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CONTINUOUS, SLOPE-PRESERVING 
MAPS OF SIMPLE CLOSED CURVES 

TIBOR BISZTRICZKY AND IVAN RIVAL 

How many of the continuous maps of a simple closed curve to itself 
are slope-preserving? For the unit circle 5 1 with centre (0, 0), a con
tinuous map a of S1 to Sl is slope-preserving if and only if a is the identity 
map [a(x, y) = (x, y)] or a is the antipodal map [a(x, y) = ( — x, —y)]. 
Besides the identity map, more general simple closed curves can also 
possess an ''antipodal" map (cf. Figure 1). 

Examples of plane curves with continuous, 
slope-preserving (antipodal) maps. 

FIGURE 1 

It is perhaps somewhat unexpected that an arbitrary simple, smooth, 
closed curve behaves, in this respect, very much like Sl. It is the purpose 
of this paper to establish: 

THEORE:M. There are at most two continuous, slope-preserving maps of a 
simple, smooth, closed curve, to itself. Each such map a is a homeomorphism 
satisfying a o a = id. 
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Preliminaries. In this section we consider some of the elementary 
properties of simple plane curves. 

For distinct points p and p' in the Euclidean plane R2 let {p,p') 
denote the line through p and p'. Let I denote the unit interval [0, 1] in 
R1 and set I~ = [0, 1). 

A simple parameter curve f is a continuous map of / to R2 such that 
/ \I~ is one-to-one. We call /(0) the initial point and / ( l ) the terminal 
point of / ( / ) . If /(0) = / ( l ) , we identify 0 and 1 in J and call / ( / ) a 
simple closed curve. 

For an element x of / , a line Tx is the tangent t o / at x if 

Tx = lmv_^(/(x') , /(*)>. 

We say t h a t / is a simple differ entiable parameter curve of finite type or, 
more briefly, a simple differentiable parameter curve, if Tx exists for each 
x Ç / and there is a positive integer n such that \L P \ / ( / ) | ^ « for each 
line L in R2. 

L e t / be a simple differentiable parameter curve, let L be a line in R2, 
and let x £ / satisfy/(x) £ L. As L P i / ( I ) is finite, there is a deleted 
neighbourhood iV^ of x in / such that L C^f(Nx) = 0. Now, L separates 
R2 into two regions. We say that L supports f at x if f(Nx) is entirely 
contained in one of these regions; otherwise, L cuts f at x. 

LEMMA 1. ([3]). Let f be a simple differentiable parameter curve, let x £ I 
and let Lx denote the set of all lines in R2 containing j\x) and distinct from 
Tx. Then every L £ Lx supports f at x or, every L Ç Lx cuts f at x. 

From this standpoint there are precisely four types of points in 
/ ( / ) Ç R2. We define the characteristic (a0(x), ai(x)) of a point f(x) by 
taking a0(x) = 1 [2] if some L £ Lx cuts [supports] / at x and by taking 
cti(x) (: {1, 2} such thatao(x) + c*i(x) is odd [even] if Tx cuts [supports] 
/ at x. There are then four types of points: ordinary, characteristic 
(1, 1); inflection, characteristic (1,2); cusp, characteristic (2, l);beak, 
characteristic (2, 2) (cf. Figure 2). 

/(*) /(*) J V. /(*) fix) 

ordinary (1,1) inflection (1, 2) cusp (2, 1) beak (2, 2) 

FIGURE 2 

In this connection we note: 

LEMMA 2. ([2]). A simple differentiable parameter curve contains only 
finitely many points that are not ordinary. 
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For what follows wre assume t h a t / is a simple differentiable parameter 
curve. We pu t C = f(I) and refer directly to C as a simple differential)!e 
curve. If p = / ( 0 ) ^ f{\) = g, we also call C a simple differentiable arc 
and denote it also by A (p, q) or A. From this viewpoint a simple closed 
differentiable curve C ( / ( 0 ) = / ( I ) ) consists of simple differentiable arcs. 
Indeed, if p and q are dist inct points of C then there are simple differen
tiable arcs A (p, q) and A (q, p) satisfying 

A(p,q)\J A(q,p) = C and A(p, q) n A(q, p) = {p,q\. 

For convenience we often identify x £ 7 with £ = f(x) G C and also 
write r p for the tangent Tx of C a t p. As a connected subset of C with only 
ordinary points has continuous tangents , it follows from Lemma 2 that 
Tv depends continuously on p t C. 

For distinct p = f(x) and <? = f(y), we say tha t £ precedes q [q follows p \ 
in C if x < y in 7 and we write p < q. H f(Q) ^ / ( l ) then, evidently, 
either p < q or q < p for any dist inct p, q (z C. If / ( 0 ) = / ( l ) then 
P — / ( 0 ) both precedes and follows each g G C\{p) a n d / ( 0 ) < q < / ( l ) . 
In either case, we say tha t C is oriented in the direction of increasing 
x (z 7. This orientation of C induces, in turn, an orientation of every arc 
of C. In fact, if p and q are dist inct points of C then yl (p, q) [A (g, />)] is 
oriented from p to q [q to £] and, as above, C = A(p, q) U A (q, p). 

For dist inct points q, r in C, let gr denote the vector in R2 with initial 
point q and terminal point r. Let ||gr|| denote the usual length of qr in R2. 
Now% let p (z C and let (p\) be a sequence of points in C such that 
p\ < p for each X and lim p\ = p. We pu t 

p = n m TT—> ,, 

. x - ^ l l ^ l l 

and call p the tangent vector of C a t p. For completeness we set 

po = l i n w 0 p 

if C is an arc with initial point po. 
Evident ly , p exists for each p G C and p is parallel to Tv. Moreover, 

the tangent vectors p of C depend continuously on p G C provided tha t 
C contains neither cusps nor breaks. We shall for brevi ty call a simple 
differentiable curve with only ordinary points and inflection points a 
simple smooth curve. 

From Lemma 2 it now readily follows tha t 

LEMMA 3. Let C be a simple differentiable curve, let L be a line in R2, and 
let q G C. Then both 

0>(L) = [p £ C\TP is parallel to L\ 
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and 

&{q) = \P e C|p = qorp = - q ) 

are finite sets. 

If £0 is the initial point of C, then we may so enumerate the elements 
po, pu • • • ypk of ^(po) tha t po < pi < P2 < . . . < pk. Letpk+i denote 
the terminal point of C (pk+i — ^o if C is closed). Then 

k+l 

C= U ^ - i , ^ ) 

and, for each i = 1, 2, . . . , & + 1, 

int A(Pt-u pt) n&>(Po) = 0 

where int A denotes the interior of A. 

T h e m e a s u r e of a p o i n t and a curve. Let C be a simple differentiable 
curve with initial point po and terminal point pk+u where 

^(Po) = {^0 < Pi < p2 < • • • < £*} . 

Let the unit circle Sl in R2 with centre (0, 0) be assigned the counter
clockwise orientation. For p £ int A (pi-i, pi), the vectors p and p*_i 
positioned writh initial point (0, 0) meet Sl at , say, t and / ;_i , respectively. 
Let Z (Pi_i, p ) denote the arclength of the smaller of the two arcs of Sl 

determined by /z_i and /. Denote the smaller arc by A (^_i, i) and set 

ihi-i(P) = z (Pi-i» P) 

if the orientation from /?_i to t in ^4(^_i, /) is counter-clockwise; other
wise, set 

Ihi-iiP) = ~ z (P*-i> P)-

Note that , for each £ Ç int 4̂ (£*_i, £*) and for each i = 1, 2, . . . , k + 1 

o < Ift,,--^)! < ̂  
Finally, let 

VPO(PO) = 0, 

for £ G int 4̂ (£i_i, £*) and for each i = 1, 2, . . . , k + 1, let 

Mp0(£) = lho(Pi-i) + fhi-i(P) 

and 

PpoiPi) = \imP->Pl,Pl-l<P<Plf
J<P()(P)-

Evidently &po(p) is defined only for £ £ int 4̂ (£o, £i ) while HP0(P) is 
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defined for ail p £ C. Moreover, for any q Ç C, g is the initial point of 
some oriented arc A oi C and iî p (z A then /*</(£) is defined. 

Recall t ha t ^O[^A:+I] is the initial [terminal] point of C. We call 

l/Xpotot+i)! the measure of C and denote it by n(C). 

PROPOSITION 4. ([4], [1]). Let C be a simple smooth closed curve. Then 
jLt(C) = 2T for any choice of initial point for C. 

We conclude this section with several elementary observations intended 
as a rationale for arguments to follow. 

Let C be a simple d i f fe rent ia te curve with initial point po, terminal 
p o i n t p k + u a n d ^ ( p 0 ) = \p« < pi < p2 < . . . < ^ J . L e t O S i Û k + 1 
and let p £ int A {pi-\, pi). 

(a) If p is an ordinary point or an inflection point then there is a 
neighbourhood N(p) of p in int A{pi-\, pi) such tha t either fipo(q) > 0 
for all g G # ( £ ) or MP O (?) < 0 for all g G N(p). 

(b) If p is either a cusp point or a beak point and |MO(£) | < ?r/2, then 
in any neighbourhood iV(£) of £> in C there exist points g and r such tha t 

MPo(5)-MPo(^) < 0. 

(c) If A(pi-i,pi) is a smooth arc then either ^Po(q) ^ 0 for all 
q e Aipi-u pi) or nPQ(q) g 0 for all g Ç A(pt-i, pt). 

S i m p l e c losed curves w i t h beaks a n d c u s p s . Our main result is 
concerned with simple, closed, smooth curves C and continuous, slope-
preserving maps a of C to C ( tha t is, continuous maps a for which T0{p) is 
parallel to Tp, for each p £ C). I t is perhaps instructive a t this point to 
indicate jus t how ' ' smoothness" of a simple closed curve must enter into 
our consideration. 

Example 1. A simple, closed curve with beaks. Let C be the curve 
consisting of the arcs Ai, A2 described by 

A1 = {(x, (1 - x 2 ) 1 / 2 ) |0 g x S 1} 

and 

A2 = {(*, (1 - x 4 ) 1 / 4 ) |0 g x S l } . 

This curve is illustrated in Figure 3. Evident ly , Chas a beak a t (1, 0) and 
a t (0, 1). 

We define a map p of int A i to A 2 by 

p ( ( l + m - 2 ) - 1 / 2 , (1 + m 2 ) - 1 / 2 ) = ((1 + m - 4 / 3 ) - 1 / 4 , (1 + m 4 / 3 )~ 1 / 4 ) 

for all m > 0. (Note t ha t the slope a t ((1 + m ~ 2 ) - 1 / 2 , (1 + ra2)-1/2) of 
int^4i is — m and equals the slope a t ((1 + ra~4/3)"~1/4, (1 + w 4 / 3 ) ~ l / 4 ) 

https://doi.org/10.4153/CJM-1980-084-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-084-4


SIMPLE CLOSED CURVES 1107 

(0,1) 

(0,0) 

FIGURE 3 

of A 2.) Evidently, p is continuous. We now define the map a of C to C by 

iP(p) lip 6 int^i 
a(p) = 

P rfpeA2. 
Then a is continuous and slope-preserving. It is, however, neither one-to-
one nor onto. 

Example 2. A simple close curve with cusps. Let C be the curve con
sisting of the arcs 

(x, — 1 — COS X) | — 7T ^ X S 7r} 

and 

{ (#, 1 + COS X)| — 7T ^ X ^ 7r}. 

This curve is illustrated in Figure 4. It has a cusp at ( — w, 0) and at (71-, 0). 

FIGURE 4 
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Let A denote the arc consisting of the points of {(x, 1 + cosx)[ 
— 71-/2 ^ x ^ 7r/2j and define a map a of C onto A by 

( (X — 7T, 1 + COS (x — 7r)) if 7r/2 ^ X ^ 7T 

(T((X, ~ 1 — c o s x ) ) = I ( — x, 1 + cos ( —x)) if — TT/2 ^ x ^ TT/2 

( (x + 7T, 1 + COS (X + 7r)) if — 7T ^ X ^ — 7T;/2 

and 

( (7T — X, 1 + COS (71- — X)) if 7r/2 ^ X ^ 7T 

O-((X, 1 + cos x)) = < (x, 1 + cos x) if — 7r/2 ^ x ^ 7r/2 

( ( —7T — X, 1 + COS ( —7T — X)) if —7T ^ X ^ —7r/2. 

Again, a is a continuous, slope-preserving map of C to C. Of course, a is 
neither one-to-one nor onto C. 

T h e curve C i l lustrated in Figure 3 has no tangent vector with inclina
tion 7r/4, for instance, while the curve of Figure 4 has no tangent vector 
with inclination TT/2. T h e curve C i l lustrated schematically in Figure 5 
has tangent vectors with inclination 0 ^ 0 ^ 2ir, yet it is a straight
forward mat te r to construct a continuous, slope-preserving map of C onto 
the arc A. 

Each of the curves described above is simple differentiable. Indeed, for 
our purposes only simple differentiable curves need apply. A simple, 

FIGURE 5 
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closed curve C containing a proper line segment will evidently give rise 
to infinitely many continuous, slope-preserving maps of C to itself. 

Slope-preserving m a p s of s m o o t h curves . In this section we intend 
to prove the result announced in the introduction. 

We call a simple differentiable curve ordinary if it contains only 
ordinary points. 

LEMMA 5. Let p be a continuous, slope-preserving map of a simple, 
smooth, closed curve C onto a simple, ordinary curve A* = ^4*(a0, a i ) . 

i) If qo < qi < . . . < qk are all inflection points of C then p\A {q%-i, q%) 
is one-to-one, for each i = 1, 2, . . . , k. 

ii) For each i = 1,2, . . . , k, there is an open neighbourhood N(qt) of 
qi such that p(N(qt)) is a one-sided neighbourhood of p(qi). 

(iii) If aQ 9^ a\ then every p £ p~l(ao) \J p~1(ai) is an inflection point 

ofC. 

Proof. I t is enough to observe tha t a point p of C is ordinary if there is 
an open neighbourhood N(p) of p such that , for r, s £ N(p), r < p < s, 
Tr is not parallel to Ts. 

LEMMA 6. Let p be a continuous, slope-preserving map of a simple, 
smooth, closed curve C onto a simple ordinary curve A* = A*(a0, a i ) . Let 
po G p~l(a0). Then 

VP0(P) = Va0(p(p)) 

for all p G C, or 

VVQ(P) = -VaQ{p(p)) 

for all p (z C. 

Proof. Let ^(pQ) = {po < pi < p2 < . . . < pn-i} with pn = p0. We 
shall show first t ha t 

VvoiPi) = ^aQ(p(Pi)) for each i = 0, 1, 2, . . . , n. 

To this end, let / denote the set of all inflection points of C and let 
q, q' be distinct, successive, members of / , t ha t is, 

mtA(q, q1) C\ I = 0. 

Then, for any p G C, IIP is either strictly increasing or strictly decreasing 
on A (q,qf). N O W , M P O ( ^ - I ) = v>PQ(Pi) ( that is, / v _ i (pi) = 0) if and only 
if there is an odd number of inflection points in int A (pi-i, pi). 

Let fxpi_1(pi) = 0. Then there are elements q\, g2, . . • , q* of / , k odd, 
satisfying 

pt-i < qi < q2 < . . . < q* < pi ^ g*+i-
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By Lemma 6 (ii), 

P(A(qhq2)) QA*(p(p^),p(qi)), 

and, in fact, 

p(A(qhql+1)) Ç1A*(p{pi-l,ql)) 

for 1 ^ / ^ k and / odd. Therefore, p(pi) G A*(p(pi-i), p(qk))> As p is 
slope-preserving, 

A^p(p^),p(qk))n^(a0) = {piPt-J} 

and so p{pt) = p(pi-i) and 

P<P(vi-i)(p(Pi)) = 0 . 

Similar considerations show that 

| M P ( p , - - i ) ( p ( p i ) ) | = 7T 

if 

|MP . - - I (P0 | = *"• 

Now, ^4* is ordinary, so Ma0(
a) è 0 for all a £ ^1*, or else Ma0(

a) = 0 
for all a f i * . But p is a map of C onto A* so either ixVQ{p) è 0 for all 
£ £ C, or else ^po(p) ^ 0 for all £ 6 C. As 

MPO(^O) = 0 = Mo0(ûo) = Ma0(p(^o)) 

our claim is established. 
This together with Lemma 5(i) completes the proof. 

COROLLARY 7. Let p be a continuous, slope-preserving map of a simple, 
smooth, closed curve onto a simple, ordinary curve A*. Then A* is closed. 

Proof. This follows at once from the fact that 

Ma0(p(£o)) = 0, 

Va0(p(pn)) = 2TT and 

#0 = P(PQ) = p(pn)-

LEMMA 8. Let A be a simple, smooth arc. Then there exists a continuous, 
slope-preserving map of A onto an ordinary arc. 

Proof. Let A' be a spiral (logarithmic or hyperbolic, see Figure 6) 
such that for any p £ A, there is at least one q £ A' with Tq parallel 
to TP. An appropriate segment of A' will provide the required ordinary 
arc. 

THEOREM 9. Let a be a continuous, slope-preserving map of a simple, 
smooth, closed curve C to itself. Then a is a homeomorphism and either 
°"(p) = P for att P ë C, or <j(p) = — p for all p £ C (where cr(p) denotes 
the tangent vector of C at a(p)). 
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Logarithmic spiral 
log r = ad, a constant. 

Hyperbolic spiral 
rd = a, a constant. 

FIGURE 6 

Proof. If a(C) 9^ C then a(C) is a simple, smooth arc. There is, then, 
by Lemma 8, a continuous, slope-preserving map p of a(C) onto an 
ordinary arc A'. Then p o a is a continuous, slope-preserving map of C 
onto A', which is impossible (cf. Corollary 7). Therefore, a is onto. 

As \^(p)\ is finite for every p (E C, and T0(p) is parallel to Tv it follows 
that o- must also be one-to-one, whence a is a homeomorphism. 

Finally, each of the sets \p £ C\a(p) = p} and {p Ç C|o-(p) = — p} 
is closed in C As C is connected one of these must be empty. 

LEMMA 10. Let a be a continuous, slope-preserving map of a simple, 
smooth, closed curve C to itself. Then a(a(p)) = p for each p £ C. 

Proof. Let us suppose that there is p £ C such that 

|{cr'(/>)|i = 0, \,...,n - 1}| = n ^ 3 

while awO) = />. 
We shall show that <jl(p) < ai+l(p) for each i = 0, 1, 2, . . . , n - 2 or 

o-*(/>) > o-i+l(p) for each i = 0, 1, 2, . . . , n — 2. To see this we need only 
verify that a(p) < a2(p) Up < a(p). 

Let 

A(p,a{p))C\£P(p) = {p = po<pi<p2< -.- <pk = <T(P)}. 

If (J{pi) < Pk = <r(p) then <r(pi) = pk-i. Therefore, 

<T(PQ) = Pk> <r(pi) = Pk-i > <r(p2) = pk-2 > > <r(pk) = po = P 

so 

a2(p) = <r(v(po)) = *(pt) = P, 
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contrary to our supposition. Thus , a(po) < <r(pi). From the fact t ha t a 
is one-to-one we deduce t ha t 

°(P) < °(Pi) < • < *(P*) = °2(P)-

Let us then assume t h a t 

P = o«{p) < a(p) < . . . < c"^(p) 

and on(p) = p. Then 

C= n\JA(a'(p),ai+1(p)), 

and from 

n - l 

2TT = M ( C ) = VoO(V)(o-n(p)) = ]CM<7UP)(<^+ (£))• 

Moreover, o-(p) = p for all ̂ > G C or o-(p) = — p for all f G C. In either 
case from 

<r(4(<7'-i(£), *'(*>))) = A{a
i{p),a^{p)) 

we conclude tha t 

for i = 1, 2, . . . , n — 1. Therefore, 

2TT = n^ffHv){(j(p)) = n}xv{(j{p)) 

and 

fh(°(P)) = 2v/n. 

But o-(p) = d t p so nP(<r(p)) is an integral multiple of 7r which is impos
sible unless w = 1 or w = 2. 

Finally, we are ready to complete the proof of our main result. (Note 
tha t while Theorem 9 discloses an impor tan t feature of the collection of 
all continuous slope-preserving maps of simple smooth closed curves it 
does not yet enumerate them.) 

T H E O R E M 11. Let a be a continuous, slope-preserving map of a simple, 
smooth, closed curve C to itself. Then either a is the identity map of C 
(<r(p) = p for each p £ C) or a is the unique antipodal map of C (o-(p) = 
— p for each p G C). 

Proof. Suppose there are points pQ, pi of C satisfying <r(po) 9e po yet 
°"(Pi) = Pi- Then <r(pi) = p i implies t ha t o-(p) = p for all p £ C. Now 
from <T(<T(PQ)) = po it follows tha t 

M P O O O O ) ) = &-2TT 
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and, as in the proof of Lemma 10 above, 

2TT = fi(C) = 2(k'2w). 

As this is impossible we conclude tha t either a is the identi ty map, or 
else, o-(p) = — p for all p Ç C. 

Suppose tha t <r(p) = — p for all p £ C. Let p0 £ C and suppose tha t 
o-(£o) = £*, where ^(po) = {po < pi < p2 < . . . < £„-i} and p n = p0. 
Evidently, \0>(po)\ must be even, tha t is, n is even, and since a is a 
homeomorphism i = n/2. I t follows tha t o- is unique. 

While implicit in the proof of Theorem 11 it is perhaps appropriate to 
record 

COROLLARY 12. Let a be a continuous map of a simple, smooth, closed 
curve C to itself. If o-(p) = p for each p (z C then a(p) = p for each p £ C. 
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