
ON MAPPING SEQUENCES

YASUTOSHI NOMURA

Introduction

In 1958 D. Puppe developed the theory of Abbildungsfolge and applied it to

the study of Hilton formula and his sphdrendhnliche Mannigfaltigkeiten L12].1}

We shall be concerned here with a dual situation.

In Part I we introduce the mapping sequence and discuss some applications

of it. Let / :X-+ Y be a map 2 ) of one topological space to another. We as-

sociate with it the following two sequences which are homotopically equivalent

to each other (§2, Th. 2)

Ω2f Ωlf ΩPf Ωf If Pf f
^+ΩE:+ΩXΩY+Ef-^X~-> Y,

pSf pόf pif pZf p2f pf f

$ / : • - . - Er*f—> £W —> Ept/ —> Epzf - 4 Erf -^Ef~->X —> Y,

where Pf: E/ -> X is the fibering induced by / from the contractible fibre

space over Y, // the injection of the fibre to the total, and Ω the loop functor.

Furthermore, it will be shown in § 4 that they are homotopically invariant in

the sense that homotopically equivalent sequences are obtained when / is

altered within its homotopy class. Wlf induces for any space V an exact se-

quence

(V, X)-^π(V, Y),

where π(V, X) denotes the set of homotopy classes of maps V -* X. This is

reduced to the usual exact sequence of homotopy groups in case V is a sphere

and / an inclusion.

It will turn out in §5 that 9ft/, together with its invariance, gives some

delicate informations about homotopy equivalences. For instance, we prove

that the fibre of a contractible fibering has the same homotopy type as the

Received May 18, 1960.
^ Numbers in square brackets refer to the papers listed at the end.
2) By the term "map" is always meant a continuous mapping.
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loop space of its base. This is a variant of a theorem of Samelson [13].

In Part II we deal with an interrelation between our mapping sequence
/ g

and Puppe's Abbildungsfolge. For any triple X—> Y—>Z such that g° f - 0,

we construct the connecting diagram which is the basic machinary of our later

investigation. Using this we define, for any map / : X -* Y, suspensions

<J* : τr(C/, V) -> TΓCSJS1/, V)

and

^ : τ r ( F , Ef)-»π(V9 ΩCf)

which may be regarded as an extension of usual cohomology and homotopy

suspensions. Here C/ is a mapping cone of /, and S denotes the suspension

functor.

We will prove isomorphism theorems concerning σ* and σ* (§9), as an

application of which we present a detailed exposition of the Postnikov system

in line with a treatment in [6]. Finally, it will be shown that the connecting

diagram allows us to give a direct description of functional cohomology oper-

ations.

PART I. MAPPING SEQUENCE AND HOMOTOPY EQUIVALENCE

1. Preliminaries

1.1. We begin with some notations and conventions to be used here.

A fixed base point will always be chosen in each space and denoted by a

subscript 0: thus xo&X9 aQ^Λ. All maps and homotopies are to carry base

points to such. The identity map of X on itself is denoted by lχ or simply by

1. Given two maps/i,/2 : X-* Y, / i - / 2 means the existence of a homotopy

between them. The fact that there exists a homotopy equivalence ψ : X-* Y

is expressed by ψ : X = Y. Let /, /', φ, ψ be maps such that φ and ψ are

homotopy equivalences. Suppose the following diagram is commutative up to

homotopy:

Xf—> Y1

f

In this case we say that / and / ' are homotopically equivalent and we denote
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by / s / .

The set of all homotopy classes of maps X -+ Y will be denoted by π{X, Y),

which contains the distinguished element 0, namely, the homotopy class of the

constant map 0 : X -* Y. The homotopy class of a map / : X -* Y is denoted

by [ / ] . Any map g : Y -+ Z induces a mapping g* : π(X, Y) -* π(X, Z) by the

For any subspaces A and B of X we now define EA,B(X) to be the path

space {a : /-» Zlαr(O) e i , α(l) e 5 } with compact open topology, where I is

the unit interval [0, 1]. EίXo >,x(X) and £c*oM*o>( 3θ a r e abbreviated by £Z, £X

respectively. We shall denote the constant path at a point x^ X by e*. For

any path α: : /-> X let αr*,δ : / - ^ X ( 0 ^ t f ^ £ ^ l ) be a path defined by aa,b(s)

= a(a+ (b- a)s) for 0 ̂  5 < 1. Also, let α:"1 be the inverse of or, which is

given by a~1(s) = αr(l — s) for s e / . By α β is meant the composition of a :

/-A" with β : I-> X such that α(l) = j9(0).

1.2. A map p : X-> B is called a fibering if it possesses the covering

homotopy property for all spaces. As indicated in W. Hurewicz [7], p : X -* B

is a fibering if, and only if, there exists a continuous function

Λ:{(x, a)\χ(ΞX, <XΪΞEB,B{B)> p( x) = oc(l)}-» EXtχ(X),

called a path lifting function for p, subject to the requirements pA(x, a) — a

and A(x, a) (1) =x.

By setting

λ(x, a) = Λ(x, α)(0),

we obtain a map

with the following properties:

(i) pλ(x, α) = αr(0),

(ii) the map x-*λ(x, ep{x))y x^X, is homotopic to lx : Z-^ X via a homo-

topy which moves points along fibres.

λ is said to be a lifting function for £.3)

3> It should be remarked that a map with such a λ may fail to be a fibre map in the
sense of Serre, as shown by the retraction I\J /->/. But it is sufficient for later purpose
to postulate the existence of such a λ.
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Now let / : X -+ Y be an arbitrary map. We define Pf : Ef -> X as fol-

lows :

Pf(x, β)=x.

Then (PfyHxo) = #o x ΩY. We define the injection //: ΩY-> Ef by

Ifiβ) = Uo, β) for βtΞΩY.

Remark. In case / is an inclusion then E/ = EyfStx(Y). For a constant

map f(X) =jvo, we have E/ = Xx ΩY.

Let g : B1 -* B be a map and let .£ : X -* B be a fibering. It is readily veri-

fied that if we define p' : X1 -> B1 by

* ' = {(£', * ) | y e S ' f Λ G ^ , g(b')=p(x)}f

p'ib', x) = ft',

then p' . Xf -+ B1 is also a fibering. In particular, we have

LEMMA 1. Pf - Ef -* X is a fibering whose lifting function and path lifting

function are given as follows:

λ((x, β), α) = (α(0), β ifccV1)

for ix, β) e Ef, a:I-+X ivith α(l) = *,

for

where γs '• I -* Y is defined by

/ * (2(1 - r) + s) for ^ψ ^ τ ^ 1.

Also, we have

Pf f
LEMMA 2. Ef—>X—>Y induces for any space V an exact sequence

Vy X)-^+π(V, Y).

Proof. Consider a family of maps ht : Ef -> Y" defined by ^(ΛΓ, /9) = β(l — ί)

for Λ: e Z, 0 ̂  t ^ 1. This gives rise to a homotopy between hύ = f ° Pf and

/ίi = 0, and thus / ° P / - 0.
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Conversely, given g : V -* X such that f*[g] = 0, we can find a homotopy

kt: V-* Y with fe> = 0, ki = / ° #. For each point t; G F let j9(ι;) be the path in

Y given by β(v) (s) = fc(t ), O ^ s ^ l . Then if we define

k(v) = (#(ϋ), 0(t;)) for z e V,

we obtain a map & : F-» £/ such that Pf°k-g, which proves our assertion.

2. Mapping sequence

2.1. Suppose / : X-* Y is a fibering with fibre F = ΓHyo) and let *": F-» X

be the injection. Using the lifting function Λ for / we shall define Φ : E/ -+ F,

Ψ : Ef -> F by

(#, βy0) for Λ G F ,

Γ, β) = U j9) for * G X, j9 e EY with / ( * ) = j9(l).

Then Ψ is well-defined, since fλ(x, β) = J Ό because of the property (i) of

the lifting function λ (cf. 1.2).

The following theorem plays a crucial role in our later development.

THEOREM 1. Φ and Ψ are mutually inverse homotopy equivalences and, in

addition, the following diagram is commutative up to homotopy

Ef — ^ X.

Proof. By definition we have ψ <> Φ{x) = λ(x, eyo), Φ°Ψ{xt β) = (λ{x, β), ey,).

Obviously Ψ°Φ — 1F by the property (ii) of λ (cf. 1.2). On the other hand,

using the path lifting function A for /, a homotopy

( U β), ί ) - > u u β)it), βo.t),

yields Φ ° ξΓ - 1B /. Since Pf°Φ = i, it follows at once that i°Ψ- Pf, and this

concludes the proof.

2.2. We have already seen in Lemma 1 that Pf: Ef -* X is a fibering for

any map / : X -> F. This fact enables us to apply Theorem 1 to Pf instead

of /, and we obtain the homotopy commutative diagram
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(1)

where vertical maps are homotopy equivalences and Pnf ( Λ > 2 ) is defined

inductively to be PiP"'1/). Here we may identify Epf with {(ft a)\β(=EY,

a e EX, β(l) = fail)}. Then Rf and Nf are determined by

/?/(£) = (ft ^0) for /9e

iV/(ft α:) ^/ί ί/α)" 1 for (ft

and, moreover, P2/(/5, α) = (α(l), /9) for (ft a) G

Replacing / by Pf in the triangle (1), we get the following diagram

(2)

where Ω-f : ΩX-+ ΩY is the map given by Ω-f(a) = (/α) : for a

Since we have (Nf)°IPf(a) = Nf{eyf>ya) = eyo {fa)~1 for α e β j , homotopy-

commutativity holds in (2).

Let ax : ΩX -> i2Z and <yy : i2ϊr-> î Y be involutions given by inversions of

loops. We set R-f = Rf° σYi R-Pf-RPf°aχ. Then we have homotopy-

commutative diagrams

Ωf

ΩXr ->ΩY

(3)

ΩX-

R-Pf\

ΩY

Ωf
ΩX ^ £ F

(4) ^/i

Consider the following diagram
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On the lowest ladder homotopy commutativity follows from (1), (3) and (4),

as is readily seen. We note that other ladders are obtained from the lowest

one by applying the loop functor. Every vertical map is a homotopy equiva-

lence. For brevity we write

RPnf for even ny

for odd n.

( RPnf
Rnf = \

Then we see immediately that vertical equivalences are given by

Rzn-if o • • o Ωn'2Rsf o Ωn~1R2f : ΩnEf s &»./.

The results obtained above are summarized as follows.

THEOREM 2. The sequence

Ω2Pf Ω2f Ωlf

®pf _ . Of Λ « V „ pf „ /

is homotopically equivalent to the sequence obtained by iterated construction:

pif pif ptf
> £Lp6f > Zips/ > Lpsf

pif pf f

—*Ef—>X—> Y.
pif pif

> E +

We refer to the sequence Wf above as the mapping sequence of /.

Combining Th. 2 with Lemma 2 gives rise to the following

https://doi.org/10.1017/S0027763000002087 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002087


118 YASUTOSMI NOMURA

COROLLARY 2.1. The mapping sequence ΊSRf induces for any space V an

exact sequence

(2R/)* : -irίV, ΩEf)—^>π{V, ΩX)^* π{Vy ΩY)

(V, X)-^π{V, Ϋ).

COROLLARY 2.2. // / : X-+Y is a fibeήng with fibre F, and if i: F-* X,

the injection, has a left homotopy inverse {e.g. F is a retract of X), then the

fibering Ωf : ΩX-* ΩY admits a cross section.

Proof. By the assumption above we have 0 = Ker ( P / ) * = Im (//)*, since

ί = P / by T h . 1. T h u s {Ωf)* is onto and hence Ωf has a right homotopy in-

verse which may be modified into a cross-section.

3. Relat ive m a p p i n g sequence

3.1 I t would be natura l to expect t h a t the mapping sequence m a y be

relativized.
h g

Let X—> Y—>Z be a triple with f = g°h Consider the diagram

. Ωd Ωl Ωk d I k
• -» ΩEg—>ΩEh—>ΩEf—>ΩE£—*Eh—>Ef—->Eg

j l Ωψ[]Ωψ | l jl φ\\φ jl jl

where the maps are set as follows:

k(x, 0) = (h(x), β) for Λ?e X, β e EZ with ^(1) = f(x\

l{x, a) = (x, get) for xeX, cc^EY with *(1) = h{χ),

d{γt β) = (ΛΓO, r) for γe ΩY, β e ΩEZ with gγ(t) = ̂ (1, t)

ψ{{χ, β), (or, a9)) = U, a) for (*, /?) e E/t (or, a')^EEg with

ftU) = α(l), 0 ( s ) = α ' U 1),

, or) = ((x, ga), {a, a11)) forx<EXta^ EY with α(l) =

in which α" e EEZ is given by

*''(s, t) = {

It follows at once from these that Pk°ψ = Z, ψ °φ = 1, ψ ° Ik = d.

ga{t) for s > ί ,

for s^t.

https://doi.org/10.1017/S0027763000002087 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002087


ON MAPPING SEQUENCES 119

Next, we shall show that ψ ° ψ is homotopic to 1 : Eh -* Ek.. The above

definitions lead to

φ o 0(U, j9), U, αrO) = ((AT, #α), (αr, α")) for

α(l), β(s) = α'U 1), ^α(ί) = α'(l, ί).

Define a family of maps rτ Z2 -* Z ( O ^ r ^ l ) by the rule

α'(min(l, s + 2 r - 2 r f ) , ί) for s>£,

rτ(s9 t) = < α'(s, t - 2 r + 2rs) for s^ί, ί - 2 r +

α'(min(l, 2 s - ί + 2 r ~2 rs), s) for s^ί, ί~2r + 2rs^5,

and define βτeEZ by setting βτ(s) = r~Λs, 1). Then the homotopy given by

( U β)9 (or, « '))-((*, j9τ), (or, r t ) ) e f i , ( O ^ r ^ l ) ,

coincides with 1 : Ek -> £lb for r = 0 and with φ ° ψ for r = 1, which proves that

φ is a homotopy equivalence with ψ as a homotopy inverse, and therefore the

diagram above is commutative up to homotopy.

Now we state our results as follows.

THEOREM 3. The sequence constructed for any triple f = g° h

, Ωd Ωl Ωk d I k

(5) -* ΩιEg—+ΩEh—>tiEf—*ΩEg—>Eh—>Ef—>Eg

is homotopically equivalent to the "absolute" mapping sequence %flk of k : Ef -» Eg

and thus induces for any space V an exact sequence^

- -*τr(F, ΩEg)-^π(V, Eh)-^>π{V, Ef)~*->π(V, Eg).

The sequence (5) above is said to be the relative mapping sequence of a triple

f-g°h. Note that when Z consists of a single point the sequence (5) is

reduced to 9ft ft.

3.2. As an illustration we shall derive some exact sequences found in [9].

Suppose (X; A, B) be a triad. Let Δ : X-* X x X be the diagonal map,

and let Jf : AΓ\B -+ A x B be the map determined by Δ. We denote by π the

projection A x B -> A. Then the composite π ° Δ' is the injection i : A Π B - > A

Let j : £Δ' -» EA be the inclusion.

W. S. Massey [9] defined πn(A/B) to be the set of all homotopy classes of

4) Note that this corresponds to a sequence in [6], Prop. 2.3.
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maps (Sn E+, E") -* (AU B A, B), where El, E- are northern and southern

hemispheres respectively. As is easily seen, the following natural isomorphisms

hold:

πn+ι(X; A, B)^π(Sn~\ Ej),

πn(A/B)^π(Sn-\ Ex),

πn(X) ^ π(Sn'\ EA),

πn-ι(B) ~ π(S , Eπ).

Hence we have exact sequences

:•••-> πn+i(A/B) -> πn

-» πn+i(X ;A,

:•••-> πn(A) + τtn{B) - πn{A/B)

- 7Γ«-i(Λ Π 5 ) - > 7ΓΛ-i(i4) + 7Γn-i(J5),

•••'-> 7Γ»+i(Λ A Π 5 ) -> 7Γn(i5)

where the last sequence is obtained by applying Th. 3 to the triple i = n ° J'

4. Invariance theorem

4.1- Suppose we are given the diagram

(6)

which is commutative up to homotopy. Such a pair of maps (ψ, ψ) will be

called a transformation of / to /'. With this transformation, together with a

fixed homotopy Φ such that Φo-ψ ° / and Φι =/Ό ψt we associate a map

χ0 = dE(^> ψ φ) : E/ -> Ef*

by the rule

Zo(#, β) = (0U), 0') for ΛΓGΞX, β^EY with /(#) = 0(1),

where β'<=EYf is given by

(SPj9)(2s) for 0^s^~~,
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In case (6) is strictly commutative, i.e. Φ can be chosen to be constant, E(φ,

Φ Φ) is denoted simply by E(ψ, φ).

Then commutativity holds in the diagram

* p /

Thus, by proceeding in such a manner, we obtain a transformation ( , Z2,

Xu Xo, Φt ψ) $/->$/', where Xn = E(Xn-2, Xn-i), n^2 and Xi = E(φ, Xo). On

the other hand, simple calculation shows that Xo°If-IftoΩψ. Hence this

yields a transformation ( , Ωφ, Ωψ, Xo, φ, ψ) : 501/-»50ΪΛ These two trans-

formations are related to each other, as stated in

LEMMA 3. In the transformations above, ΊRf-^Wf and $/-> $/', the cor-

responding maps are homotopically equivalent to each other; more precisely,

homotopy equivalences obtained in 2.2 yield ΩnXo = χ3n, Ωnφ = Xzn-u Ωnψ = Xzn-2.

4.2. Let (ψ, φ) be as before, and let (ψf, φ1) be a transformation of /' to

/ " with a fixed homotopy Φ' such that Φ[ = ψf °f and Φ[ = / " ° φ'. We define a

homotopy {Φf ° Φ) : ψf ° ψ ° f ~ /" ° φf ° ψ by setting

Φit-i°Φ for ~<t^l.

Then it is readily verified that the following homotopy holds:

LEMMA 4. Eiψ1 ° ψ, φ' ° ψ ', (Φf ° Φ)) — E{ψf, ψ1 ', Φ1) ° E(ψ, ψ \ Φ).

LEMMA 5. Let {ψ, φ) be a transformation of f to f tυith a fixed homotopy

Φ, and let ψ — ψy φ^ ψ. Then there exists a homotopy Φ : ψ ° f —f °~φ such

that E(ψ, φ ', Φ) ̂ E(ψt Φ Φ).

The proof of Lemma 5 may be proceeded in the same manner as in [12],

2.5, B) and thus is omitted.

These two Lemmas yield the next result.

LEMMA 6. Let (ψy ψ) be a transformation of f to f with a fixed homotopy

Φ. If ψ and φ are homotopy equivalences, so is Zo = E(ψ, ψ I Φ) : Ef -» Ef>.
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From this we can derive a invariance theorem for mapping sequences.

THEOREM 4. If in the transformation 9Jί/-> Wff or φ/-» $/' two consecu-

tive maps are homotopy equivalences, so are the following ones. In particular,

if f =/\ then each map in this transformation is a homotopy equivalence.

COROLLARY 4.1. (Invariance of mapping sequence) Let f, f : X-* Y be

homotopic. Then Wlf and $/ are homotopically equivalent to ΊΛf and W re-

spectively.

COROLLARY 4.2. If f : X-> Y is nullhomotopic, then Wf coincides up to

homotopy equivalences with the next sequence

9 Ωπ 0 i π 0

• -> ΩXx Ω2Y—>ΩX—>ΩY—>Xx ΩY—* X—> Y,

where π and i denote the projection and injection respectively / especially, if f :

X-+ Y is an inessential fibering with fibre F, then F=XxΩY.

COROLLARY 4.3. If f : X-+ Y is homotopically equivalent to Ωf : ΩX' -> ΩY1

for some f : Xf -» T, then Ef = ΩEf,.

Proof. It follows from Th. 2 that f = Ωf = P3f. Hence the above Lemma

6 gives homotopy equivalence Ef^Ep*f>. Thus, again in view of Th. 2, we

have the desired conclusion E/^ΩE/^ since Eps/> = ΩE/,.

5. Applications to homotopy equivalences

5.1. The following relations between / : X-* Y and /* : π{ V, X) -> π (F,

Y) are used freely.

(i) / is nullhomotopic if and only if /* vanishes for every space V.

(ii) / has a right homotopy inverse if and only if /* is onto for each V.

(iii) If / has a left homotopy inverse, then Ker/* = 0 for any V.

(iv) (a partial converse to (iii)). If /* has kernel zero for every F, then

Ωf admits a left homotopy inverse.

Proof of (iv). Our hypothesis, together with the exactness of (9ft/)*,

implies that P/—0. Accordingly, Cor. 4.2 asserts that ΉPf is equivalent to

the sequence

0 i π o
->ΩEf—>ΩX—>EfxΩX—>Ef—>Xi
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where / and π are the injection and projection respectively. Hence we see

from Th. 2 that i = IPf== P2Pf = P 3/ = Ωf. This shows that Ωft like i, has a

left homotopy inverse.

The mapping sequence provides a useful tool for establishing various homo-

topy equivalences, as will be shown in what follows.

5.2. Let us consider the injection i: X V Y -> X x Y, whose mapping se-

quence is written

• -+ Ω(XV Y)~^Ω(Xx Y) = ΩXx ΩY-^Ei-^XM y Λ l x Y.

First of all, we note

LEMMA 7. It — 0.

Proof. Let us introduce the following subspaces of ΩX and ΩY :

ΩX={a<=ΩX\a([θ, γ])=x»}>

Then injections ΩX -> ΩX and MY-^ ΩY are evidently homotopy equivalences

with homotopy inverses cc -+ eXfi a and β -> /? ^ 0 respectively. Consider now

the commutative diagram

ΩXxΩY — — > ΩXx ΩY

i I"
V Y) > Ei = E{Xo,yύ)>XyY(X x Y),

where a is given by σ(a, β) = a x β, the product path of α: and β, and the

other maps are all injections. Since E(X V Y) is contractible, it follows from

commutativity that It ° j — 0. y, as the product of homotopy equivalences, is a

homotopy equivalence. Therefore, it follows It ~ 0, as we wish to prove.

Combining this lemma with Cor. 4.2 we obtain an equivalence En ΞΞ ΩX x

ΩY x ΩEu while by virtue of Th. 2 we see that Ii = P2ι, £Pi, Ξ fi(IV y).

Combining these results we conclude

PROPOSITION 1. Ω(X\/Y) = ΩXx ΩY x ΩE{Xΰtyΰ)txyY{X x Y).

This may be regarded as a result dual to Hilton formula ([12], Th. 15),

https://doi.org/10.1017/S0027763000002087 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002087


124 YASUTOSHI NOMURA

5.3. The following is, in a sense, a substitute for Sugawara's Lemma ([16],

p. 118) in case X is not a CW-complex.

PROPOSITION 2. Let X be an H-space with H-structure μ : X x X -» X and

let / , g: Xx X-+ X be defined by

f(Xι, ΛΓ2) = (μ(Xu #2), Xι)
for xlf # 2 e X.

g(xu X2) = (β(xu #2), X2)

Then Ωf and Ωg are both homotopy equivalences. In particular, if X is a CW-

complex such that Xx X is also a CW-complex, then f and g are homotopy

equivalences.

Proof. Let πu 2̂ : X x X -> X be projections onto the first and second factors

respectively. Since 7Γ2°/ = πi, Th. 3 yields the sequence

ίΠ\ Ωk k
( 7 ) E E E E E

where k is given by k{(xu x2), a) = i(μ(xi, xd, Xi), α) for ΛT

with α:(l) = Λ I.

Let V : J^πi -> E*t be defined by ft'(Ui, X2), a) = (ίM^o, ^2), Xo), eXo). Then

^ is homotopic to k' via a homotopy defined by

(Ui. ^2), α) -

Consider now the following commutative diagram

where the maps are set as follows,

#i, X2), oc) = x2, for xu X2^X, oc, β^EX with

a(l)=xίy

J ^) for xεjf .

We see that ? and y are both homotopy equivalences and that kn is homo-

topic to lχ by the condition imposed upon if-structure, so that k and Ωk are

homotopy equivalences. It follows from exactness of the sequence induced by
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(7) that 7r( V, Ef) = 0 for each space V. This implies that Ef is contractible

to a point. Upon examination of 9ft/ one sees that Ωf is a homotopy equiva-

lence similarly for g.

The latter statement of the proposition follows at once by application of

a well-known theorem of J.H.C. Whitehead [17] to the first assertion.

It is readily verified that if the above map / : X x X -* X has a right

homotopy inverse, then X admits a right homotopy inversion. Thus the fol-

lowing is an immediate conclusion.

COROLLARY. (Sugawara [16]) Let X be an H-space which is a CW-complex

and let X x X be also a CW-complex. Then X has right and left homotopy

inversions.

5.4. In the sequel we shall establish various equivalences related to fiber-

ings. To this end we need the following lemma which is dual to Lemma 8 of

D. Puppe ([12], 3.4).

LEMMA 8. Let f : X -» Y be any map such that Pf: Ef -> X admits a left

homotopy inverse I: X-* Ef. Let ψ : X -* Y x Ef be determined by f and I, i.e.

ψ{x) = (/(#), l(x)) for x^X. Then Ωψ : ΩX -* ΩY x ΩEf is a homotopy equiva-

lence.

Proof. It is clear from the definition of ψ that the square

φ\ I IF

YxEf >Y
π

is commutative. Here TΓ denotes the projection on the first factor. Thus it

induces a transformation of 9ft/ to 9ft π. Observe that the projection p : En-

Ef x EY -> Ef is a homotopy equivalence since EY is contractible.

Consider the map

Zo = JECLr, φ) : Ef-*En = Efx EY,

whose definition leads to the following calculation
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(p°Xo)(xi β) = p(ψ(x), β e/{x)) for XΪΞX, β^EY with

f(x)=β(l),

= /(*)

= l°Pf(x, β).

Therefore, our assumption implies p°Xo~ Is/. It follows from the previous

remark that Zo is a homotopy equivalence. Hence the transformation Tlf -^Tlπ

contains two consecutive maps Xo and Ω1Y = IΩF both of which are homotopy

equivalences. Thus, in view of Th. 4, we see that Ωψ : ΩX->i?(7x Ef) is also

a homotopy equivalence. This completes the proof.

Combining this Lemma with Th. 1 then gives

PROPOSITION 3. (cf. I.M. James and J.H.C. Whitehead [8]) Let f : X-+ Y be

a fibering with fibre F, and let F be a retract of X. Let r : X-> F be a retrac-

tion. Then the map ψ : X-+ Yx F defined by ψ(x) = (/(#), r(x)) induces a

homotopy equivalence Ωψ : ΩX~ Ω{ Y x F). In particular, if X and Y are

pathwise connected spaces dominated by CW-complexes, then ψ is a homotopy

equivalence.

PROPOSITION 4. Let f : X -* Y be a fibering which admits a cross-section,

and let F be its fibre. Then Ω2X== Ω2( Y x F).

Proof. Since Ωf: ΩX -• Ω Y also admits a cross-section, the exactness of

(3tt/)* implies Ker (P/)* = 0. By virtue of (iv) in 5.1, it results that ΩPf

admits a left homotopy inverse. Since ΩPfΞ=P*Pf=PAf=P(Pzf) by Th. 2,

we can apply Lemma 8 to P*f: EP2f-*EPf. Then we have ΩEP2/ = Ω(Ep/ x

Ep*f). We note that EPn/ = ΩEf = ΩF, EP2f = ΩX, EP/ = ΩY on account of Th. 1

and 2. We thus see that Ω2X = Ω2( Y x F).

Following Peterson and Thomas [11], we shall say that a fibering / : X -* Y

with fibre F is principal if there exist maps

μ: Fx X-*X, h: {(xu #2) e X x X\f(xι) =f(x2)} - F

satisfying the conditions:

(i) / ©μ(xi, x2) =f(x2) for xιεF, X2e X,

(ii) μ\Fx.F gives an //-structure of F,

(iii) (xi, x2) -* μ(h(xu ΛΓ2), Xι) is homotopic to (xi, x2)-*χ2 via a homotopy
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which moves image-points along fibers.5)

Then we can strengthen Prop. 4 for principal fiberings as follows.

PROPOSITION 5. Suppose that f : X -» Y is a principal fibering with fibre F

and that it admits a cross-section. Then there exists a commutative triangle

such that Ωψ : ΩX=Ξ Ω(Y X F), where π is the projection.

Proof. We denote by 5 : Y -* X a cross-section, and let μ, h be as above.

We now define ξ : X -> F by

ξ(x) = μ(h(s °/U), #), #o) for x<=X.

Since £(#) = μ(h(xo, x)t Xo) for # e F , it follows from the condition (iii) of

principal fiberings that ξ : X-* F is a left homotopy inverse of the injection

F-> X. It follows from Th. 1 that Pf: E/ -> X also admits a left homotopy

inverse. This fact enables us to apply Lemma 8. Indeed, if we define ψ :

X - > 7 x F b y 0U) = (fix), £(#)), we see that J2̂  is a homotopy equivalence,

which proves our assertion,

Finally we shall prove

PROPOSITION 6. Let f : X-> Y be a fibering such that the fibre F is con-

tractible to a point in X. Then ΩY^Fx ΩX.

Proof. Since F = E/ by Th. 1, our assumption implies that Pf: E/ -* X is

nullhomotopic. Therefore, we see from Cor. 4.2 that EP/ = E/X ΩX. With

reference to Th. 1 and 2 we have E/ = F and EP/ = ΩY, which lead to the

desired conclusion.

Upon examination, one sees easily that homotopy equivalences of Prop. 6

•η : Fx ΩX-+ΩY, K : ΩY ̂  F x ΩX

are given, using a contraction Φs'> F -> X such that Φι = 0, by

5) This condition is more restrictive than the one given in [11].
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f°Φ2s(x) for 0:gs^-~,

η(x, a) =

fa(2-2s) for ~^s^

where α:' e J2.Y is determined by

a'is) =

Here we denote a lifting function and path lifting function for / by λ, Λ re-

spectively.

COROLLARY (cf. Spanier and J.H.C. Whitehead [15]). Under the same situ-

ation as in Proposition 6, the fibre F is an H-space.

COROLLARY. If f : X -> Y is a fibering with the contractible total X, then

y:F-»ΩY defined by ly(x)l(s) = / ° Φs(x) for x e F, O ^ s ^ l is α (strict)

homotopy equivalence, where Φs denotes a contraction of X.

The latter corollary is a variant of a result due to H. Samelson [13].

PART II. MAPPING SEQUENCES AND SUSPENSIONS

6. Preliminaries

6.1. We start by recalling all the basic definitions and results stated in

[12] in so far as they are necessary for the application we have in view.

Given a map / : X -> Y, let Cf be the mapping cone of / , the space ob-

tained from CXUY by identifying (x, 1) with /(#), where CX denotes the

cone over X. We denote by S the reduced suspension functor. With these

notations, it is known that the sequence

/ P'f Qf Sf SP'f
91/ : X—> Y—+ Cf —> SX—> SY-^SCf->

has the same properties as Wlf, where the maps involved are defined in the

following fashion:
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P>f(y)=yξΞ FCC/ for y e F,

Qf(x, s) = (*, S) for (x, s) e CZ, ©/(y) = (#<>, D

for y e F.

Next, given a transformation from f : X-* Y to ff : Xf -* Y'

X > Y

with a fixed homotopy Φ such that Φo = ψ°fi Φi=f'°ψ, we construct the map

χ{ = c(ψ9 ψ Φ) : C/ -> C/,

by setting

ZίϋO=¥>0>) forjyeFCC/,

(0(s), 2s) for ^ e l , θ ^ ^

ZίU s) =

Then we have (D. Puppe [12], Lemma 7)

LEMMA 9. If ψ and ψ are both homotopy equivalences, so is X[.

6.2. Following Eckmann and Hilton [4], we shall say that / : X -» Y is a

cofibering if it has the homotopy lowering property for all spaces, i.e., if, for

g: X-* Z, G : F -> Z with g= G ° /, each homotopy of g can be obtained by

composing / with some homotopy of G. The quotient space Ylf(X) is called

the cofibre of /. Then we shall prove

LEMMA 10. Let f : X -> Y be a map and let M/ be its mapping cylinder.

In order that f be a cofibering, it is necessary and sufficiant that there exist a

map A' : Y x / -> M/ such that Λ'(Ax), t) = U, t)} Λ'(y, 1) =y for x e= X, yzΞY,

O^t^l.

Proof. Suppose / is a cofibering. We define a map F x 1 -» M/ by (jy, 1)

>̂ ,y. Then the homotopy X x /-> M/ given by (Λ;, ί) -» (Λ:, ί) can be lowered

to a homotopy Λf : Y x I-* Mf which is a desired function.

Conversely, let G : F -> Z, # : Z-> Z be such that G(/(ΛΓ) ) = gχ{x) for Are JY",

where 0 ̂  ί ̂  1. Using the above Λ', we define a homotopy
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G' ΛΊΎxI^Z,

where G' : M/ -* Z is given by taking G'OO = G(y), G'(x, s) = gs(x) for y e y,

x^X, O ^ s ^ l . This proves the sufficiency.

We see from the above lemma that if / is a cofibering then / is necessarily

univalent, so that from now on we consider only inclusion cofiberings. With A'

above, define λ' : Y -» M/ by

λ'(y) = Λ'(y, 0) for y<=Y.

Then this λ\ called a extension function for /> has the following properties:

(i) ;'(*) = (#, 0) for ΛΓGX,

(ii) the composition r° λ1 with the retraction r : Λ//-» F is homotopic to

the identity ly of Y via a homotopy which sends X into Z.

Consider the diagram

P'f
Y > Cf

where ^ is the natural projection, Φf the map Cf -* C//CX= Y/X obtained by

pinching CX to a point and ψ the map induced by λ': Y-*Mf. Then we have

LEMMA 11. 0' ΛWC/ F ; are mutually inverse homotopy equivalences and, fur-

thermore, the above diagram is commutative up to homotopy. (Puppe [12])

Proof. It follows from (ii) that Φf °Ψf — 1. On the other hand, the homo-

topy given by

U 5) -» Λ'(x, st), for O ^ ί ^ l , (xy s)(ΞX x I,

y -* A'(yf t) for 0 ̂  t^ 1, e y

yields a homotopy connecting 3F' ° 0' with ley. It is obvious that p = Φ' ° P'/,

so our assertion is proved.

The following is easily read from the proof of Puppe's Lemma 6 [12].

LEMMA 12. P'f: Y -^ Cf is a cofibering, whose λ' and A' are given by

(ΛΓ, 2 S ) G C / , 0 ^ S ^ | ,

λ'(x, s) =

(Ax), 2-2s)eyx/, 4-^s^l. (*• rieCX,
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λ'(y) = (y, 0) e= Y x 7, y e Y C C/,

, t) = (y, t).

Finally we state the following well known lemma which makes it possible

to convert any map into a map of simpler type.

LEMMA 13 ([3] or [1]). Any map is equivalent to a fibering (or a cofiber-

ing).

Proof. Given any map / : X-* Y, let M/ be the mapping cylinder of /

and we set

Let p : Z/->Y, i : X -> M/ be defined by setting p(x, β) = 0(0), i(x) = (*, 0).

Then we see at once that p is a fibering with fibre E/ and that ί is a cofiber-

ing with cofibre C/, both of which are clearly equivalent to / respectively.

6.3. Let / : X-* Y be a map. We shall define left operations (cf. [12],

4.3)

μ : Ω Y x Ef -> £/, / z ' : C / ^ S I V C /

as follows.

, #)) = (#, cα 0) for ω e J2Y, x<= X, β[

y for jyeYCC/,

(ΛT, 2 S ) E S I , S^-^

s) = for (x, s ) £ C I C

These induce natural H- and Zί'-structures (cf. [4]) ΩY x ΩY -> i2 Y, SX -> SZ V

SZ which are also denoted by μ, /*'. We have several properties about them.

For example,

a) The diagrams
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ΩYx Ef —>Ef Y >SX V Y

iχP/j l/y P'f\ \}^Pf

ΩYxX >X Cf 7->SIVC/

are commutative

b) ΩYx ΩYx E/—*-£->ΩY x Ef C/ — — > SX V C/

I" 4
ΩYx Ef > Ef SXV Cf-

μ 3

are homotopy-commutative.

Moreover Ef has a principal structure as mentioned in 5.4. Let Ef be the

reciprocal image of the diagonal under Pf x Pf': Ef x Ef -> X x X. If we define

h :£>*-* ΩY by taking

we obtain a homotopy commutative diagram

hxpi
ΩYxEf

where pi : ^ / -> E/ are defined by A(<2i, z2) = 2/, ί = 1, 2, Zi^Ef. This homo-

topy μΌ(h xpi) -β2 can be chosen so as to move image-points along fibres.

7. Connecting diagram6)

/ g

7.1. We shall call a triple X—» Y—>Z nullhomotopic if and only if the

composition g © / is homotopic to the constant. Given such a triple with a

definite homotopy Ht : X-± Z such that H = g° / , i/i = 0, we form the connect-
f g

ing diagram of X—> Y—>Z which is written as follows.

Ωf If Pf f Pf Qf S-f SP'f
^ Ω Y ^ E ^ X ^ Y ^ C ^ S X ^ S Y ^

6) This construction was inspired from a discussion in [5].

https://doi.org/10.1017/S0027763000002087 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002087


ON MAPPING SEQUENCES 133

in which the maps exhibited are defined by setting

), r), r(s)=flk-sU) for *e=x; O S s ^ l ,

α-.<*)

gβ(2-2s)

),ξ'f,g(χ,s) = n

(/U), 2-2s)

for (

for

ZΞCY

VII

2

1
S = =~2

< s ^

for (

for

-. (*.

1, U

>e= y,

) ^ s ^

0)6

U

S I .

Here, to simplify notations we omit all mention of a nullhomotopy Ht. With

these definitions we assert

THEOREM 5. The connecting diagram above is commutative up to homotopy.

Proof. Let G τ (0^ r ̂  1) be a homotopy E/ -+ Eg given by

GτU β) = (β{τ), rτ) for Λ G I , jSe £Y, /U) = 0(1),

where

E/il-8S + τ) (l + τ)-iU), 0 ^ S ̂  1 + τ/2

Since GQ(X, β) = (yo, v/,g(x, β)), Gι(x, β) = ξ/,g{x), it follows that Ig°y/,g-

ξf,g°Pf.

Similarly, if we consider a homotopy G'x : Cf-* Cg ( O ^ r ^ l ) defined by

G'Λy) = (j>, r)

GΛX> I (/U), 2-2s+r), (l + τ)/2^s^l,

then we see that y/,s

0 Qf— P'g° ξf,g. The other verifications are straight-

forward.

£/,*> f/,g,etc. will be called connecting maps in the sequel.

7.2. Next we shall determine to what extent the connecting maps are

altered by the choice of nullhomotopies of g ° f or by alterations of /, g within

their homotopy classes.

https://doi.org/10.1017/S0027763000002087 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002087


134 VASUfόSHί NOMURA

Let ξf,g1 ξ/,gy etc. be the connecting maps which are constructed by using

another nullhomotopy Ήt of g° /. It is clear that the correspondence

(x, s)

^S^~,

determines two maps κ(H, H) : X -> ΩZ, κ'(Ή, H) : SX-> Z. It is readily veri-

fied that

μ o {κ(H, H) X ξftg} cz ξffg9 μ o {κ(Ht H) X -ηf%8} cr τ}ftgy

war, H) v ξf,g) o y - ι;tlPl {^(E fo v ψ,g} o ^ - ^ ^,

where μ and ^' are left operations in Eg, Cg as defined in the previous section.

Secondly, when / - / , we shall construct ξj,gi etc. by using the nullhomo-

topy g°ft followed by Hs, where ft is a homotopy connecting / with /. Then

we see at once that ζγ,g - ξ/tg, v'/.g- V/.g and that the diagrams

are homotopy commutative, where each horizontal map is a homotopy equiva-

lence (cf. Lemmas 6,9). Similarly for g - g. Thus we have established

THEOREM 6. The effect of changing a nullhomotopy of go f upon connect-

ing maps is described in terms of the left operation of some element in π(X,

ΩZ) or π{SXy Z). When f and g are altered with their homotopy classes, the

resulting connecting maps are equivalent to the initial ones.

7.3. In case g ° / is just a constant, we may simplify the definition of

connecting maps to some degree, i.e., in that case we set

ξf,g(x> S) = Zo, Vf,g(x, S) = (f(x)t 1 - 5).

We shall now prove a result corresponding to excision theorems due to

Eckmann and Hilton [4]

THEOREM 7. i) If g is a fibering with fibre X, then ζ/,g and -η/)S are homo-
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topy equivalences, ii) Let f be a cofiber ing with cofibre Z. Then we have homo-

topy equivalences ξf,g and ψιg.

Proof. The first halves of each assertion are just restatements of Th. 1

and Lemma 11. Therefore it remains to prove that -η/,g and 7}/,g are equiva-

lences.

That 7}/,g is homotopic to the composite map

where Ng is a map as defined in 2.2, follows from the next computation

NgoE(l, £/.*)(* β)=Ng(ξ/,g(x), β)

= Ng((x, eZo), β)

Since, by 2.2 and Lemma 6, E{ly ξ/,g) and Ng are homotopy equivalences, so

is y/,g, which proves (i).

As regards -η/,g, consider the composite map

where λ' is the map determined by λf : Cf-* Mp>f in Lemma 12. It is easy to

show

' = = 2

so that it is homotopic to ψ>g. One sees from Lemmas 9 and 11 that ψ,g is a

equivalence. This concludes our proof.

8. Suspensions

8.1. We shall give here a definition of suspensions for an arbitrary map

/ : X-* Y which is substantially a generalization of usual ones, as mentioned

in Remarks of 8.1 and 8.2

Before doing so we make a convention. π(SX, Y) and π(X, ΩY) are in

1-1 correspondence with each other by the rule {/(x)}(s) =/(#, s) for / :

X-> ΩY, f : SX-* Y. In this case we use the notation
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Let υ : Cf -* Z be given, then we set u = υ ° P'/. Note that X—> y —

and Ef

gram

Pf f > y are nullhomotopic triples. Thus we may consider the dia-

Pf P'Pf
Ef •> X -

QPf
-> S£/

Pf f Pf
- -> y .—>

I'
Z.lu Pu u

We define the Eilenberg-MacLane suspension for /

σ*:π(Cft Z)-+π(SE/f Z)

by taking <AM) =. [v ° VP/./I- We also define

— sfc . / /"> f7\ ί IP Γί^Z \
O 7V\Kyfj Δt i "~* TC\lltfy Qύ/L/)

by tf*(M) =[^/,«]. f - Pu° ξftU may be called the Postnϊkov factorization of

f with respect to v.

Since we have

.s4

0), s) =

V(Λ, 2 - 2

ΛΓ, 2s),

w/3(2-2s),

we obtain

LEMMA 14. <7* ([#])*> — <?*([#]).

Remark. In case / is a fibering with fibre F, we shall call

(?ΛΛ/ ° SΦ)* : τr(C/, Z) -> τr(SF, Z)

the suspension of the fibering /, where Φ : F -* E/ is an equivalence given in

Th. 1. In particular, let / b e the Serre fibering £Ύ-> y defined by β -*> βίl)

and let u : y -*-Z be given then we set v(y) - u(y), v{β, s) = uβ(s) for y e y,
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, 0 ^ s ^ 1, obtaining a map v : C/ -> Z. We see then that vr,« ° Φ- Ωu \

ΩY -» £Z, where 0 : $ Y -» £/ is an equivalence.

8.2. Given a map v':Z-+E/,, we set u' - Pf ° υ' and we proceed in a dual

fashion. Consider the diagram

Z

f = ?«',/ ° P'w' may be said to be the Moore factorization of f ivith respect to vr.

We define the Freudenthal suspension for /

(X* : τr(Z, £/) -> τr(Z, ΩCf)

by setting j + ([«']) =Cτ?/,p'/ ;>vΊ We define also

df* : τr(Z, JE/) -> 7r(SZ, C/)

by <;*([>']) = t^M',/1 As in the case of the Eilenberg-MacLane suspension, we

may obtain

LEMMA 14r. σ^Zv'Do -σ*(lv'lι).

Remark. In case in which / is a cofibering with cofibre Y/X, then we

have a natural equivalence Φf : C/-> Y/X (Lemma 11). We say that

τr(Z, Ω(YIX))

is the suspension of the cofibering f. In particular consider f : X-* CX which

is the injection. Given uf : Z -> X we define z;' : Z -̂  E1/ by v'(z) = («'(«), /5')

where β' : /-> CX is defined by /3;(s) = (κ'U), 5), 0 ^ 5 ^ 1 . It follows at once

that Φ' © 7? ,̂/ 2r Sw', where ^ : C/ -> SX" is a natural equivalence.

8.3. We shall now establish naturality of suspensions. Let

x[
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be a transformation as in 6.1. It will be reasonable to consider the diagrams

SE{<P, ψ Φ) E(9, ψ\Φ) _

SEf — - - 4 SEf, Ef ~ - ' ^--» Ef,

f ~~CΪΦΓΦTΦ)* f~ΩC{φ> Ψ\Φ) f>

(7)

The following lemma is readily deduced from the definitions involved.

LEMMA 15. The above diagrams (7) are homotopy commutative.

Next, given maps v : C/> -» Z, v : Z -* E/, we set

v1 = E(<p, ψ;Φ)°v, u = P/o vy ti = P / ' o v\

Consider the diagrams

E{ψ9 Φ Φ)

, ^ Φ

Observing that u = ΰ ° ψ, uf - ψ ° ϊί, we easily verify

LEMMA 16. The diagrams (8) are homotopy commutative.

9. Suspension theorems

9.1. We are now in a position to prove an important property concerning

suspensions, which is an extension of usual suspension theorems. In the rest

of this paper we assume that the spaces to be considered are 1-connected.

THEOREM 8. Let f : X -» Y be any map and suppose Y is r-connectedf E/

S'connected. Then

σ* : Hq{Cf) -* EPiSEf) = Hq'\Ef)

is an isomorphism for q ^ r + s + 1 and a monomorphism for q = r -f s + 2.

Proof. In view of Lemmas 13, 15, 6, 9, we may restrict our attention to

the case in which / : X-* Y is an inclusion cofibering. In this case
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and rjpf,/ is given by

We shall form a diagram

Qt

Cf

, 2-2s)eCI, ~^s^l,

, Ef)

-(y, x\

where ω is the involution determined by inversion of suspension parameter

i : 2?/ -* £Y the inclusion r/ the composite τ?P/,/ ° ω ° £

y ( 0 ) = 0 ( l ) for βtΞEY, 7)n($, s) = (0(1), 5) for (0, s)

by 7/ i> the map defined by jf>(0) = 0(1) for 0 e £ " y ;

are all inclusions.

Define G Λ O ^ ί ^ l ) to be the homotopy such that

Gdβ) = 0(0 for 0ί

/ <>/' the map given by

e ^ / ; ^" is induced

other horizontal maps

s) =
= * = 2

Since GQ = η\ Gι = 7?", we have 7?' cr 7?". We see at once that the diagram above

is commutative.

By passing to cohomolgy it is clear that all horizontal maps, Qi and ω

induce isomorphisms. Note that p is a fibre map. Since ΩY is (r-^-con-

nected and (y, X) is (5 +1)-connected, it follows from a well known theorem

([14], Th. l.B) that p : HHY, X) -> IFiEY, Ef) is isomorphic for g^r+s+l

and monomorphic for q-rΛ-5 + 2, so that the same is true for <?* = (τ?'p/,/)*,

which is what we wanted to prove.

THEOREM 8'. Let f : X -» Y be any map, and let X and Ef be r- and s-con-

nected respectively. Then
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<y* : πQ(Ef) ~* πq(ΩCf) = πQ+1(C/)

is an isomorphism for q^r-\- s and an epimorphism for q = r + 5-f 1.

Proof. As before we may assume that / is an inclusion. We consider the

diagram

CXt Y)

> -X*)

ex)

where ω is the involution induced by inverting loops; T? = (/*') o ω o 5//,p//, /:

CZ -• C/ the inclusion >̂ and q are fibre maps defined by taking the terminal

point of paths other vertical maps are induced by injections.

By proceeding as in the previous theorem, we see that -η and j are homo-

topic to each other. Since (CZ, X) is (r-f D-connected and (Y, X) (s-f 1)-

connected, we have

πq+2(Cf CX, Y) =0 for q^r+s

by the triad theorem [2]. Hence it follows that σ* = (yf,p>f)* is isomorphic

for q^kr-\- s and onto for q = r+ s-hl. This completes the proof.

10. Postnikov decomposition

Let / : X -• Y be any map such that TΓ̂  Ef) =0 for q<>n-l. We abbrevi-

ate πq(Ef) by 7 .̂ By a convention made in 9.1 we have 7Γi(Y) = 0, so that

Th. 8 asserts that σ* : HHC/) -> IP'HEf) is isomorphic for q^n+l. There-

fore we can find a map

υ : Cf

such that tf*(M) =lj?/,wle7r(£/, ΩK{nni Λ + D ) -Hn(Ef) ~ Horn (#«(.£/), πn)

is the inverse of Hurewicz isomorphism, in which we set u-vo P'f.
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We have the maps

Pf f P'f
—> X > Y — > Cf

Vf,u\ l
ΩK(πn, n+ϊ)—+Eu - —>y—>K(πn, n + 1).

Iu Pu u

Since the relative mapping sequence for the triple / = Pu° ξ/} u is written

Ωk k

ΩEf —> ΩEm —> Eyt u —> Ef —> Em

K(πn, n-1) K(πn, n),

it follows from Th. 3 that πQ(E*JtU) ~ πq(Ef) for q ̂  n, n - 1. A simple com-

putation shows that ηf,u coincides with the composite

k Nu
Ef > EPU -> ΩK{πn, n + 1),

where Nu is an equivalence constructed in 2.2, and thus we have

k., : πn(Ef) ^ πniEptt), (β*)* : πn-i(ΩEf) ^ πn-i(ΩEPu).

These results show that

ί πq(EτJtu) = 0 for q^n

1 (E) ( E ) for ^>w + 1

ί πq(EτJtu)

1 πQ(Ey,u)

On the other hand, we obtain quickly from (Wlξ/,u)* that

I?/,«)* 7rα(Z) ^ ^(JE1^) for ̂ ^ « ,

ί () () ί ) onto.

Furthermore we have

(11) (Pu)* : TΓ^β^^TΓ^y) for ^ # w + 1, w.

This construction is essentially due to Eckmann and Hilton [6]. They call

it the homotopy decomposition of / .

In case / is a fibering then, by Th. 1, E/ is equivalent to the fibre of / ,

and thus we see from (9) that we have the Moore-Postnikov system jor f

([1], p. 911). In particular, when Y is a point we obtain the Postnikov system

for the space X.

It X is a point then E/ = ΩY, so that Pu : & -> 7 is a fibering in which

https://doi.org/10.1017/S0027763000002087 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002087


142 YASUTOSHI NOMURA

the fibre is K(πn+i(Y)f n) and moreover Pu is in + D-connective by (10), (11).

This is nothing but the Cartan-Serre-Whitehead technique for killing homotopy

groups [3].

11. Functional operations

11.1. In this section we try to make an explicit deduction of the formulas

stated in [10], without making use of the universal example.
f h θ

Suppose given a quadruple L—>K—> X—-> Y such that h° f - 0, 0 ° h- 0
which are realized by homotopies Ht, Gt respectively. Using the diagram

Ik Ph h
ΩX—>Eh — > K— •» X

we shall define the functional θ-operation θf by

θ/(h) = b , 9 ° ?ΛA1

This must be considered as an element of the set of equivalence classes by

left operation of f*π(Kt ΩY) and right operation of (Ωd)*π(L, ΩX).

Alternatively we consider the maps

/ P'f Qf S-f
L — -> ϋΓ-Λ Cf - A SL —4 SK

h P'h Qh

—>X—> Ch —> SK

and we set

which is regared as an element of π{SL, Y) classified by right operation of

(SffπiSK, Y) and left operation of θ*π(SL, X).

The following gives a relationship between the above two definitions.

PROPOSITION 7. 0/(ft)o -d/(h) (cf. Th. 5.1 in [10])
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Proof. By a direct calculation based on the definition of connecting maps

we have

2

iVh,θ° ξf,h(x))(s) =

θΆs-i(x), -i"

(?A,

Our assettion follows from these.

G2S-I(AX)), Y

11.2. Let /, h, θ be as above and let φ : E -> Z be given then we set

0i = ψ o (jβ) : ΩY-* Z. Note that 01 ° Ωθ - 0 by the exactness of (3R0)*.

Following Peterson [10] we shall define the secondary θ-operation ΦQ de-

termined by φ as follows:

which is regarded as an element of π(K, Z) classified by 0-image of left oper-

ation of π(K9 ΩY). Thus, in order to describe ΦQ completely, we need more

explicit information about φ ° μ, where μ : ΩY x E& -> EQ is left operation.

From the above definitions we see that

θf ° Vh,Q ° ξf,h = Φ ° (Λ) ° Λ̂,θ ° f/fA = 0 ° fA.o ° /-

Therefore we have proved

PROPOSITION 8. (cf. Th. 7.1 in [10]) θ'(θ/(h)) =/*Φθ(ft) mod θ'f*π(K, ΩY)

+/*0 (fe/ί operation of τr(ϋΓ, ^Y)).

11.3. Next, let / : L -> /Γ be a fibering with fibre F, and let i . F-* L be

the inclusion. Suppose /z : K -> Z is such that & ° / — 0 by a homotopy A

( O ^ ί g l ) , and let 0 : X-> Y be a map with ψ°h-0. Then we have the

diagram
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Pf f P'f

Ih Ph h
E K

iί %,*

Ω.-Φ Iφ Ύ Pφ , φ

where Φ is a natural equivalence (cf. Th. 1) and v is defined by

for

Since ί/*(M) = [̂ /,/» ° Φ] in the fibering / (cf. 8.1, Remark), it follows from

the homotopy commutativity of the diagram

PROPOSITION 9. (cf. [10], Lemma §.2) i*ψ/(h) = - {Ωψ)*a*(lυD mod

π(Ly ΩX).

f h θ ψ
11.4. Let L—>K—>X—>Y—>Z be maps such that there exist homo-

topies Ht : β ° ft ° / - 0, Gt : ψ ° θ - O(Q^t^l). Then we can easily verify

that both T?Θ,Φ ° ?AO/,Θ and Θ̂OΛ,Φ ° ?/,ΘOA are given by

(x, s)

Hence we have shown

ψH2s-i(x),

PROPOSITION 10. ψhof(θ) -ψ/{θ ° h).

In case 7̂* : 7r(Co, Z) -* Trί.E'θ, i2Z) is onto, then there exists a map 0 : Y -» Z

such that [>Θ, J - ίφl for any φ : EQ-+ ΩZ, and then we have (IΘ)*Zφ] = -

We deduce from Prop. 10.

COROLLARY.

[10], Th. 6.3).

° f) =ψf(O o h) mod {Ωψ)*πU, ΩY) +Γ''π(K, ΩZ) (cf.
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