows photometric relative displacements for three stars belonging to groups 
0, 1 and II. It can be seen that these quantities and their mean values follow the 
changes of A(R)IRmsix 

Group 0 I II 

Star TVul S Sge WVir 

^ — 0.04 0.11 0.35 
/vmax 

A m R ~ 0.08 0.14 0.63 
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So it seems to be possible to use the value of AmR which can be obtained on the 
basis of the photometry alone as an additional parameter in order to specify better 
the properties of individual Cepheids. 

As an application of the parameter AmR, we can test that the Cepheids belonging to 
open clusters and used for absolute magnitude determinations have values of AmR 

typical for group I (Table II). We can combine the values of radii and absolute mag
nitudes according to Sandage and Tammann (1968) and Kukarkin (1970) to derive a 

TABLE II 
Absolute magnitudes and mean photometric rel
ative displacements of Cepheids in open clusters 

logP 

EV Set 0.490 
SZ Tau 0.498 
CF Cas 0.688 
VY Per 0.730 
USgr 0.829 
DL Cas 0.903 
S Nor 0.989 
VX Per 1.037 
SZ Cas 1.134 
/Car 1.551 
RS Pup 1.617 

(M}v A r r i R 

- 2 . 6 0.051 
- 2 . 9 0.082 
- 3 . 1 0.110 
- 3 . 5 0.056 
- 3 . 9 0.145 
- 3 . 8 0.131 
- 4 . 0 0.133 
- 4 . 3 0.154 
- 4 . 7 0.096 
- 5 . 9 0.294 
-6 .1 0.270 
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period-radius-luminosity relation with the parameter A m R which can help in assigning 
the individual stars to different groups. But with known Rm&x and Mv it is possible 
to get the fluxes Fv using the formula given by Allen (1963), 

log Fv = - 0.4 My + 8.87 - 2 \ogR/RQ, (20) 

where Fv is expressed in erg c m " 2 s" 1 A " 1 . 
The complete period-radius-luminosity-flux relation is represented in the Table III, 

where Rmax, Mv and Fv can be regarded as functions of P and A m R . 

TABLE III 

Period-luminosity-radius-flux relations for Cepheids 

log/* A m R <M)v logi?max l o g / V 

Group 0 

0.6 0.04 - 4 . 5 7.90 6.56 
0.7 0.04 - 4 . 0 7.75 6.66 

Group I 

0.4 0.06 - 2 . 6 7.15 7.30 
0.6 0.09 - 3 . 1 7.44 6.93 
0.8 0.13 - 3 . 6 7.60 6.82 
1.0 0.16 - 4 . 2 7.80 6.64 
1.2 0.20 - 4 . 8 7.98 6.51 
1.4 0.25 - 5 . 4 8.08 6.54 
1.6 0.29 - 5 . 9 8.20 6.53 

Group II 

0.9 0.30 - 1 . 8 7.30 6.68 
1.1 0.45 - 2 . 1 7.48 6.44 
1.3 0.60 - 2 . 5 6.64 6.28 

References 

Allen, C. W.: 1963, Astrophysical Quantities, 2nd ed., London. 
Kukarkin, B. W.: 1970, Pulsating Stars, Moscow, p. 126. 
Opolski, A.: 1973, in B. Hauck and B. E. Westerland (eds.), 'Problems of Calibration of Absolute 

Magnitudes, and Temperature of Stars', IAU Symp. 54, 165. 
Sandage, A. R. and Tammann, G. A.: 1968, Astrophys. J. 157, 683. 

https://doi.org/10.1017/S0074180900010287 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900010287



