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A reactive control technique with localised actuators and sensors is used to delay the
transition to turbulence in a flat-plate boundary-layer flow. Through extensive direct
numerical simulations, it is shown that an adaptive technique, which computes the
control law on-line, is able to significantly reduce skin-friction drag in the presence
of random three-dimensional perturbation fields with linear and weakly nonlinear
behaviour. An energy budget analysis is performed in order to assess the net energy
saving capabilities of the linear control approach. When considering a model of
the dielectric-barrier-discharge (DBD) plasma actuator, the energy spent to create
appropriate actuation force inside the boundary layer is of the same order as the
energy gained from reducing skin-friction drag. With a model of an ideal actuator a
net energy gain of three orders of magnitude can be achieved by efficiently damping
small-amplitude disturbances upstream. The energy analysis in this study thus provides
an upper limit for what we can expect in terms of drag-reduction efficiency for linear
control of transition as a means for drag reduction.
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1. Introduction
In low free-stream turbulence conditions, the transition to turbulence in a flat-plate

boundary layer is dominated by Tollmien–Schlichting (TS) instabilities. These
disturbances have the form of travelling waves that grow exponentially while
propagating downstream. When they reach a critical amplitude, around 1 % of the
free-stream velocity, they nonlinearly interact with each other, eventually leading to a
turbulent state. This scenario is known as the classical route to transition, as described
in the review work by Kachanov (1994). Since a turbulent boundary layer leads to
higher friction force, it is of engineering interest to develop control techniques that
allow the flow to stay laminar as long as possible.

The general aim is to control the TS-waves instabilities when their amplitude is still
small such as they reach the critical amplitude farther downstream. In this way, the
nonlinear breakdown is used to our advantage; the disturbances are cancelled when
their amplitude is low and the force requirement is small, where one can expect
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Efficiency and limitations of linear adaptive control for transition delay 61

that the energy saving due to the drag reduction induced by the transition delay is
very large. These considerations lead to an inherent – but not verified – high energy
gain by this control strategy. Because of its potential, reactive flow control has been
subjected to several studies in the past decades; the two-dimensional (2-D) control of
flow instabilities has been widely investigated both from a numerical (e.g. Bagheri,
Brandt & Henningson 2009; Dadfar et al. 2013) and experimental (e.g. Kurz et al.
2013; Juillet, McKeon & Schmid 2014; Kotsonis, Shukla & Pröbsting 2015) point
of view. Successful attempts to control complex 3-D environments can be found in
the literature (Li & Gaster 2006; Semeraro et al. 2013; Dadfar et al. 2014) but, to
our knowledge, no systematic study on transition delay and energy saving has been
conducted yet.

The present work aims to understand the transition-delay capabilities of reactive
flow control and assess the potential net energy saving. In particular, the present work
focuses on an adaptive control technique, which is based on an on-line computation of
the control law. This is in contrast to static control techniques (Semeraro et al. 2013;
Juillet et al. 2014), where the control law is precomputed, usually based on a model
of the flow.

A multi-input multi-output (MIMO) filtered-x least-mean-squares (fxLMS) algorithm
is used. This adaptive control technique has been studied by the experimental
community and shown to be effective in 2-D TS-wave control (Sturzebecher &
Nitsche 2003; Kurz et al. 2013; Kotsonis et al. 2015). The fxLMS algorithm allows
better stability and convergence with respect to conventional least-mean-squares
(LMS) algorithms, when the error signal – i.e. the measurement of the cost function
– is accessible only via a transfer function, called the secondary path (Ardekani &
Abdulla 2010). This is typical of the control of convective instabilities in feed-forward
configuration, where the flow acts as a secondary path. In particular, a recent study
by Fabbiane et al. (2015b) highlighted its robustness to varying external conditions
when compared to static control. In particular, the algorithm was able to change the
control law when the free-stream velocity was slightly varying from the nominal
condition. The weak nonlinearities that TS-waves encounter in the first stages of the
transition to turbulence can also be regarded as uncertainties; therefore, the algorithm
should be able to adapt to the weak nonlinearities and extend the transition-delay
capabilities of the investigated control set-up.

The manuscript is organised as follows: after a brief introduction to the numerical
set-up (§ 2) and the implemented adaptive algorithm (§ 3), the control performances
are investigated in linear (§ 4.1) and nonlinear (§ 4.2) regimes and transition-delay
capabilities are analysed (§ 4.3). Finally, the energy efficiency of reactive transition
delay is evaluated (§ 5) by using both ideal actuators and plasma-actuator models.

2. Numerical simulations
The incompressible Navier–Stokes equations govern the flow:

∂u
∂t
+ (u · ∇)u=−∇p

ρ
+ 1

Re
∇2u+ λ(x) u+ f , (2.1)

∇ · u= 0, (2.2)

where ρ is the density, u(x, t) the velocity, p(x, t) the pressure at each time t and
position x = (X, Y, Z) ∈ Ω . The axis X is aligned with the uniform and constant
free-stream velocity U∞, Y is normal to the surface and Z defines a right-hand triad
with the others, see figure 1. A semi-infinite flat plate with infinitesimal thickness lies
in the XZ-plane, on which a no-slip condition is enforced. Using a pseudo-spectral
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X

Y

Z
Reference sensors (y)

Actuators (u)
Error sensors (z)

Disturbances (d)

FIGURE 1. (Colour online) Control set-up. Random 3-D disturbances are generated by a
row of localised independent forcings d. The measurements from the sensors y and z are
used by an adaptive fxLMS algorithm to compute the actuation signal for the actuators u
in order to reduce the amplitude of the detected disturbances.

code (Chevalier et al. 2007), direct numerical simulations (DNS) and large-eddy
simulations (LES) are performed in order to analyse the control strategy. Periodicity
is assumed in the spanwise and streamwise directions; the fringe forcing λ(x) enforces
periodicity in the streamwise direction in the last 20 % of the streamwise domain
length (Nordström, Nordin & Henningson 1999). The volume forcing f is used to
introduce the disturbance and perform the control action, see § 2.1. Spatial coordinates
and velocities are non-dimensionalised by the displacement thickness in the beginning
of the domain δ0 and the free-stream velocity U∞ respectively. The resulting Reynolds
number is defined as Re= δ0U∞/ν= 1000, where ν is the kinematic viscosity. For the
time integration a fourth-order Crank–Nicholson/Runge–Kutta method is used with a
constant time step 1t= 0.4.

Two different computational domains are used in this work. A shorter domain
ΩS is used for the parametric study over the perturbation amplitude in § 4.2. It
extends for [0, 1000] × [0, 30] × [−75, 75] in the X, Y and Z directions and
the flow is expanded over 1536 × 384 Fourier modes in the XZ-plane and 101
Chebyshev’s polynomials in the wall-normal direction. A second and longer domain
ΩL is used to assess the transition delay and energy saving capabilities of the control
technique in § 4.3. It extends for [0, 2000] × [0, 45] × [−125, 125] and it uses
1536 × 151 × 384 Fourier–Chebyshev–Fourier basis. Dealiasing is performed along
the Fourier-discretised direction with a 3/2 rule.

Depending on the disturbance magnitude, turbulence may appear at the end of the
longer domain. Since we are interested in the onset of turbulence and not in turbulence
itself, a relaxation-term model (ADM-RT) is used as subgrid model (Schlatter, Stolz
& Kleiser 2004; Schlatter et al. 2010): in this way, we do not have to increase the
spatial resolution in order to resolve the turbulent scales. This model has shown to be
accurate and robust in predicting transitional flows (Schlatter et al. 2004).

2.1. Inputs and outputs
The input/output (I/O) set-up is composed of four rows of equispaced and independent
objects (figure 1). Two rows of sensors – yl and zl – are placed at X = 300 and
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Efficiency and limitations of linear adaptive control for transition delay 63

X = 500: the former detects the upcoming disturbances and the latter measures the
performance of the control action. The control is performed by a row of actuators
ul positioned at X = 400. These objects are positioned with a constant spanwise
separation to cover the domain span. Semeraro et al. (2013) showed that a spanwise
spacing 1Z = 10 is necessary to effectively control a TS wavepacket for the current
set-up; this results in 15 objects per row in the smaller domain ΩS and 25 in the
larger domain ΩL. The disturbances are introduced farther upstream at X = 65 by a
row of synthetic vortices dl; the reference value for the disturbance is measured at
X = 100, where the perturbation is fully developed (see § 2.2). Disturbance sources
and actuators are modelled by the forcing term f (X, Y, Z, t) in (2.1):

f = f d + f u =
∑

l

bd,l dl(t)+
∑

l

bu,l ul(t). (2.3)

The constant spatial functions bd,l(X, Y, Z) and bu,l(X, Y, Z) are modulated by the
disturbance and control signals dl(t) and ul(t), respectively.

Disturbance sources are modelled by localised synthetic vortices (Semeraro et al.
2013),

bd,l =
 χ Ỹ
−γ X̃

0

 exp(−X̃2 − Ỹ2 − Z̃2), (2.4)

where
X̃ = X − Xd,l

χ
, Ỹ = Y

γ
and Z̃ = Z − Zd,l

ζ
. (2.5a−c)

The lth disturbance source is centred at (Xd,l, 0, Zd,l) and its spatial support is given
by χ = 2, γ = 1.5 and ζ = 4.

The control actuators are modelled as plasma actuators based on the experimental
data by Kriegseis et al. (2013). This type of actuator has been adopted by Kurz et al.
(2013), Fabbiane et al. (2015b), Kotsonis et al. (2015).

Following the work by Fabbiane et al. (2015b), localised measurement of the
streamwise skin friction are used as sensors in order to model surface hot-wires
(Sturzebecher & Nitsche 2003; Li & Gaster 2006; Kurz et al. 2013). Each signal is
subtracted by its time average over 750 time units in order to remove the mean-flow
contribution to the wall stress.

2.2. Flow configurations
Each disturbance source dl is independently fed with unitary uniform white noise wl(t),

dl(t)= ad wl(t), (2.6)

where the gain ad defines the amplitude. A uniformly distributed noise provides
a better control of the maximum forcing amplitude that is fed to the flow, since
the disturbance signal ranges between ±ad. Since the disturbance forcing in (2.4)
is aligned with the streamwise direction and its spanwise component is zero, the
resulting perturbation is dominated by the TS-wave.

Table 1 reports the flow configurations that are used in this work. The amplitude
of the perturbation field is defined as:

A2(X)=max
Y

〈(
u′

U∞

)2
〉

Z,t

, (2.7)
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ad A(100) A(400) Short box (ΩS) Long box (ΩL)

Linear behaviour

1.0× 10−4 0.06× 10−3 0.01× 10−2 S-LIN0 —
1.0× 10−3 0.56× 10−3 0.09× 10−2 S-LIN1 L-LIN1
2.0× 10−3 1.13× 10−3 0.19× 10−2 S-LIN2 L-LIN2

Weakly nonlinear behaviour

3.0× 10−3 1.70× 10−3 0.33× 10−2 S-WNL1 L-WNL1
4.0× 10−3 2.26× 10−3 0.55× 10−2 S-WNL2 L-WNL2

Nonlinear behaviour

5.0× 10−3 2.83× 10−3 0.86× 10−2 S-NL1 L-NL1
6.0× 10−3 3.40× 10−3 1.33× 10−2 S-NL2 L-NL2
7.0× 10−3 3.98× 10−3 2.03× 10−2 S-NL3 L-NL3

Transitional behaviour

8.0× 10−3 4.56× 10−3 2.97× 10−2 S-TR1 L-TR1
9.0× 10−3 5.11× 10−3 4.00× 10−2 — L-TR2
1.0× 10−2 5.68× 10−3 5.21× 10−2 — L-TR3

TABLE 1. Flow configurations. The simulations are classified by the perturbation behaviour
in the actuation region. The disturbance signals dl(t) are uniform white noises that range
between ±ad. The amplitude A(X) of the resulting perturbation field is reported close
downstream of the disturbance source (X = 100) and at the actuators position (X = 400).

where u′ is the streamwise component of the velocity with respect to the mean
flow. The angled brackets 〈·〉 indicate the average operator and the subscripts the
averaging variables. In table 1, the perturbation amplitude is reported at X = 100,
closely downstream to the disturbance-source location; a linear relation holds between
the measured perturbation amplitude and the disturbance signal range ad for all the
investigated flow cases. Hence, A(100) is used to identify the introduced disturbance
in the following.

The cases are grouped according to the perturbation behaviour at the actuators
location (X = 400). In this study, three levels of nonlinear behaviour are identified.
The flow is weakly nonlinear when the perturbation amplification deviate from
the linear prediction but the control algorithm performance is not effected by the
nonlinearity. Increasing the amplitude further, however, the adaptive algorithm is able
to compensate only partially for the nonlinear behaviour of the flow; this scenario is
thus identified as nonlinear. By increasing even further the disturbance amplitude, the
laminar-to-turbulent transition reaches the actuation location and the control does not
effectively control the perturbation field. The latter flow cases are transitional.

3. Control strategy
The control action is performed by a row of localised, equispaced actuators forcing

the flow in the proximity of the wall. Their action ul(t) is computed based on the
measurements ym(t) by a row of sensors upstream of the actuators: in this study, the
number of sensors is equal to the number of actuators and they are aligned with the
flow direction (figure 1).

A block diagram of the current set-up is shown in figure 2(a). The plant is the
result of the interaction of the flow, sensors and actuators; it is the I/O description of
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FIGURE 2. (Colour online) Compensator structure. The action of each actuator um is
computed by filtering the signals from all the sensor yl via a linear filter Km. An adaptive
fxLMS filter is responsible for computing the Km response in order to maximise in real
time the control performances measured by the error sensors zl.

the system that is meant to be controlled. In the linear approximation, the reference
sensors signals yl are given by the disturbances dl filtered by the transfer function
Pyd. The reference signal is fed to the compensator that computes the control action
ul via the control law K. No contribution to yl comes from the control signals ul
because the reference sensors are positioned upstream of the actuators and TS waves
are convective instabilities. This leads to a feed-forward control strategy (Fabbiane
et al. 2014). As shown by Belson et al. (2013), this configuration leads to better
performance but it lacks robustness. Therefore, an adaptive method is used to create a
closed loop on the control law via the performance outputs zl and recover robustness:
this loop operates on a larger time scale than the control law K and it recovers
robustness for slow changes of the plant response (Fabbiane et al. 2015b).

We assume a linear control law and an equal number (M + 1) of sensors and
actuators. As a consequence, the number of transfer functions between the M + 1
sensors ym and the actuators ul is (M + 1)2. This imposes a computation constraint
when M+ 1 is large, which is the case when covering a large spanwise width with the
controller. However, since the flow is spanwise homogeneous, the same transfer Km
function from all the sensors yl to one actuator can be replicated for each actuator um
(figure 2b). This assumption reduces the number of transfer functions to be designed
from (M + 1)2 to M + 1. The finite impulse response (FIR) filter representation of
the control law reads,

ul(n)=
M/2∑

m=−M/2

N∑
j=0

Km( j) ym+l(n− j), (3.1)

where ul(n) and yl(n) are the time-discrete control and measurement signals
respectively, Km( j) ∈ R(M+1)×(N+1) is the convolution kernel of the compensator and
N1t is the time horizon of the FIR filter (Aström & Wittenmark 1995).

The design of the compensator consists of computing the time-discrete convolution
kernel Km( j). In this work, a MIMO version of the fxLMS algorithm is used
to dynamically design the compensator (Sturzebecher & Nitsche 2003; Fabbiane,
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Bagheri & Henningson 2015a). The algorithm aims to minimise the sum of the
squared measurement signals zl(n), i.e. the downstream row of sensors in figure 1,

min
Km

(
M/2∑

l=−M/2

z2
l (n)

)
. (3.2)

The kernel is updated via a steepest descent algorithm at each time step,

Km(i|n+ 1)=Km(i|n)−µ λm(i|n), (3.3)

where the descend direction λm( j|n) is given by

λm(i|n)=
∂

(∑
l

z2
l (n)

)
∂Km(i)

= 2
M/2∑

l=−M/2

zl(n)
∂zl(n)
∂Km(i)

. (3.4)

In order to compute the derivative in the previous equation, it is necessary to carry
out the z(n) dependencies by the control kernel Km(i). The error sensor signal is given
by the superposition of the disturbance sources dl and actuators ul,

zl(n)= zl,d(n)+ zl,u(n). (3.5)

Only the term zl,u depends on the control law Km(i) via the transfer function Pzu,r( j),

zl,u(n) =
∑

r

∑
j

Pzu,r( j) ur+l(n− j)

=
∑

r

∑
j

Pzu,r( j)
∑

m

∑
i

Km(i) ym+r+l(n− j− i)

=
∑

m

∑
i

Km(i)
∑

r

∑
j

Pzu,r( j) yr+m+l(n− j− i)

=
∑

m

∑
i

Km(i) fm+l(n− i), (3.6)

where fl(n) =
∑

r

∑
j Pzu,r( j) yr+l(n − j) are the filtered signals. For the sake of

simplicity, the limit of the sums are omitted in (3.6): indices r, l step from −M/2
to M/2 and i, j from 0 to N. The same spanwise homogeneity assumption has been
made for the plant kernel Pzu,r( j), which represents the transfer functions ur → zl.
Hence the descent direction reads

λm(i|n)= 2
M/2∑

l=−M/2

zl(n)
∂zl(n)
∂Km(i)

= 2
M/2∑

l=−M/2

zl(n)fm+l(n− i). (3.7)

Note that this method is not completely model free as Pzu,l+m(i) is needed to compute
fl(n). In this paper, this transfer function is computed via a linear impulse response of
the actuator ul. This transfer function is commonly addressed as the secondary path
(Sturzebecher & Nitsche 2003). The secondary path provides the control algorithm
with information on how the actuators can affect the flow. In the current study the
secondary path is obtained via a linear DNS of the impulsive response of one actuator.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.707


Efficiency and limitations of linear adaptive control for transition delay 67

45

Uncontrolled(a)

(b)

fxLMS

–125
0
125

–125
0
125 0

200
400

600
800

X

Z

Z

Y

1000
1200

1400
1600

–0.07

0

0.07

0

FIGURE 3. (Colour online) Disturbance attenuation and transition delay. The shaded
grey area reports the skin-friction fluctuations τ ′w (3.8). The green surfaces indicate the
λ2-criterion with a threshold of −2×10−3. The disturbance sources result in a perturbation
field with amplitude A(100)= 0.11× 10−2 (case L-LIN2). The fringe region is not shown.

3.1. The compensator in action
The fxLMS algorithm is used to control randomly generated perturbations. Figure 3(a)
shows the transition to turbulence in the uncontrolled case. The flow is perturbed with
25 disturbance sources; each one of these inputs is fed with an independent uniform
white noise signal that ranges between ±2 × 10−3, (L-LIN2 in table 1). In figure 3,
turbulent eddies are visualised by the λ2-criterion in green (Jeong & Hussain 1995);
the disturbances grow and trigger transition in the second half of the domain. The
grey shaded area shows the friction fluctuation τ ′(X, Z, t) at the wall with respect to
the laminar solution:

τ ′w = τw − τw,lam. (3.8)

From the friction footprint, it can be seen that the disturbance sources create a
random pattern of TS-wavepackets that grow while being convected downstream by
the flow. When they reach a critical amplitude, they nonlinearly interact and trigger
turbulence. The controlled configuration is shown in figure 3(b); the transition process
is delayed, within the same disturbance environment. The disturbance amplitude drops
downstream of the actuators (in blue) and the transition is significantly delayed with
respect to the uncontrolled case. The step size µ is set equal to 10−5/σ 2

f , where σ 2
f

is the variance of the filtered signal fl(n).
The algorithm builds the control kernel Km(i) on-line based on the measurements

upstream and downstream of the actuation region. In a low disturbance environment,
the kernel will eventually converge to a steady solution; figure 4 shows the control
kernel Km(i) for the presented simulation. The subscript m is the spanwise shift
between actuator ul and reference sensor ym+l, hence it is directly related to the
spanwise support of the control law. Its compact support in the spanwise direction
indicates that the information given by the sensor is relevant only to compute the
control signal for a limited number of actuators. This fact is related to the spanwise
spreading of a wavepacket and shows how the control kernel is related to the structure
of the disturbance that it is meant to control. The spanwise support of the control
kernel is independent of the streamwise distance between sensors and actuators rows,
as reported by Fabbiane et al. (2015a).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.707


68 N. Fabbiane, S. Bagheri and D. S. Henningson
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FIGURE 4. Control kernel. The thick line indicates K0(t), i.e. the connection between
sensors and actuators at the same spanwise location.

4. Control performance and limitations
In this section, the performance of the control is analysed for small (§ 4.1) and

increasing magnitudes of the perturbation field (§ 4.2), up to the point where no
transition delay and drag reduction are observed (§ 4.3).

4.1. Linear control of linear perturbations
In order to better understand how the compensator acts on the flow, the performance
of the controller is studied when the perturbation field is small enough for its
behaviour to be considered linear. For the flow case S-LIN0, the smaller computational
domain ΩS is used and the flow is perturbed by 15 disturbance source fed by 15
independent uniform white noise signals with amplitude ad = 1.0× 10−4.

A Fourier transform is computed in time and in the spanwise direction. Hence a
general flow quantity, e.g. the streamwise wall stress τw, is transformed as:

τ̂w(X, β, ω)= (Fz ◦Ft)(τw(X, Z, t)), (4.1)

where β and ω are the spanwise wavenumber and angular frequency, respectively. The
temporal transform is based on 512 flow fields, 10 time units apart from each other;
they are sampled after simulations reach statistical uniformity.

Figure 5(a,b) shows uncontrolled and controlled spectra for the skin friction τ̂ at
the error sensor location, X = 500. In the uncontrolled case, the disturbance field is
present in a limited region of the spatio-temporal frequency space. The effect of the
control is to damp the peak near to (ω, β)/2π = (0.01, 0), as can be observed in
figure 5(b).

The control also introduces some disturbances that are not present in the
uncontrolled case, such as the double peak at β/2π = 0.1 in figure 5(b). This
perturbation is introduced by the actuators’ spatial shape and spanwise distribution.
These peaks are present for the superharmonics of the fundamental spanwise
wavenumber of the actuator spacing 2π/1Z. The actuator spacing is chosen according
to Semeraro et al. (2013) in order to avoid these disturbances having support in the
TS-wave region and, hence, interacting with the control action. Because of the limited
amplitude and their short spanwise wavelength, they do not appear to compromise
the control effect, also for higher disturbance levels.

The streamwise wall stress τw is a measurement of the disturbance at the surface.
An integral measurement along the wall-normal direction is introduced to assess
whether an overall reduction of the disturbance is correlated to a reduction of τw:

A2
e(X, β, ω)=

∫ LY

0
|û(X, Y, β, ω)|2 dY, (4.2)
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FIGURE 5. (Colour online) Control performance in low disturbance environment: (a,b)
depict the skin-friction spectra τ̂ for controlled and uncontrolled simulations at zl-sensors
location X= 500, while (c,d) report the energy-based amplitude Ae at the same streamwise
location. The spectra refer to the flow case S-LIN0, see table 1. The dark blue areas
indicate values below the lower bound of the colour bar. The white cross indicates the
Fourier mode reported in figure 6.
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FIGURE 6. (Colour online) Fourier mode û(X, Y, β, ω) in physical space for ω/2π≈ 0.01
and β/2π= 2/LZ . Positive (red) and negative (blue) isosurfaces depict the real part of the
streamwise velocity. The data refer to the same flow case as shown in figure 5 (S-LIN0).

where û(X,Y, β,ω) is the Fourier transform of the velocity u(X,Y,Z, t). Figure 5(c,d)
reports Ae for the controlled and uncontrolled case; both present the same features as
the wall-stress spectra in figure 5(a,b). This shows that a reduction of the disturbance
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stress corresponds to a reduction of the disturbance energy; moreover, it confirms that
the choice of measuring the disturbance amplitude by measuring its friction footprint
is prudent.

Figure 6(a) shows a mode in the region of maximum amplification for the
uncontrolled simulation. The mode has the appearance of a TS-wave triggered at
the disturbance location and spatially growing throughout the domain. The effect of
the control on the mode is clearly visible in figure 6(b); the perturbation grows until
the actuator location (X = 400), after which it is cancelled almost completely within
100 spatial units. This confirms that the cancellation is not occurring suddenly at the
actuator location. The actuator generates a counterphase wavepacket that cancels the
original disturbance at the location of the error sensor. The cancellation is optimised
at this streamwise position: downstream of this point, the disturbance and the control
wavepacket continue to develop but the cancellation is not optimal, even if still
effective. This explains why the disturbance slightly reappears downstream of the
error sensor location before being convected out of the domain. A similar behaviour
is common to all the Fourier modes in the damped region of the spectrum.

4.2. The nonlinear challenge
In this section, it is shown (i) how the linear control limits the performance of the
investigated control strategy when nonlinearity is present and (ii) how adaptivity can
reduce this performance loss. A parametric study over the perturbation amplitude is
performed, where the 15 disturbance sources in ΩS are fed with independent white
noise signals of increasing amplitude.

Once the coupled compensator–flow system has reached the statistical steady state,
the performance of the control action is tracked as a function of the disturbance level
upstream of the actuation point. As introduced in § 2.1, the sensors yl and zl measure
wall-stress fluctuations, hence they are related to the amplitude of the perturbations
at the sensing location. The amplitude measured by the error sensors is given by the
measurement signals variance,

σ 2
z =

1
M + 1

M/2∑
l=−M/2

〈zl(t)2〉t, (4.3)

where each signal zl(t) has a zero temporal mean. The performance of the control
action is assessed by the ratio between the controlled (σz,c) and uncontrolled (σz,0)
standard deviation of the error signals.

Figure 7 reports the performance indicator as a function of the perturbation
amplitude A(100). For perturbation amplitudes up to 0.11 × 10−2, the control
performance does not appear to be influenced by the disturbance amplitude. For
higher amplitudes the control performance gradually departs form the linear behaviour,
as the nonlinearities start to become relevant at the actuator position. Figure 8 reports
A(X) at the actuator location X = 400 for the uncontrolled case; the perturbation
behaves nonlinearly when A(100) is greater than ∼0.17 × 10−2. Comparing with
figure 7, it is clear that the performance loss of the control strategy is related to the
rise of nonlinearities in the flow.

The adaptivity properties of the fxLMS algorithm are favourable when it comes
to slowly varying conditions in the flow (Fabbiane et al. 2015b). However, when
it comes to nonlinearities, they are only capable of a marginal improvement of the
control performance. As introduced in § 3, the fxLMS algorithm acts on the control
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FIGURE 7. (Colour online) Performance indicator σz,c/σz,0 as a function of the seeded
perturbation amplitude A(100). The filled markers indicate the flow cases reported in
figures 9 and 10.
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FIGURE 8. Perturbation amplitude A(400) at the location of the actuators as a function
of the perturbation amplitude A(100).

law by changing the control kernel Km(i) according to the measurement from the error
sensors. The role of the adaptivity in controlling nonlinear flows is highlighted by
comparing the adaptive fxLMS algorithm to a static control law, where the adaptive
fxLMS algorithm is switched off. The red diamond symbols in figure 7 report the
control performance when the static control law is considered.

The gradual loss of performance by the compensator can be analysed by studying
the wall-friction spectra at the error sensor location; figure 9 shows the uncontrolled
and controlled spectra for increasing disturbance amplitudes, while figure 10 reports
instantaneous flow fields for the same simulation parameters. For the lowest reported
amplitude, the flow has a linear behaviour. TS-waves start to nonlinearly interact with
themselves and generate the structures close to the β-axis; this is visible both for the
uncontrolled and control cases.

As the amplitude increases (figures 9a,b and 10a) disturbances arise around
(ω, β)/2π ≈ (0.005, 0.075); the amplitude of these modes in the controlled case
is lower than in the uncontrolled one. By cancelling the perturbation in the TS-wave
region, the control is able to delay the growth of the secondary disturbances that will
eventually lead to turbulence.

Figures 9(c,d) and 10(b) show the limit amplitude for which the control has an
effect on the perturbation field. The peak related to the TS-wave is still damped but
the modes due to nonlinear interactions of the perturbation field are clearly visible in
both cases; the perturbation behaviour is already nonlinear at the actuation location
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FIGURE 9. (Colour online) Skin-friction spectra for uncontrolled and controlled
simulations at zl-sensors location X= 500. The disturbance sources produce a perturbation
field with amplitude A(100) as in the subcaption of the figures. The dark blue areas
indicate values below the lower bound of the colour bar.

(see figure 8). Finally, in figures 9(e, f ) and 10(c) the uncontrolled and controlled
simulations are almost undistinguishable; for this amplitude, transition to turbulence
will take place just downstream of the error sensor location and no transition delay is
noticeable, see § 4.3.

In all the presented scenarios it is observed that the control is able to directly
damp only disturbances in the TS-wave region. This is explained by the fact that the
algorithm uses a linear model of the flow – the secondary path Pzu,m – to identify
the control law. The model is unable to capture the nonlinear interactions of the
perturbation field and, hence, the control action focuses on the linear mechanism in
the flow.

Figure 11 shows the converged control kernel connection K0(i) between sensors and
actuators with the same spanwise location, for three different disturbance amplitudes.
Adaptive effects appear when the nonlinearities arise in the flow. In this range of
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FIGURE 10. (Colour online) Velocity fluctuations isosurfaces u′ with respect to the laminar
solution for increasing disturbance amplitude. Red and blue isosurfaces are obtained for
u′/U∞=±0.25 %. The green plane indicates the streamwise position (X= 500) where the
spectra in figure 9 are computed.

amplitudes, the fxLMS solution show slightly better performance with respect to
the static controller. At this point the nonlinearities are weak and their effect is
limited to a change in the amplification and phase shift of the travelling waves.
The algorithm modifies the control kernel by increasing the gain and reducing the
time shift between sensors and control signals (dashed line in figure 11). However,
the adaptive capabilities of the algorithm have a limit. Since the nonlinear flow
modification also has an effect on the input/output behaviour of the system, the
secondary path model used by the algorithm is no longer consistent with the real
secondary path in the flow. The algorithm is able to compensate this error if the
phase difference between real and modelled secondary path is lower than π/2 in
absolute value (Snyder & Hansen 1994; Simon et al. 2015). Hence, the control will
continue to reduce the amplitude of the disturbances modelled by the secondary path,
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FIGURE 11. (Colour online) Comparison of the control kernels K0(i) for three different
disturbance levels. The kernel for the case S-LIN0 is also the static control law in figure 7.

up to the point where the phase error caused by the nonlinearities in the flow is large
enough to destabilise the fxLMS algorithm.

At this point, the performance margin given by the adaptivity with respect to the
static control tends to zero. This occurs when the transition is incipient in the region
of the flow where the control action takes place, as seen in figure 9(g–h). The dot-
dashed line in figure 11 shows the control kernel in this scenario; the flow is already
transitional at the actuator location and the adaptive algorithm introduces non-physical
solutions of the control kernel.

4.3. Transition delay
It has been shown in the previous section that the control is able to reduce the
perturbation amplitude downstream of the actuators. This section analyses how this
disturbance reduction translates into a transition delay. The long box ΩL is used to
assess where the transition to turbulence occurs both in uncontrolled and controlled
cases.

Delaying the laminar–turbulent transition means extending the portion of the flow
that is laminar, which results in a lower total skin friction. Figure 12(a) shows the
spanwise-averaged friction coefficient, defined as

cf (X)= 〈τw〉Z
1
2ρU2∞

, (4.4)

corresponding to the flow shown in figure 3. The friction rise related to the onset of
the turbulent regime is clearly delayed and the laminar friction region is extended in
the controlled case.

The transition location is identified as the point where the average friction
in the flow crosses the average between the laminar solution and the turbulent
value as predicted by the Schultz–Grunow formula (Schultz-Grunow 1940). The
transition location moves upstream as the disturbance level increases (figure 12b).
The perturbation amplitude reduction, which the control is capable of, leads to a
transition delay for all investigated disturbance levels. However, the delay reduces as
the amplitude increases and the disturbance reduction becomes less effective.

The green diamond symbols in figure 12(b) report the transition location when
the error sensor is displaced downstream by 100 spatial units. A performance
loss is observed for lower amplitude than the original set-up; this shows that the
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FIGURE 12. (Colour online) Transition delay: (a) reports the spanwise-averaged friction
coefficient for the flow case in figure 3, L-LIN2; (b) reports the transition location for
increasing perturbation amplitude A(100); the reported positions are computed based on
a time-averaged flow over 1200 time units. The top axis reports ReX = (X − Xle)U∞/ν,
where Xle is the extrapolated leading edge position according to Blasius boundary-layer
solution.

performance limit is given by the disturbance amplitude at the error sensor location
and not at the actuator location. This is in contrast with the linear analysis by
Fabbiane et al. (2015a), where they show that better performance is obtained when
the error sensors are far from the actuators.

The transition delay results in a drag reduction. The amount of saved drag is given
by the area between the controlled and uncontrolled curves in figure 12(a):

1D
LZ
=
∫ LX

0
〈τw,0 − τw,c〉Z dX, (4.5)

where τw,0 is the wall shear stress in the uncontrolled case and τw,c in the controlled
one. By repeating the same procedure for the different disturbance amplitudes in
figure 12(b), the drag reduction as a function of the perturbation level is shown in
figure 13.

For the higher amplitudes the transition location approaches the region where
the actuation takes place; as shown in the previous section, the nonlinearities that
eventually lead to transition start to develop at the error sensor location, which reduces
the control capabilities of the algorithm. Hence, the investigated control technique
is effective in delaying the laminar-to-turbulence transition when the perturbation
amplitude at the actuation location is lower than 2 % of the free-stream velocity,
according to the amplitude definition in (2.7). For higher amplitudes, the control
is not able to delay the already incipient transition; the strong nonlinear behaviour
of the flow inhibits the adaptive algorithm to converge to an effective control law.
This introduces eventually disturbances that shorten the transition region and, as a
consequence, leads to the drag increase as shown in figure 13.
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FIGURE 13. (Colour online) Drag save and transition delay as a function of the
perturbation level A(100). The reported quantities are based on a time-averaged flow over
1200 time units.

5. Energy efficiency

In the previous section it was shown that the investigated control strategy is able
to delay the transition to turbulence and consequently reduce the friction drag. In this
section, ideal and real actuator models are introduced in order to assess the energy
efficiency of this control technique. To the best of our knowledge, this is the first time
that the energy gain given by reactive laminar flow control techniques is assessed in
a systematic manner.

5.1. Actuator models
Actuator models are introduced in order to compute the consumed power by the
actuators in order to perform the control action. An ideal actuator is introduced in
order to assess the theoretical energy gain and then compared with a more realistic
experimental model of plasma actuators.

The ideal actuator is based on the volume integral across the domain of the local
power (u · ρ f u) exchanged between the flow and the volume forcing:

Pc,i =
〈∣∣∣∣∫

Ω

u · ρ f u dΩ
∣∣∣∣〉

t

. (5.1)

This actuator model cannot extract power from the flow; both positive and negative
integral values are power consumption. Therefore, the definition of power is based
on the magnitude of the local power. A similar approach is used when it comes to
blowing/suction actuators (e.g. Stroh, Frohnapfel & Schlatter 2015), where the time
average of the absolute value of the instantaneous power needed to enforce the mass
flux is used to compute the used power by the control technique.

As introduced in § 2.1, a DBD plasma actuator is considered as a model for the
actuator volume forcing. In particular, the work by Kriegseis et al. (2013) is used,
where the plasma-actuator force field is reconstructed starting from particle image
velocimetry (PIV) flow measurements. Based on their measurement it is possible
to correlate the AC voltage supply Vp and the provided force F/L. As reported
in figure 14(a), the voltage–force relation can be well represented by the linear
regression:

Vp =ΦF
L
+ V0, (5.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.707


Efficiency and limitations of linear adaptive control for transition delay 77

0 5 10 15 20 25

8

9

10

11

12

Force (Kriegseis et al. 2013) Power (Kriegseis et al. 2011)

(a) (b)

5 10 15 20 250

40

80

120

160

0 4.5 9.1 13.6 18.1 22.7

0

0.6

1.2

1.8

2.4

Exp.data

FIGURE 14. (Colour online) Plasma-actuator contsitutive laws. The tilde indicates
dimensional quantities.

where L is the spanwise length of the actuator and Φ and V0 are ad-hoc coefficients.
In particular, the latter indicates the voltage for which the plasma actuator is giving
zero force and can be considered as a lower limit for the supplied voltage. In fact, the
plasma actuator is not capable of supplying a negative force; in order to overcome this
issue, two different operation modes are typically considered.

(i) Dual mode: two plasma actuator facing each other are considered for each
actuation station ul. One is responsible for the positive part of the actuation
signal and one is responsible for the negative one.

(ii) Hybrid mode: a single plasma actuator is considered. An offset is applied to
the voltage in order not to cross the zero-forcing voltage V0; the offset depends
on the minimum amplitude of the control signal ul(t) in the averaging window.
The constant forcing that results from the offset has a stabilising effect on the
boundary layer (Kurz et al. 2013); in the present study this effect is not taken
into account.

Once the operation mode is defined, the power used by the actuator is estimated
via the relation proposed by Kriegseis et al. (2011):

P
L
=Θ

√
V7

p f 3
p =Θ

√(
Φ

F
L
+ V0

)7

f 3
p , (5.3)

where fp is the plasma-actuator AC-supply frequency. The coefficient Θ is found to be
an almost universal coefficient equal to 5× 10−4 W m−1(kHz)−3/2(kV)−7/2 (Kriegseis
et al. 2011). For the current case a dimensional supply frequency f̃p = 15 kHz
is considered. All the quantities in (5.3) are non-dimensionalised by considering
kinematic viscosity ν̃ = 1.5 × 10−5 m2 s−1, free-stream velocity Ũ∞ = 60 m s−1,
density ρ̃ = 1.225 kg m−3 and Reynolds number Re = Ũ∞L̃/ν̃ = 1000 as in the
simulations, see § 2.

The force (F/L)l required by each actuator can be computed by knowing the control
signal ul(t) and its forcing shape bu,l from (2.3). Since the control forcing is time
dependent, the time-averaged power is considered to evaluate the power consumption
of the actuator. Hence, the individual power consumption (P/L)l is computed and the
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FIGURE 15. (Colour online) Energy budget. The reported quantities are computed based
on a time-averaged flow over 1200 time units. The solid black line in (b) indicates Γ = 1,
i.e. the break-even point for the control strategy.

total power consumption Pc,p is estimated by summing the time-averaged contribution
of each actuator:

Pc,p =
M/2∑

l=−M/2

〈(
P
L
(t)
)

l

1Z
〉

t

, (5.4)

where 1Z is the spanwise support of the actuator.

5.2. Power gain
The saved power is quantified by the product of the drag reduction 1D and the free-
stream velocity U∞ (Stroh et al. 2015):

Ps =U∞1D. (5.5)

In figure 15(a) Ps is compared with the power used by the actuators computed via
the different actuator models. Ideal and plasma actuator show similar trends with
increasing disturbance level; they consume more power as the disturbance amplitude
becomes larger. On the other hand, the saved power reduces because of the control
performance loss due to the nonlinearities at the actuation location.

The power-gain coefficient is defined as:

Γ = Ps

Pc
. (5.6)

This coefficient gives the saved power because of the transition delay as fraction of
power Pc invested in the control. The break-even point is given by Γ = 1, when the
energy that is spent for the control is equal to the saved energy Ps.

For the ideal actuator, a theoretical gain between 103 and 102 is possible for
perturbation amplitude of the order of few per cent (figure 15b). For larger disturbance
amplitudes, the gain gradually decays and eventually crosses the break-even point.

The energy gain based on the plasma-actuator power-consumption estimation
is lower than the break-even value for all the investigated cases. In order to better
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FIGURE 16. (Colour online) Plasma-actuator efficiency η with respect to the ideal
actuator.

compare it to the ideal-actuator model, let us introduce a measurement of the actuator
efficiency:

ηp = Pc,i

Pc,p
= Γp

Γi
. (5.7)

According to this definition, the plasma actuator has an efficiency of the order of 0.1 %
(figure 16). This result is in agreement with the experimental investigation by Jolibois
& Moreau (2009) who showed a similar efficiency for a steady forcing. Hence, the
present estimation, based on the work by Kriegseis et al. (2011, 2013), indicates that
the low efficiency of the plasma actuators erodes the potential gain by the presented
control technique. A technical challenge in designing more efficient plasma actuators
is to increase the efficiency from 0.1 % to 1 % in order to push Γ over the break-
even point. A critical aspect is identified in the zero-forcing voltage V0 in (5.2); this
offset represents the energy that the plasma actuator needs to create the plasma stream
that will cause the force on the flow. This energy is not directly used to control the
disturbance in the flow and, hence, it does not contribute to the transition delay.

However, the presented control technique can be generalised to other types of
actuators that are able to produce a TS-wave-like disturbance. Examples of this type
of actuators can be found in the review by Cattafesta & Sheplak (2010).

6. Conclusions

We have shown that reactive linear adaptive control can efficiently delay the
laminar-to-turbulent transition in a realistic low-amplitude disturbance environment.
Moreover, it is shown that the drag reduction that results from the transition delay
leads to a net power saving up to the order of 103, when an ideal-actuator model
is considered. The control scheme is able to delay the transition up to an incipient
transition occurs at the actuation position. The performance degrades gradually as the
amplitude of the perturbation increases. Adaptivity is able to marginally improve the
control performances with respect to the nonlinear behaviour of the flow, at least for
the investigated set-up.

The large net energy saving shown in an ideal framework highlights the potential
performance of reactive transition-delay control. However, in more realistic scenarios,
where the actual effort to create a volume forcing inside the boundary layer is taken
into account, the energy saving is considerably smaller. When investigating one
particular plasma-actuator model (Kriegseis et al. 2011), the energy gain is estimated
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to drop below the break-even point for almost all the investigated cases. The reason
for this is be found in the poor efficiency of this particular plasma actuators and
therefore an improved actuator design is necessary in order to take advantage of the
potential of the investigated control technique.

Acknowledgements
The authors acknowledge support by the Swedish Research Council (VR-2012-4246,

VR-2010-3910) and the Linné Flow Centre. Simulations have been performed at
National Supercomputer Centre (NSC) and High Performance Computing Center
North (HPC2N) with computer time provided by the Swedish National Infrastructure
for Computing (SNIC).

REFERENCES

ARDEKANI, I. T. & ABDULLA, W. 2010 Theoretical convergence analysis of fxlms algorithm. Signal
Process. 90 (12), 3046–3055.

ASTRÖM, K. J. & WITTENMARK, B. 1995 Adaptive Control, 2nd edn. Addison Wesley.
BAGHERI, S., BRANDT, L. & HENNINGSON, D. S. 2009 Input–output analysis, model reduction and

control of the flat-plate boundary layer. J. Fluid Mech. 620, 263–298.
BELSON, B. A., SEMERARO, O., ROWLEY, C. W. & HENNINGSON, D. S. 2013 Feedback control of

instabilities in the two-dimensional Blasius boundary layer: the role of sensors and actuators.
Phys. Fluids 25, 054106.

CATTAFESTA, L. N. & SHEPLAK, M. 2010 Actuators for Active Flow Control. Annu. Rev. Fluid
Mech. 43, 247–272.

CHEVALIER, M., SCHLATTER, P., LUNDBLADH, A. & HENNINGSON, D. S. 2007 A pseudo-spectral
solver for incompressible boundary layer flows. Tech. Rep. TRITA-MEK 2007:07. KTH
Mechanics, Stockholm, Sweden.

DADFAR, R., FABBIANE, N., BAGHERI, S. & HENNINGSON, D. S. 2014 Centralised versus
decentralised active control of boundary layer instabilities. Flow Turbul. Combust. 93 (4),
537–553.

DADFAR, R., SEMERARO, O., HANIFI, A. & HENNINGSON, D. S. 2013 Output feedback control of
blasius flow with leading edge using plasma actuator. AIAA J. 51 (9), 2192–2207.

FABBIANE, N., BAGHERI, S. & HENNINGSON, D. S. 2015a Adaptive control of finite-
amplitude 3D disturbances in 2D boundary-layer flows. In International Symposium on
Turbulence and Shear Flow Phenomena (TSFP-9): http://www.tsfp-conference.org/proceedings/
proceedings-of-tsfp-9-2015-melbourne.html.

FABBIANE, N., SEMERARO, O., BAGHERI, S. & HENNINGSON, D. S. 2014 Adaptive and model-based
control theory applied to convectively unstable flows. Appl. Mech. Rev. 66 (6), 060801.

FABBIANE, N., SIMON, B., FISCHER, F., GRUNDMANN, S., BAGHERI, S. & HENNINGSON, D. S.
2015b On the role of adaptivity for robust laminar-flow control. J. Fluid Mech. 767, R1.

JEONG, J. & HUSSAIN, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.
JOLIBOIS, J. & MOREAU, E. 2009 Enhancement of the electromechanical performances of a single

dielectric barrier discharge actuator. IEEE Trans. Dielec. Elec. Insul. 16 (3), 758–767.
JUILLET, F., MCKEON, B. J. & SCHMID, P. J. 2014 Experimental control of natural perturbations in

channel flow. J. Fluid Mech. 752, 296–309.
KACHANOV, Y. S. 1994 Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid

Mech. 26 (1), 411–482.
KOTSONIS, M., SHUKLA, R. K. & PRÖBSTING, S. 2015 Control of natural Tollmien–Schlichting

waves using dielectric barrier discharge plasma actuators. Intl J. Flow Control 7 (1–2), 37–54.
KRIEGSEIS, J., MÖLLER, B., GRUNDMANN, S. & TROPEA, C. 2011 Capacitance and power

consumption quantification of dielectric barrier discharge (DBD) plasma actuators. J. Electrostat.
69 (4), 302–312.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.tsfp-conference.org/proceedings/proceedings-of-tsfp-9-2015-melbourne.html
http://www.tsfp-conference.org/proceedings/proceedings-of-tsfp-9-2015-melbourne.html
https://doi.org/10.1017/jfm.2016.707


Efficiency and limitations of linear adaptive control for transition delay 81

KRIEGSEIS, J., SCHWARZ, C., TROPEA, C. & GRUNDMANN, S. 2013 Velocity-information-based
force-term estimation of dielectric-barrier discharge plasma actuators. J. Phys. D 46 (5), 055202.

KURZ, A., GOLDIN, N., KING, R., TROPEA, C. D. & GRUNDMANN, S. 2013 Hybrid transition
control approach for plasma actuators. Exp. Fluids 54 (11), 1–4.

LI, Y. & GASTER, M. 2006 Active control of boundary-layer instabilities. J. Fluid Mech. 550,
185–205.

NORDSTRÖM, J., NORDIN, N. & HENNINGSON, D. S. 1999 The fringe region technique and the
Fourier method used in the direct numerical simulation of spatially evolving viscous flows.
SIAM J. Sci. Comput. 20 (4), 1365–1393.

SCHLATTER, P., LI, Q., BRETHOUWER, G., JOHANSSON, A. V. & HENNINGSON, D. S. 2010
Simulations of spatially evolving turbulent boundary layers up to Reθ = 4300. Intl J. Heat
Fluid Flow 31 (3), 251–261.

SCHLATTER, P., STOLZ, S. & KLEISER, L. 2004 LES of transitional flows using the approximate
deconvolution model. Intl J. Heat Fluid Flow 25 (3), 549–558.

SCHULTZ-GRUNOW, F. 1940 Neues Widerstandgesetz für glatte Flatten. Luftfahrtforsch 17, 239.
SEMERARO, O., BAGHERI, S., BRANDT, L. & HENNINGSON, D. S. 2013 Transition delay in a

boundary layer flow using active control. J. Fluid Mech. 731, 288–311.
SIMON, B., NEMITZ, T., ROHLFING, J., FISCHER, F., MAYER, D. & GRUNDMANN, S. 2015 Active

flow control of laminar boundary layers for variable flow conditions. Intl J. Heat Fluid Flow
56, 344–354.

SNYDER, S. D. & HANSEN, C. H. 1994 The effect of transfer function estimation errors on the
filtered-x LMS algorithm. IEEE Trans. Signal Process. 42 (4), 950–953.

STROH, A., FROHNAPFEL, B. & SCHLATTER, P. 2015 A comparison of opposition control in turbulent
boundary layer and turbulent channel flow. Phys. Fluids 27, 075101.

STURZEBECHER, D. & NITSCHE, W. 2003 Active cancellation of Tollmien–Schlichting instabilities
on a wing using multi-channel sensor actuator systems. Intl J. Heat Fluid Flow 24, 572–583.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.707

	Energy efficiency and performance limitations of linear adaptive control for transition delay
	Introduction
	Numerical simulations
	Inputs and outputs
	Flow configurations

	Control strategy
	The compensator in action

	Control performance and limitations
	Linear control of linear perturbations
	The nonlinear challenge
	Transition delay

	Energy efficiency
	Actuator models
	Power gain

	Conclusions
	Acknowledgements
	References




