PLANE CURVES AND p-ADIC ROOTS OF UNITY

JOSE FELIPE VOLOCH

We prove the following result: Let $f(x, y)$ be a polynomial of degree d in two variables whose coefficients are integers in an unramified extension of \mathbb{Q}_p. Assume that the reduction of f modulo p is irreducible of degree d and not a binomial. Assume also that $p > d^2 + 2$. Then the number of solutions of the inequality $|f(\zeta_1, \zeta_2)| < p^{-1}$, with ζ_1, ζ_2 roots of unity in $\overline{\mathbb{Q}}_p$ or zero, is at most pd^2.

Let C_p be the completion of the algebraic closure of \mathbb{Q}_p with its usual norm extending that of \mathbb{Q}_p. In [5], a result which implies the following statement was proved. If $f(x, y) \in C_p[x, y]$ there exists a positive constant c such that, for any roots of unity ζ_1, ζ_2, either $f(\zeta_1, \zeta_2) = 0$ or $|f(\zeta_1, \zeta_2)| \geq c$. (A similar result holds for polynomials with an arbitrary number of variables.) In general, however, there is little information about the value of c. In the case that f is linear and its coefficients are units in an unramified extension of \mathbb{Q}_p, it was proved in [5] that the inequality $|f(\zeta_1, \zeta_2)| \leq p^{-2}$ had at most p solutions ζ_1, ζ_2 roots of unity or zero. The purpose of this note is to obtain a similar result for more general polynomials in two variables. Recall that a binomial is a polynomial with (at most) two non-zero coefficients. Our main result is then:

Theorem. Let $f(x, y)$ be a polynomial of degree d in two variables whose coefficients are integers in an unramified extension of \mathbb{Q}_p. Assume that the reduction of f modulo p is irreducible of degree d and not a binomial. Assume also that $p > d^2 + 2$. Then the number of solutions of the inequality $|f(\zeta_1, \zeta_2)| < p^{-1}$, with ζ_1, ζ_2 roots of unity in $\overline{\mathbb{Q}}_p$ or zero, is at most pd^2.

Proof: We shall first prove the theorem under the additional condition that we are dealing with roots of unity of order prime to p. The inequality then translates into $f(\zeta_1, \zeta_2) \equiv 0 \mod{p^2}$. The ring of integers of the completion of the maximal unramified extension of \mathbb{Q}_p can be viewed as the ring of Witt vectors over the algebraic closure of \mathbb{F}_p and, since we are interested only in the situation modulo p^2, we can work in the Witt vectors of length two over the algebraic closure of \mathbb{F}_p. We are thus interested

Received 3rd March, 1999
The author would like to thank the TARP (grant #ARP-0006) and the NSA (grant MDA904-97-1-0038) for financial support.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/99 $2.00 + 0.00.

479
in the solutions of the equation \(f((x,0),(y,0)) = (0,0) \). This equation translates into the system
\[
fo(x,y) = g(x,y) = 0,
\]
where \(fo \) is the reduction of \(f \) modulo \(p \) and the polynomial \(g \) is the reduction modulo \(p \) of the polynomial \((f^p(x^p,y^p) - f(x,y)^p)/p \) and \(\sigma \) is the Frobenius automorphism of the ring of Witt vectors. Clearly \(g \) has degree at most \(pd \) and, since \(fo \) is assumed irreducible of degree \(d \), the result we want follows from Bézout’s theorem unless \(fo \) divides \(g \), which we proceed to show cannot happen.

Let \(X \) be the irreducible plane curve defined by \(fo(x,y) = 0 \). We shall derive a contradiction from the assumption that \(g \) vanishes identically on \(X \). If \(g = 0 \) on \(X \) then, by differentiating \(g(x,y) = 0 \) we obtain \(gx + gy dy/dx = 0 \) and, from the definition of \(g \) we have \(gx = f^p(x^p,y^p)x^{p-1} - f(x,y)^p f_x = f_{0x} x^{p-1} \) on \(X \). Likewise \(gy = f_{0y} y^{p-1} \) on \(X \). Since \(fo \) is of degree less than \(p \) and is not a binomial, we have that \(f_{0x}, f_{0y} \) are non-zero. Using that \(dy/dx = -f_{0x}/f_{0y} \), we obtain the identity \(f_{0x} x^{p-1} = f_{0y} y^{p-1} \), on \(X \). This gives \(xf_{0x} = cyf_{0y} \) for some \(c \in \mathbb{F}_p \). The lemma below ensures that this cannot hold under the assumptions that \(p > d^2 \) and \(fo \) is not a binomial and this will complete the proof in the case the roots of unity are of order prime to \(p \).

If \(\zeta_1, \zeta_2 \) are arbitrary roots of unity satisfying the inequality \(|f(\zeta_1, \zeta_2)| < p^{-1} \) we can write \(\zeta_i = \lambda_i \eta_i \), \(i = 1, 2 \) where the \(\lambda_i \) are of order prime to \(p \) and the \(\eta_i \) are of \(p \)-power order and are not both equal to one. We shall show that this inequality has no such solution. By a harmless change of coordinates we may assume that \(\lambda_i = 1 \), \(i = 1, 2 \). Further, perhaps after switching \(x \) and \(y \) if necessary, we may assume that \(\eta_2 = \eta_1^r \) for some integer \(r \). We write \(\eta_1 = 1 + \pi \) and notice that the inequality \(|f(\zeta_1, \zeta_2)| < p^{-1} \) implies \(f(1 + \pi, (1 + \pi)^r) \equiv 0 (mod \pi^{p-1}) \). On the other hand if \(\mathcal{O} \) is the ring of integers of the field \(F(\eta_1) \), where \(F \) is a unramified extension of \(\mathbb{Q}_p \) containing the coefficients of \(f \), then \(\mathcal{O}/\pi^{p-1} \) is isomorphic to \(k[t]/(t^{p-1}) \), where \(k \) is the residue field of \(F \). Therefore we obtain \(f_0(1 + t, (1 + t)^r) \equiv 0 (mod t^{p-1}) \). This implies, with notation as above, that \(y/x^r - 1 \) has a zero of order at least \(p - 1 \) at some place of \(X \) centred at \((1,1)\), so the differential \(dy/y - rdx/x \) has a zero of order at least \(p - 2 \) at that same place. However, this differential has at most \(3d \) poles counted with multiplicity, so at most \(3d + 2g - 2 \) zeros, where \(g \) is the genus of \(X \) unless it is identically zero. Now, \(3d + 2g - 2 \leq 3d + (d - 3) = d^2 < p - 2 \), by hypothesis, so the differential is identically zero, which, using that \(dy/dx = -f_{0x}/f_{0y} \), leads to a contradiction with the lemma below.

It remains only to prove:

Lemma. Let \(f(x, y) = 0 \) define an irreducible plane curve \(X \) of degree \(d \) over an algebraically closed field \(k \) of characteristic \(p \) satisfying \(p > d^2 \). If \(xf_x = cyf_y \) on \(X \) for some \(c \) in \(k \) then \(f \) is a binomial.

Proof: The hypothesis means an identity \(xf_x - cyf_y = bf \) for some \(b \) in \(k \). If
Plane curves

$f(x, y) = \sum a_{ij}x^iy^j$ we get $a_{ij}(i - cj - b) = 0$ for all i, j. Suppose first that $b = 0$. For any i, j, i', j' with both $a_{ij}, a_{i'j'}$ non-zero, we get $i - cj = i' - cj'$ which implies that $ij' - i'j = (i - cj)j' - (i' - cj')j = 0$ in k, which means that p divides $ij' - i'j$, but under our assumption that $p > d^2$, this implies that $ij' = i'j$ and this implies that the value of i/j is constant for all i, j with $a_{ij} \neq 0$. So $f(x, y) = \sum_{r} a_{rm,n}x^{rn}y^{rn}$ which can be written as a constant multiple of a product of terms of the form $x^{m}y^{n} - \alpha$ and, since f is irreducible, we conclude that f is a binomial.

Assume now that b is not zero. First of all, if f is a polynomial in just one variable and is irreducible, then it is a binomial and we are done. Therefore, we may assume that there exists i_1, j_1 with a_{0j_1}, a_{i_10} both non-zero and we get that $i_1 = b$ and $cj_1 = -b$, so c is not zero and $c = -i_1/j_1$. If i, j are such that $a_{ij} \neq 0$ then $i + j_i/j_1 - i_1 = 0$ in k so $ij_1 + j_i \equiv i_1j_1 (\text{mod } p)$. But $i_1, j_1 \leq d, i + j \leq d$, therefore $0 \leq ij_1 + j_i, i_1j_1 \leq d^2 < p$ so $ij_1 + j_i = i_1j_1$. Let $\delta = (i_1, j_1), i_1 = m\delta, j_1 = n\delta, (m, n) = 1$. We get $in + jm = mn\delta$, so $m[i, n]j$ and writing $i = mu, j = mv$ we get $u + v = \delta$. Thus $f(x, y) = \sum_{u} a_{mu,n(\delta - u)}x^{mu}y^{n(\delta - u)}$ which can be written as a constant multiple of a product of terms of the form $x^{m}y^{n} - \alpha$ and, since f is irreducible, we conclude that f is a binomial.

REMARKS. (i) If X is a projective curve of genus bigger than one embedded in an Abelian variety A, all defined over an unramified extension of \mathbb{Q}_p, then Raynaud [4] proved that there are only finitely many torsion points of A of order prime to p which are in X modulo p^2 and Buium [1] gave an explicit bound for the number of those points. Perhaps the techniques of Coleman [2] could be used to extend this result to the full torsion and obtain an Abelian analogue of the above result.

(ii) A special case of Lang’s extension of the Manin-Mumford conjecture, proved by Ihara, Serre and Tate (see [3, Chapter 8, Theorem 6.1]) states that if $f(x, y)$ is an irreducible polynomial, not a binomial, over a field of characteristic zero, then there are only finitely many roots of unity ζ_1, ζ_2 with $f(\zeta_1, \zeta_2) = 0$. This follows from the above theorem by choosing p large enough such that the field generated by the coefficients of f embeds in \mathbb{Q}_p and such that the hypotheses of the theorem hold.

REFERENCES

https://doi.org/10.1017/S0004972700036637 Published online by Cambridge University Press

Department of Mathematics
University of Texas
Austin TX 78712
United States of America
e-mail: voloch@math.utexas.edu