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Abstract

We introduce the notion of functions of bounded proximal variation and the notion of orderly
connected topology on the real line. Using these notions, we define in a novel way an integral of
Perron type, including virtually all the known integrals of Perron and Denjoy types and admitting
mean value theorems and integration by parts and the analog of Marcinkiewicz theorem for the
ordinary Perron integral.

1980 Mathematics subject classification (Amer. Math. Soc): 26 A 45, 26 A 46, 26 A 39, 26 A 03.

1. Introduction

In this paper we are concerned with the Lebesgue integral, the restricted Denjoy
integral and its equivalent the ordinary Perron integral (see Saks (1937), Natan-
son (I960)), the general Denjoy integral and its equivalent the Perron integral of
Ridder (1931), Section 6, the approximately continuous Perron integrals of
Burkill (1931), Sonouchi and Utagawa (1949) and Kubota (1966), Section 3, and
the approximately continuous Denjoy integral of Kubota (1964), which will be
called here the L-, Dm-, Pm-, D-, P-, AP0-, AP-, AP*- and ^4/^-integrals, respec-
tively.

Considering the fact that the integrals of Perron type are defined descriptively,
the most important result in the theory of the /^-integral is the theorem of J.
Marcinkiewicz (see Saks (1937), Theorem 3.13, page 253), which states that a
measurable function is necessarily P^-integrable on any closed interval on which
it has at least one pair of continuous major and minor functions. Recently Sarkhel
(1978) has proved this result under wider conditions. Unfortunately, no proper
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336 D. N. Sarkhel and A. B. Kar [2 ]

analogs of this elegant result are known for the other integrals of Perron type.
Also, the mean value theorems are not known for the approximately continuous
integrals. Besides, these integrals are not all comparable. In fact, Burkill (1931),
Section 1, has given a function which is ^/Q-integrable but not D-integrable, and
Tolstoff (1939), page 658, has given a function which is D-integrable but not
/4P0-integrable. Also, the relation between the AP- and y4/)*-integrals is not
known. We recall that the Pm-integral came as a rescue, when the L-integral failed
to solve the problem of constructing an integral including both the integrals of
Riemann and Newton.

Thus, it is expedient to seek an integral including all these integrals and
admitting mean value theorems and the analog of Marcinkiewicz theorem as well.
We present a complete solution to this problem, in a more general setting, by
introducing a T-continuous Perron integral (Section 5), where T is an orderly
connected topology on the real line (Section 4). Our method of developing the
integral has some claims to novelty and simplicity. It uses the notion of bounded
proximal variation (Section 3), (PVB), which is derived from the notion of
proximal absolute continuity, PAC, introduced recently by Sarkhel and De
(1981), Section 5.

2. Preliminaries

Throughout this paper, i, j , k, m, n will denote arbitrary positive integers. By a
set E we shall mean a subset of the real line R, \ E | will denote its outer Lebesgue
measure, and E° its interior. By / D E -» R [f ~ E -» R] we shall mean that / is
an extended real valued function defined and finite at least for all [almost all]
points of the set E. For the notions of approximate continuity and derivative and
of functions VB and AC we refer to Saks (1937). A function/ D E -» R is said to
satisfy the condition (N) of Lusin (Saks (1937), page 224) on E, if \f(H) |= 0 for
every H C E with | H | = 0.

Given / ~ E -» R, |2s|> 0, we denote by ess-sup£/ [ess-inf^/] the infimum
[supremum] of the numbers r such that

\{x G E\f(x) > r } | = 0 [\{x G E\f(x) < r } | = o ] .

The function/is said to be essentially bounded above [below] on E, if ess-sup£/
< oo [ess-inf£/> -oo].

DEFINITION 2.1 (Sarkhel and De (1981), Section 5). A finite family (possibly
empty) of pairwise disjoint open intervals with end points on a set E is called a
subdivision of E. A sequence {£„} of sets whose union is E is called an E-form
wiih parts En\ if, moreover, each part En is closed in E, then the £-form is said to
be closed. An expanding Is-form is called an E-chain.
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LEMMA 2.1. For every closed E-form {£„}, there is a closed E-chain {Fn} such
that Fn — U H n Fkn, where Fkn C Fkm C Ek for all k and m> n > k, and
d{Fin, Fjn) ** \/n for i ¥=j. (Here d denotes the usual metric distance.)

PROOF. Let Eo — 0 and Ak = Uy<sA. Et_,. For k < n, set

Fkn={xeEk\d(Ak,x)^\/n), Fn=\jFkn.

(By definition, d(0, x) = oo.) Clearly the sets Ak, Fkn and Fn are all closed in E,
since each E(_ t is so; also Fkn C F^m C £ t and Fn C Fn+l, for all /: and m > n &* k.
Again, for any x £ E, there is a unique m such that x G £m\v4m. Since ,4m is
closed in E, we have d(Am, x) > 0. So x G Fmn for sufficiently large «, showing
that £ = Un Fn. Finally, if x G Fin and j G Fjn where j <y, then x G £, C ^y and
hence, by definition of Fjn, d(x, y) > \/n, which completes the proof.

Given / D E -» /? and r > 0, we denote by K(/, E; r) [V(f, E; r)] the supre-
mum of the sums 2(/(6,) - /(a,-)) [21/(6,-) - /(a,) |] for all subdivisions {(a,, 6,)}
of E with 2(6,- - a,) < r. We define F(/, £; 0) = inff>0_F(/, £; r), V(f, E; 0) =
infr>0 V(f, E; r) and V(f, E) = supr>0 F(/, E; r).

We note that / is VB [AC] on E if and only if V(f, E) < oo [V(f, E, 0) = 0].
The function / is said to be AC above [AC below] on E , if V(f, E;0) = 0
[F(-/, E; 0) = 0]; it is (ACG) above [(ACG) below] on E, if it is AC above [AC
below] on each part of a closed £-form; it is (ACG) on E, if it is both (ACG)
above and (ACG) below on E (Ridder (1931)). The terms ACG above, ACG
below and ACG are defined similarly, without requiring the £-forms to be
'closed'. If/ is VB on each part of a closed is-form, we say that/is (VBG) on E.

3. (PVB) and (PAC) functions

Let the functions /, g D E -» R be given.

DEFINITION 3.1. The proximal variation of /on E is

PV{ f,E) = inf{ sup V{ f,En;0)\{En} is an £-chainj .
n

The function/is proximally variationally bounded, (PVB), on E, if PV(f, E) < oo;
it is (PAC) on E, if PV(f, E) = 0.

REMARK. The properties VB through (PAC) are all necessarily hereditary. The
notion of (PAC) is slightly stronger than the notion of PAC (Sarkhel and De
(1981), Definition 5.1). In fact, / is PAC on E if and only if it is (PAC) on a
co-countable subset of E.
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THEOREM 3.1. (i) For any two real numbers a and b,

PV(af+ bg, E) <\a\ .PV(f, E) + \b\ .PV(g, E).

(ii) I/PV(g, E) = 0, then PV(f+ g, E) = PV(f, E).

PROOF. Given any real number e > 0, there exist £-chains {An}, {Bn} such that
V(f, An; 0) < PV(f, E) + e and V(g, Bn; 0) < PV(g, E) + e, for all n. Let En =
An D Bn, then {£"„} is evidently an is-chain. Using modulus inequalities, we
readily obtain that, for each n,

V(af+ bg, En;0) <\a\ .V{f, En;0) + \b\ .V(g, En;0)

^\a\.PV{f,E)+\b\.PV(g,E) + el,

where e, = (| a | + | b |)e. This evidently implies (i).
Next, by (i), we have

PV(f, E) < PV(f+ g, E) + PV(-g, E),

< PV(f, E) + PV(g, E) + PV(-g, E),

which implies (ii), since PV(g, E) = 0 implies PV(-g, E) = 0.

COROLLARY 3.1.1. / / / and g are both (PVB) [(PAC)] on E, then af + bg is also
(PVB) [(PAC)] on E.

Using the method of proof of Theorem 5.2 of Sarkhel and De (1981), the reader
can easily verify:

THEOREM 3.2. If\E\= 0, then | / (£ ) |< PV(f, E).

COROLLARY. 3.2.1. If f is (PAC) on E, then f satisfies Lusin's condition (N) on
E.

THEOREM 3.3. Let f be (PVB) on E. Then f is (VBG) on E. If, further, the set E is
measurable, then f\ E is measurable and f has a finite approximate derivative,
(ap)f'(x), at almost all points x of E.

PROOF. There exist an .E-chain {£„} and a sequence {rn} of positive numbers
such that V{f, En; 2rn) < PV(f, E) + 1, for all n. Let Fn denote the closure of En

in E. Fix an index n, and consider any subdivision {(a,, Z>,)} of Fn with
2(6, — a,) < 2rn. There is an index m> n such that Em contains all the end
points a,, bt. Now Em D En, and, since a,, bt G Fn, we can choose points of En
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arbitrarily close to any point a, or bt which is not in En. Therefore, using modulus

inequalities where necessary, we readily obtain

2l/(M -/(<0l< n / , En;2rn) + 2.V(f, Em,2rm)
<3(PV(f,E)+l)=M (say).

Hence V(f, Fn; 2rn) < M. Consequently, / is VB on each of the sets Bnp = Fn n
[Prn>(P + l)rn]> where p is any integer (positive, negative, or zero). So/is (VBG)
on E, since the sets Bnp determine a closed £-form, considering all n and p.

When £ is measurable, the condition (VBG) implies that f\ E is measurable
and, hence, also that (ap)f' = (apXf\E)' exists finitely a.e. on E (see Saks
(1937), page 222 infra), completing the proof.

THEOREM 3.4. PV(f, E) < lPV(f, EJfor any closed E-form {£„}.

PROOF. Given e > 0, for each A: there exist an is^-chain {Ekn} and a sequence
{rkn} of positive numbers such that V(f, Ekn; rkn) < PV(f, Ek) + 2'k.e, for all
n. Now, considering the closed £-chain {Fn} furnished by Lemma 2.1 corre-
sponding to the closed E-fona {£„}, and setting Hn = U/l<£n(ir

/tn Pi Ekn), it is
easily seen that {//„} is an is-chain. Let rn — mm{\/n, rXn, r2n,...,rnn}. If
{{ap, bp)) is any subdivision of Hm, m fixed, with l,(bp — ap) < rm, then, since
d(Fim, Fjm) > \/m for / ¥=j, the end points of an interval (ap, bp) must both
belong to precisely one of the sets Fkm n Ekm, k = 1,2,... ,m, and so we clearly
have

2\f(bp)-f(ap)\< 2 V(f,FkmnEkm,rm)

< 2 )
Km

Hence V(f, Hm; rj < 2PV(f,En) + e, for all m. So PV(f, E) < 2PV(f, En)
+ e. Since e > 0 is arbitrary, the proof ends.

COROLLARY 3.4.1. / / / is (PAC) o« eac/i part of a closed E-form, then f is
necessarily (PAC) on E.

COROLLARY 3.4.2. / / / and g are both (PAC) on E, so is fg.

PROOF. By Theorem 3 . 3 , / a n d g are both (VBG) on E. Clearly t h e n / a n d g are

both VB on each part En of some closed £-form. If Mn is a common upper bound
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of | / | and | g | on £„ , then for all a, b G £„ we have

\f(b)g(b) -f(a)g(a)\=\g(b)(f(b) - f(a)) + f(a)(g(b) - g(a))\

<Mm(\f(b)-f(a)\+\g(b)-g(a)\).

Hence it follows at once that fg is (PAC) on each of the sets £„, which by
Corollary 3.4.1 completes the proof.

COROLLARY 3.4.3. Let I = [a, c] andJ = [c, b]; then

PV(f, E n (/ u /)) = pv(f, E n /) + pv(f, E n J).

PROOF. Given e > 0, there exist an E D (/ U /)-chain {£„} and a sequence
{/•„} of positive numbers such that V(f, £„; 2rn) < PV(f, E D (/ U / ) ) + e, for
all «. Clearly then {£„ n /} is an E n /-chain and {£„ D / } is an E n 7-chain,
and K(/, £„ n /; /•„) + V(f, En D J; rn) < V(f, En; 2rn) < PV{f, E n (/ U / ) )
+ e, for all «. This implies that PF(/ , E D / ) + PK(/, £ n 7) < PF(/ , £ n (/
U 7)), which by Theorem 3.4 completes the proof.

COROLLARY 3.4.4. Let PV(f, E D [a, b]) < oo. Then PV(f, E D [a, *]) -»0as
x ^ a + , and PV(f, E n [x, i ] ) ^ 0 < K ^ ^ fe-.

PROOF. Select a strictly decreasing sequence {cn} in (a, Z») converging to a.
Noting that PV(f, E D {a}) = 0, from Theorem 3.4 and Corollary 3.4.3 we
readily obtain that 2PV(f, E fl [cn+], cj) = PF(/ , £ n [a, c,]) < oo, and this
evidently implies that PV( f, E n [a, x]) ^ 0 as x ^ a + . Proof of the other part
is similar.

THEOREM 3.5. Iff is (ACG) on E, then f is (PAC) on E. The converse is true if E
is closed and f\E is continuous.

PROOF. The first part is a trivial consequence of Corollary 3.4.1. For the
converse part, note that when / i s (PAC) on £, then / satisfies the condition (N)
on £ by Corollary 3.2.1, and/ is (VBG) on £ by Theorem 3.3. Therefore, if it is
given further that £ is closed and f\ E is continuous then from Banach-Zarecki
theorem (Natanson (1961), page 250; Saks (1937), Theorem 6.8, page 227), it
follows that / is (ACG) on £.

THEOREM 3.6 (generalized Banach-Zarecki theorem). Let the set E be closed.
Then f is (PAC) on E if and only if f satisfies the condition (N) on E and is (VBG)
on E.
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PROOF. The 'only if part follows from Corollary 3.2.1 and Theorem 3.3. We
prove the 'if part in the particular case when the set E is closed and bounded,
and / i s VB on E and satisfies the condition (N) on E. The general case will then
follow from Corollary 3.4.1.

Since / is VB on E, f\E is continuous n.e. on E. Let du d2,... denote the
points of discontinuity, if any, of f\ E. Given e > 0, for each point dn we can find
intervals /„ = (/>„, dn),Jn = (dn,qn) such that

V(f,Enin)+V(f,EnJn)<2-"e.

For each point dn, we then fix two sequences {Ink} and {Jnk} of closed intervals
abutting end to end such that UkInk = In and U^ Jnk — Jn.

Now, the set F = E\ Un(/M U Jn) is compact, and f\ F is continuous and VB
and satisfies the condition (N) on F. So, by Banach-Zarecki theorem,/is AC on
F. Therefore PV(f, F) = 0. Moreover, we have

2 2 (PV(f, Enink)+ pv(f, E n /„,))
n k

< ll(v(f, E n ink) + v(f,En jnk))
n k

n/J)

Hence, by Theorem 3.4, PV(f, E) < e. Letting e -» 0, we get PV(f, E) = 0. Thus
/ is (PAC) on E, completing the proof.

COROLLARY 3.6.1. Let {pn} and {qn} denote two sequences in R such that
2 \pn |< oo and qi ¥= qjfor i ¥=j, and let F: R -> Rbe defined by

Hx) = 2 Pn °r F(x) = 2 Pn-

Then F is (PAC) on R and F' = 0 a.e. on R.

PROOF. First suppose pn > 0 for all n. Then F is nondecreasing and VB on R.
Also, if p = 2pn, then F(R) C [0, p]\ Un(F(qn-), F(qn +)), and so we have
|F(R) \= 0, since l(F(qn +) - F(qn-)) = 1pn = p. Hence, by Theorem 3.6, F is
(PAC) on R; also, by a known result (Varberg (1965), Theorem 12), the L-integral
of F' on R cannot exceed \F(R)\ (= 0), and so F' = 0 a.e. on R (see Natanson
(1961), Theorem 6, page 138).

Since by Corollary 3.1.1 the difference of two (PAC) functions is again (PAC),
the general case follows by noting that/>n = \(\pn\ +pn) - {{\pn\ -pn).
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By Theorem 3.5, (ACG) functions are necessarily (PAC). We will now give an
example showing how badly the converse of this result fails. This will fulfil an
earlier promise (Sarkhel and De (1981), Announcement 5.1) of the first named
author. We first prepare a lemma.

LEMMA 3.1. Let G be an open set having right density 1 at a point c. Then there
exist two sequences {[an, bn]} and {[/?„, qn]} of closed intervals such that

®u,[fl,,yc(c,oe)nc)

(ii) c<bn+x<an<pn<qn< bjor all n,
(iii){c} U Un[an,bn] is closed,
(iv) Un(/>n, qn) has right density 1 at c.

PROOF. Fix a strictly decreasing sequence {cn} in G converging to c. For each n,
determine a finite family {[«„,, bni]} of pairwise disjoint closed intervals
contained in G n (cn+1, cn) such that 2, | (ani, bni) \>\ G n (cn+1, cB) | -
(l/«) |(cf l + 2 , cn + 1) | . The components of Un U,[an,, bni\ can evidently be
arranged in a sequence {[an, bn]} such that c < bn+i < an, for all n. For each n
then choose an interval [pn,qn] C (an, bn) such that

| ( a n A ) \ ( / > n , < 7 n ) | < ( l / « ) | ( « n + 1 A + . ) l -

These {[an, bn]} and {[/»„, qn]} fulfil all the requirements.

EXAMPLE 3.1. Let P be a nonempty perfect set of measure 0 contained in
/ = [a, b], with a, b GP. Fix two countable dense subsets So and St of P such
that So n 5, = 0 , and such that each point of S = So U S, is a limit point of
P \ S on both sides. Let {c2n_,} denote an enumeration (with distinct terms) of St,
t = 0,1. Define

v(x) = y (-2) " x G /?

Now, by successive applications of Lemma 3.1, we can associate with each point
ck two sequences {[akn, bkn]} and {[pkn, <7*n]} of closed intervals such that:

(i) | v(x) - v(ck) |< 2.2-* for all x e (ck, bki),

(iii) ck < bkm < akn < pkn < qkn < bkn for all n, m (> n),
(iv) u « (/>*„, ?*„) has right density 1 at ck,
(v) A, HAj= 0 for i ^y , whereat, = {c,} U Uja , n > bkn].
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Then, for each k, we define the function Fk on R by

(v(ck)-v{x)).sin2^( * _**" ) i£akn<x<pkH,
L \ Pkn akn I

*f Ikn ^ x ** ^/tn '
kn Hkn

(v(ck)-v(x))

0 otherwise.

Consider now the function F defined on R by

F(x) = F0(x) + v{x), where F0(x) = 2^,(*)-

By (i), the series 2.Fn is uniformly and absolutely convergent. Then it is clear that
Fis continuous everywhere except at the points ck on the right. But, F(x) = v(ck)
= F(ck) for all x £ Un( /^n , qkn), which by (iv) implies that F is approximately
continuous at ck on the right. Thus F is approximately continuous on R. Again, for
each k, Fk is evidently AC on [akn, bkn] for all n, and v is constant on each
such interval. Therefore, F is (ACG) on E = Uk Un[akn, bkn\. Also, F(x) = 0
for x < a and F(x) = F(6) for x > b, and F(x) = t>(x) for x £
/ \ Uk Vn(akn,bkn), and by Corollary 3.6.1 v is (PAC) on R. Hence, by
Corollary 3.4.1, F is (PAC) on R.

Consider, on the other hand, any (P\S)-form {Pn}. Since P\S is a Gs set,
there exist by Baire theorem (Saks (1937), page 54) an open interval / and an
index n such that / D P\S =£ 0 and Pn is dense in J n P\S. Evidently we can
find in / points cm, ck with m odd, k even. Since F(x) = v(x) for x £ Pn, and
since v(cm + ) — u(cm-) = -2~m and u(cfc + ) — v(ck-) — 2~k, it readily follows
that F is neither AC below nor AC above on Pn. Consequently, F is neither ACG
below nor ACG above on P\S. So F is neither ACG below nor ACG above on any
superset of P\S, not to speak of being (ACG). Noting that / is a closed interval
and that F\(I\S) is continuous, we see how miserably the converse part of
Theorem 3.5 fails without the additional hypotheses therein.

4. Orderly connected topology

Let T be a topology on R. A set E will be called a T+ -vicinity [T'-vicinity] of a
point x, if there is a T'-open set G 3 x such that G D (x, oo) C E [G D (-oo, x)
C £] . A set will be called T+ -open [T'-open], if it is a T+ -vicinity [T"-vicinity]

of each of its points.
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DEFINITION 4.1. Let r0 denote the usual topology on R. A topology T on R is
orderly connected, if T D To and no interval [a, b] can be expressed as the union
of two disjoint sets A, B such that a £ A, b G B, A is T+ -open and B is T~-open.

DEFINITION 4.2. Given two topologies Tu T2 on R, 7", is semi-finer than T2 at a
point x, if every ^-neighborhood of x is either a 7*,+ -vicinity or a Tf-vicinity of
x.

We pause to illustrate certain aspects of our definitions. Let Ta denote the
density topology on R (Goffman and Waterman (1961), Section 5). A set G is
ra-open if and only if R\G has density 0 at each point of G. Approximate
continuity is precisely ^-continuity.

EXAMPLE 4.1. Let S, P, H denote pairwise disjoint sets such that | 5 | > 0 ,
| P |> 0, | H | = 0 and R = S U P U H. Let T denote the family of sets G such that
(i) G is a T£ -vicinity and a Ta"-vicinity of each point of G (1 S, (ii) G is a
T^ -vicinity and a ro"-vicinity of each point of G n P and (iii) G is a TQ -vicinity
and a ro"-vicinity of each point of G D H. Again, let Tp denote the family of sets
G such that, for every x G G and for every set E having upper density < 1 at
x,(R\G) U E has upper density < 1 at x. It is easily seen that T and Tp are
topologies on R and Tp D Ta D T D To. Now, it is known (Sarkhel and De (1981),
Lemma 2.3) that, if A C [a, b] is such that a & A and /I has left upper density < 1
at each point of B — [a, b]\A and B has right upper density < 1 at each point of
A, then B = 0 . From this it follows at once that Tp is orderly connected. Since
To C T <Z Ta C Tp, so To, T and Ta must also be orderly connected. We note
further that Ta is strictly finer than T, and yet T is semi-finer than Ta everywhere
on R or a.e. on R according as H is empty or not. Going through the theory of
sparse sets and proximal continuity (Sarkhel and De (1981)), the reader can verify
that Tp is strictly finer than Ta and that proximal continuity is precisely Tp-con-
tinuity.

Now let an orderly connected topology T on R be given. A function / D [a, b]
-> R is said to have a finite right-hand T-limit I at a point c G [a, b), in symbol
Tf(c + ) = /, if / G R and if, for every ro-open set G 3 /, f'\G) is a T+ -vicinity
of c. The left-hand T-limit Tf(c-) at a point c G (a, b] is defined analogously.
Such limits are unique. To see these, it is enough to note that the intersection of
two T+ -vicinities [T"-vicinities] of a point is again a T+ -vicinity [T -vicinity] of
the point, and that the empty set can neither be a T+ -vicinity nor a T "-vicinity of
any point. (If we suppose that 0 is a T+ -vicinity [T"-vicinity] of a point c, then,
since To C T, [c — \,c] is 7*+-open and (c, c + 1] is T"-open [[c — 1, c) is
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r+-open and [c, c + 1] is 7*~-open], which contradicts that T is orderly con-
nected.)

The function / is T-continuous on [a, b] if and only if Tf(c + ) = f{c) for all
c G [a, b) and Tf(c-) = f(c) for all c G (a, b]. Since T is orderly connected,
every subspace ([a, b], T) is obviously connected. So we have:

THEOREM 4.1. / / / D / = [a, b] -» R is T-continuous on /, then /possesses the
intermediate value property on I.

5. The (TP)-integral

Throughout this section, T will denote an arbitrary but fixed orderly connected
topology on R, semi-finer than Ta a.e. on R. In ro-topological statements, To will
not be mentioned.

Given / = [a, b], we denote by U(I) the family of functions u D / -» R such
that (i) PV(u, I) < 00, (ii) Tu(x + ) exists finitely and u(x) < Tu(x + ), for all
x G [a, b), and (iii) Tu(x-) exists finitely and Tu(x-) < «(*), for all x G (a, b].
By Theorem 3.3, the condition (i) implies that (ap)u' exists finitely a.e. on /.

LEMMA 5.1. Let T be semi-finer than Ta at all points of I\E, where I — [a, b]
and \E\= 0, and let u G U(I) be such that (ap)u' s* 0 on I\E. Then u(x) +
PV(u, E n [a, x]) is nondecreasing on I.

PROOF. Suppose, for a contradiction, that u{d) + PV(u, E D [a, d]) < u(c) +
PV{u, E n [a, c]) for some [c, d] C /. Then, using Corollary 3.4.3, we get 0 <
PV(u, E n [c, d]) < u(c) - u(d). Choose e > 0 so that PV(u, E n [c, d]) <
u(c) - u(d) - e(d - c), and define F(x) = u(x) + ex, x G /. Since | £ n [c, rf] |
= 0 and F — u is AC on /, using Theorems 3.2 and 3.1(ii) we get |F{E D [c, </]) |
< PF(F, £ n [c, </]) = PF(u, E n [c, </]) < F(c) - /"(</). Therefore, there are
points r £ F(£ n [c, rf]) such that F(d) < r < F(c). Fix such an r and set

^ = { x G [ c , r f ] | F ( x ) > f } , B0={x(E[c,d]\F(x)<r}.

Since To C T and M G [/(/), clearly F(x) < TF(x + ) for all x G [c, d) and
TF(x-) «: F(x) for all x G (c, d], and so ^ 0 is r+-open and Bo is T-open.
Again, let F(t) = r for some / G [c, d\. Then / G (c, d)\E, and so Tis semi-finer
than Ta at ? and (ap)F'(t) = (ap)u'(t) + e > 0. Therefore, either >40 is a 7 + -
vicinity of t or fi0 is a T -vicinity of t. Let H denote the set of all such t for which
Ao is a r + -vicinity. Then, setting /I = /l0 U H and fi = [c, d]\^4, we see that
c G A, d G B, A is T+ -open and 5 is T^-open. This contradicts that T is orderly
connected, and the proof ends.
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Now let the functions/, g ~ / = [a, b] -» R be given.

DEFINITION 5.1. A function u is a (TP)-upper function of / on /, in symbol
M G (/(/, / ) , if u G £/(/), w(a) = 0 and (ap)u' >f a.e. on /. A function / is a
(TP)-lower function of/on /, in symbol / G L(/ , / ) , if -1 G U(-f, I). For e > 0,
we set

Ue(f, I) = {u G !/(/, / ) \PV(u, I)<e),

L.(f,I)={leL(f,I)\PV(I,l)<e).

DEFINITION 5.2. If lim T inf {u(b)\u G Ue(f, /)} and linHsup {l(b)\l G
Le(/, / ) } , ase-»0 + , have a common finite value, then/is (TPyintegrable on /,
in symbol/e P(I), and the common limit, to be denoted by /* /, is the definite
(TP)-integral of / on /.

From definitions and Lemma 5.1, we readily obtain:

THEOREM 5.1. Let u G U(f, I) and I G L(f, I). Then u - I G [/(/) am/ r/iere
exist subsets E C I, with \E\ = 0, such that T is semi-finer than Ta at all points of
I\E and{ap\u - /) ' > 0 on I\E. For every such E, u(x) - l(x) + PV(u - I, E
n [a, x]) is nondecreasing and nonnegative on I.

In the existing theories of integrals of Perron type, the difference of an upper
function and a lower function is necessarily nondecreasing. In our case, noting
that PV(u — I, E D [a, x]) is nondecreasing, from Theorem 5.1 we can infer at
best that u — I is VB on /. However, using Theorems 5.1, 3.1 and noting, in
particular, that 0 < u{b) - l(b) + PV(u - / , / ) < u(b) - l(b) + PV(u, I) +

PV(l, I), and using accordingly minor modifications of standard arguments, there
are no difficulties in proving:

THEOREM 5.2. ( i ) / G ? ( / ) // and only if there exist, for every e> 0,at least one
u G Ue(f, I) and at least one I G Le(f, I) such that \u(b) - l(b)\< e.

(ii) IffGP(I), then l(b) - PV(l, / ) < / * / < u(b) + PV(u, I), for all I G
L(f,I)andu(E U(f, I).

(iii) / / / , g G P(J) and p, q are finite constants, then (/>/+ qg) G P(I) and

(iv) / / / , and I2 are abutting closed intervals whose union is I, then f G P(I) if
and only iffG P(It) (1 P(I2); also, whenfGP(I) then f * / = / * / , +f*I2-

We see, in particular, that when/ e P(I) then/ e P([a, x]) for all x G 7°. We
shall write F= (TP)(/, / ) to mean that / G /»(/) and that F is the indefinite
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(TPyintegral off on I, defined on R by F(x) = f * [a, x] for a < x < b, F(x) = 0
for x < a and F(x) = F(b) for x > b.

THEOREM 5.3. Let F = (TP)(/, /). Then (i) «(x)-F(x) + PK(a,[a,4 is
nondecreasing on I and V(u - F, / ) < u(b) - F(b) + 2PV(u, I), for all u G
U(f, I), and (ii) F(x) - l(x) + PV(l,[a, x}) is nondecreasing on I and V(F -
/, / ) < F(b) - l(b) + 2PV(l, I), for all I G L(f, I).

PROOF. Fix [c, d] C /. Since u - u(c) G U(f,[c, d]), using Theorem 5.2(iv,ii)
we get F(d) - F(c) < u(d) - u(c) + PV(u - u(c),[c, d]) = u(d) - u(c) +
PV(u,[a, d]) - PV(u,[a, c]), by Theorem 3.1(ii) and Corollary 3.4.3. This proves
the first part of (i), from which the second part follows at once by noting that
PV(u,[a, x]) is also nondecreasing. Proof of (ii) is similar.

THEOREM 5.4. Let F ~ (TP)(/, / )• Then F is T-continuous and (PAC) on I, and
(ap)F' = fa.e. on I.

PROOF. Fix c G [a, b). Given e > 0, we can find u G Ue(f, I) and / G Le(f, I)
such that u(b) - F(b) < e and F(b) - l(b) < e. Then, by Theorem 5.3 -e <
u(x) - F(x) < 2e and -e < F(x) - l(x) < 2e, for all x G /. Also, by defini-
tions, u(c) <Tu(c + ) and Tl(c + ) < /(c), and there is a T+ -vicinity, Fsay, of c
contained in / such that, for all x G V, \u(x) — Tu(c + ) |< e and \l(x) —
Tl(c + ) |< e. So, for all x G V, we have F(c) - 4e < u(c) - 3e < Tu(c + ) -
3e < u(x) -2e< F(x) < l(x) + 2e < Tl(c + ) + 3e < /(c) + 3e < F(c) + 4e,
whence |F(x) - F(c)\< 4e. Hence T/"(c + ) = F(c). Similarly, TF(c-) = F(c)
for c G (a, b]. Therefore F is T-continuous on /.

Next, given e > 0, we can find / G L(f, I) such that F(b) - l(b) + 3PV(l, I)
< e. Then, by Theorems 3.1(i) and 5.3(ii), we get PV(F, / ) < PV{F - / , / ) +
PV(l, I) < V(F - / , / ) + PV(l, I) < /"(ft) - l(b) + 3PV(l, I) < e. Since e > 0
is arbitrary, it follows that F is (PAC) on I.

Finally, by Theorem 3.3, (ap)F' exists finitely a.e. on /. Given e > 0, set
Ie = {x G /| |(ap)F'(x) - / ( * ) ! > <?}• Recalling Theorem 5.3, we can find u G
U(f, I) and / G L(f, I) such that V(u - F, I) + V(F - / , / ) < e2. Then, since
(op)/' < / < (ap)u' a.e. on /, and since u — F and F — I are VB on /, for almost
all x £ / e w e have

e <\{ap)F'{x) - f{x)\

^\(ap)u'(x) - (ap)F'(x)\ + \(ap)F'(x) - (ap)l'(x)\

= \(u-F)'(x)\ + \(F-iy(x)\.
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Also, by a known result (Varberg (1965), Theorem 14), the L-integral of |(M - F) ' |
+ \(F- l)'\ on / cannot exceed V(u - F, I) + V(F - I, I). Hence it follows
that e.\Ie\<e2, that is, \Ie\<e, which completes the proof, since e > 0 is
arbitrary.

It is interesting and useful to note that F— (TP)(/, / ) if and only if F G
Ue(f, I) n Le(f, I) for every e > 0, F(x) = 0 for x < a and F(x) = F(b) for
x > b. Again, Burkill and Haslam-Jones (1931) have shown that approximate
derivates of measurable functions are measurable. Also, u — F and F — I being
VB are continuous n.e. on /. So we readily obtain:

COROLLARY 5.4.1. (i) / / / e P ([a, x])for all x G 7° and if TF(b-) exists finitely,
where F(x) =f*[a, x], thenf& P(I) andf * I = TF(b-).

(ii) / / / G P ([x, b]) for all x G 7° and if TF{a + ) exists finitely, where
F(x) =f*[x, b], thenfe P(I) andf* I = TF(a + ).

(iii) Iff G 7>(7), then f is measurable on I and the (TP)-upper and lower functions
of f on I are T-continuous n.e. on I.

If / is L-integrable on 7, then/ G 7^(7) since the indefinite L-integral is AC. On
the other hand, we have:

COROLLARY 5.4.2. Let F = (TP)(/, 7), g be L-integrable on I, andfm g a.e. on
I, or, g < /a .e . on I. Then f is L-integrable on I and F(b) is the definite L-integral
of f on I.

PROOF. Suppose, to fix the ideas, t h a t / < g a.e. on 7. Let u(x) denote the
L-integral of g on [a, x], x G 7. Clearly then « G U(f, I) and, hence, u — Fis VB
on 7. Since u is AC, it follows that F is VB on 7, and, hence, being ^-continuous it
must also be continuous. Furthermore, being (PAC), F satisfies the condition (N)
on 7 by Corollary 3.2.1. Hence, by Banach-Zarecki theorem, Fis AC on 7, and the
proof ends by noting that F' = (ap)F' = /a .e . on 7.

THEOREM 5.5 (integration by parts). Let F = (TP)(/, 7) and G = (TP)(g, 7),
and let Fg G 7>(7). Then fG G P(I) and(fG) *I= F(b)G{b) - (Fg) * I.

PROOF. By Theorem 5.4, F and G are both T-continuous and (PAC) on 7. So
FG is T-continuous on 7 and, by Corollary 3.4.2, it is also (PAC) on 7. Hence
FG = (T?j((ap)(FG)', I), and the proof ends by noting that (ap\FG)' - fG +
Fg a.e. on 7.

The subtlety of our next two theorems is noteworthy.
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THEOREM 5.6 (first mean value theorem). Let H = (TP)(/g, / ) , G = (TP)(g, / ) ,
G(b)¥-0, and ess-inf, g s= 0, or, ess-sup, g < 0 . Set p = H(b)/G(b) and E
= {x G I\g(x) ¥= 0}. Then either (i) ess-inf//<p < ess-sup,/ or, (ii) / = p a.e.
on E,\E\> 0, and p has one of the values ess-inf7 for ess-sup,/. (G(b) = 0 implies
H(b) = 0.)

PROOF. Assume that (i) is false. Then either ess-inf7(/ — p) > 0 or ess-sup7(/
— p)^0. Therefore, either ess-inf7(/g — pg) > 0 or ess-sup/(/g — pg) «£ 0.
Hence it follows first from Corollary 5.4.2 that ( / — p)g is L-integrable on / , and
then from the relation (/g - pg) * I = (/g) * / - p(g * I) = H(b) - pG(b) - 0
that ( / - p)g = 0 a.e. on /. So / = p a.e. on E. But | E|> 0, since G(b) ^ 0.
Hence ess-inf7/< /> < ess-sup,/, which completes the proof, since (i) has been set
aside.

THEOREM 5.7 (second mean value theorem). Let F = (TP)(/, / ) , G = (TP)(g, / ) ,
H = (TP)(Fg, / ) , G(b) ¥= 0, and ess-inf/g > 0, or, ess-sup7g < 0. Then there is a
point c G I such that (fG) * I = G(b)(F(b) - F(c)\ and such that either (i) inf,F
< F(c) < suprF, or (ii) F = F(c) a.e. on E = {x G I\g(x) ¥= 0}, | £ | > 0, and
F(c) has one of the values inf,F or sup,F.

PROOF. By Theorem 5.5, (fG) * I = G(b)(F(b) - H(b)/G(b)). Also, since F
is T-continuous and (PAC) on / , Theorem 4.1 and Corollary 3.2.1 together imply
that ess-inf, F = inf, F and ess-sup7 F = sup7 F. Hence the required result follows
at once by using Theorems 5.6, 4.1 (with / replaced by F).

NOTATION. For E C I, fE is the function defined on R by fE(x) — f(x) if
x G (dom / ) n E andfE(x) = 0 otherwise.

THEOREM 5.8. Let {/„ — [an, bn]} be a sequence of nonoverlapping closed subin-
tervals of I and G = Un 7°. Suppose Fn = (TP)(/, 7n) and 2n\Fn(bn)\< 00, and,
defining F0(x) = 2nFn(x), TF0(x-) and TF0(x + ) exist finitely for all x and,
further,
(*) 2 {\TFo(x+)-Fo(x)\+\Fo(x)-TFo(x-)\}<<x.

xER

Then F = (TP)( fc, I), where F is defined on R by

F{x) = TF0(x-) - 2 (TF0(c +) - TF0(c-)).
c<x

PROOF. The condition 2\Fn(bn)\< 00 implies that 1Fn(x) is absolutely conver-
gent for all x, and so Fo is well defined. Again, the condition (*) implies that Fo is
T-continuous n.e., and that F is well defined.
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Now, recalling that To C T and using the condition (*) accordingly, it is easily
seen that TF(x + ) = F(x) = TF(x-) for all x. Again, for x G /„ we have
F0(x) = F0(an) + Fn(x), which evidently implies that, for each n, F is (PAC) on
/„ and (ap)F' = (ap)F^ = /a.e. on /„. Also, f o r x G 5 = / \ G w e have

F(x) = {TF0(x-) - F0(x)} + f 2 Fn{bn) - 2 (TF0(c +) - TF0(c-))\.
c < *

The first part on the right, being VB and 0 n.e. by the condition (*), has derivative
0 a.e., and is (PAC) on R, by Theorem 3.6; and the second part has also the same
properties, by Corollary 3.6.1. Therefore Fis (PAC) on S and, further, (ap)F' = 0
a.e. on S, since G has density 0 a.e. on S.

Summing up, F is T-continuous on R, it is (PAC) on / by Corollary 3.4.1, and
(ap)F' = fG a.e. on /. This completes the proof, since evidently F(x) = 0 for
x < a and F(x) = F(b) for x > b.

Finally we prove the most interesting result:

THEOREM 5.9 (generalized Marcinkiewicz theorem). Suppose f is measurable on I
and there exist at least one u G U(f, I) and at least one 1 £ L(f, I). Then

PROOF. Let Eo denote the set of the points x G / such that/ £ P(I n / ) for all
closed intervals / with x G J°. Then Eo is closed. It is enough to show that
EQ= 0.

Suppose, for a contradiction, that EQ^ 0. We first show that, if [p, q] is the
closure of a component of I\E0, then/ G P([p, q]). Evidently/ G P(J) for any
closed interval / C (p, q). Fix c G (p, q) and set F{x) = / * [c, x], x G (c, q).
Theorem 5.3 implies that u(x) - F(x) + PV(u,[c, x]) and F(x) - l(x) +
PV(l,[c, x]) are nondecreasing on (c, q). Since, moreover, Tu(q-) and Tl(q-)
exist finitely and u, 1 are (PVB) on /, it is readily seen that TF(q-) exists finitely.
So, by Corollary 5.4.1 (i), /G/»([c, q]). Similarly, f£P([p, c]). Hence / G
P([ /?, q]). In particular, therefore, £0 is perfect.

Now, by Theorem 3.3, u and / are (VBG) on /. Then, since Eo is perfect, using
Baire theorem we can find a closed interval J = [p, q], withp,q G Eo, such that
Eonj°¥^0 and such that u and / are both VB on E = EQ fl 7. Let {/„ =
l/V ?«]} denote the sequence of the closures of the components of J\E, and let
M0 and /0 denote respectively the functions obtained by extending u\E and l\E
linearly on each of the intervals /„. Then u0 and /0 are both VB on / . Evidently
(ap)u' = u'o and (ap)l' — l'o, a.e. on E. Since, further, (ap)u' >f> (ap)l' a.e. on
E and / is measurable on E, it follows that fE is L-integrable and, hence,
fE 6 P(J).
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Next, we shall verify the hypotheses of Theorem 5.8 on J. As already shown,
/ G P(Jn) for all n. Let Fn = (TP)(/, Jn). Theorem 5.2(ii) implies that l(qn) -
KPn) ~ PV(1, /„) < Fn(qn) < u(qn) - u(pn) + PV(u, Jn). Therefore 2 \Fn(qn)\<
oo, since u and / are VB on E. Hence the function F0(x) — 2-Fn(x) is well defined,
and we have F0(x) — 0 for x < p and F0(x) = F0(q) for x > q.

Now fix c G [p, q]\ Un[pn, qn). For x G (c, q) we have

(1) F0(x) = F 0 (c)+ 2

(2) F0(x) = F 0 (c)+ 2 ^ ( ? J + ^ ( * ) ifxG(Pk,qk).

Also, by Theorem 5.2(ii), for x G (/?£, qk) we have

(3) /(*) -l{pk) -PV(l,[Pk,x])

< F,(x) < u(x) - u(pk) + PV(u,[pk, x]).

Moreover, since u — 1 is VB on / , and since c is a limit point of E on the right, we
have Tu(c + ) - 77(c + ) = T(u - /)(c + ) = ( « - /)(c + ) = (M0 - /0)(c + )
= MO(C + ) — /0(c + ), whence

(4) 7 Y / ( C + ) - K O ( C + ) = 7 7 ( C + ) - / O ( C + ) .

Finally, when qk-* c + in (3), then l(pk) = /0(/>*) -»/<>(c + ) a n ^ u(Pk) =

uo(Pk) -* uo(c + ). and, by Corollary 3.4.4, P ^ / , [pk, x]) -> 0 and

It is now clear from (2) through (4) that, if J\E is a T+ -vicinity of c, then
TT^c + ) = F0(c) + Tu(c + ) - uo(c + ). Since u(c) = uo(c), this relation can
be written as

TF0(c +) - F0(c) = (Tu(c + ) - u(c)) - (uo(c + ) - IIO(C)).

If, on the other hand, / \ £ is not a T+ -vicinity of c, then every T+ -vicinity of
c intersects E, implying thereby that uo(c + ) = Tu(c + ) and /0(c + ) =
77(c + ); consequently then it follows from (1) through (4) that TF0(c + ) = F0(c).

Again, for all xE Un[/>n, <?„) we clearly have TF0(x + ) = F0(x). Thus,
TF0(x + ) exists for all x G R and, further,

(5) | TF0(x +) - F0{x)\^\Tu(x +) - u(x)\ +\uo(x +) - uo(x)\ .

Similarly, TF0(x~) exists for all x G R and, further,

(6) \F0(x) - TFQ(x-)\<\u(x) - Tu(x-)\+\uo(x) - «„(*-)| .

But, by definitions of «, / we have 0 < Tu(x + ) - u(x) < Tu(x + ) - u(x) +
l(x) - Tl(x + )=T(u- /)(* + ) - ( « - /)(x) = (« - /)(* + ) - ( « - /XJC),

and similarly, 0 < u(x) - Tu(x-) < (M - /)(*) - (M - /)(x-). Therefore, recall-
ing that u — I and u0 are both VB on / , from (5) and (6) we conclude that
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2xeR\TF0(x + ) - F0(x)\< n and 2x£R\F0(x) - TF0(x-)\< oo. Hence, by
Theorem 5.8, fG G P(J) where G= Un /n°. Since, moreover, fE G P(J) and
fj=fE+fG, it follows that / G />(/). This contradicts that Eonj0^ 0 , and
the proof ends.

Relation with other integrals

The inclusion relations among the known integrals are as follows: L C P* =
£>„ C P = D C AP* = AD0 (Kubota (1966), Theorem 3.6), AP0 C AD0 (Kubota
(1964), Theorem 2) and AP0 C AP (Sonouchi and Utagawa (1949), Definition
1.1). In our case, by Example 4.1, (TaP) C (TpP).

Now, if/is ylD0-integrable on /, then the corresponding indefinite integral F is
^-continuous and (ACG) (and, hence, (PAC) by our Theorem 3.5) on /, and
(ap)F' = /a .e . on /. Hence F = (TaP)(f, I), proving that̂ 4Z>0 <Z (TaP).

Next, let / be ,4/Mntegrable on /, and let F be the corresponding indefinite
integral. Then F is ^-continuous on / and (ap)F' — /a.e. on /. Also, given e > 0,
there exists AP-upper and lower functions u, I such that u(b) — F(b) < e and
F(b) — l(b) < e; besides, u — F and F — I are nondecreasing on I and, by
definition, the lower approximate derivates of u (= F + (u — F)) and -1 (= -F
+ (F — /)) are greater than -oo at all points of /. Then, following the proof of
Theorem 5.4(ii) of Sarkhel and De (1981), we can find /-chains {£„} and {Fn}
such that V(-F, En; 0) < e and V(F, Fn; 0) < e, for each n. Now {£„ n Fn) is an
/-chain and, using Lemma 5.2(i) of Sarkhel and De (1981), we have, for each
n, V(F, En n Fn; 0) < V(F, En n Fn; 0) + V(-F, En n Fn; 0) < V(F, Fn; 0) +
V(-F, En; 0) < 2e. Hence it follows that F is (PAC) on /. Consequently F —
(TaP)(f, I), proving that^P C (TaP). Thus our contemplation is fulfilled.

Finally, we note that the function F of Example 3.1 is neither ACG below nor
ACG above on /, and yet F = (TaP)((ap)F, I).
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