CONTINUOUS, SLOPE-PRESERVING MAPS OF SIMPLE CLOSED CURVES

TIBOR BISZTRICZKY AND IVAN RIVAL

How many of the continuous maps of a simple closed curve to itself are slope-preserving? For the unit circle S^1 with centre (0, 0), a continuous map σ of S^1 to S^1 is slope-preserving if and only if σ is the identity map $[\sigma(x, y) = (x, y)]$ or σ is the antipodal map $[\sigma(x, y) = (-x, -y)]$. Besides the identity map, more general simple closed curves can also possess an "antipodal" map (cf. Figure 1).

Examples of plane curves with continuous, slope-preserving (antipodal) maps.

FIGURE 1

It is perhaps somewhat unexpected that an arbitrary simple, smooth, closed curve behaves, in this respect, very much like S^1 . It is the purpose of this paper to establish:

THEOREM. There are at most two continuous, slope-preserving maps of a simple, smooth, closed curve, to itself. Each such map σ is a homeomorphism satisfying $\sigma \circ \sigma = id$.

Received February 6, 1979 and in revised form May 15, 1979.

Preliminaries. In this section we consider some of the elementary properties of simple plane curves.

For distinct points p and p' in the Euclidean plane \mathbf{R}^2 let $\langle p, p' \rangle$ denote the line through p and p'. Let I denote the unit interval [0, 1] in \mathbf{R}^1 and set $I^- = [0, 1)$.

A simple parameter curve f is a continuous map of I to \mathbb{R}^2 such that $f|I^-$ is one-to-one. We call f(0) the *initial point* and f(1) the *terminal point* of f(I). If f(0) = f(1), we identify 0 and 1 in I and call f(I) a simple closed curve.

For an element x of I, a line T_x is the *tangent* to f at x if

$$T_x = \lim_{x' \to x} \langle f(x'), f(x) \rangle.$$

We say that f is a simple differentiable parameter curve of finite type or, more briefly, a simple differentiable parameter curve, if T_x exists for each $x \in I$ and there is a positive integer n such that $|L \cap f(I)| \leq n$ for each line L in \mathbb{R}^2 .

Let f be a simple differentiable parameter curve, let L be a line in \mathbb{R}^2 , and let $x \in I$ satisfy $f(x) \in L$. As $L \cap f(I)$ is finite, there is a deleted neighbourhood N_x of x in I such that $L \cap f(N_x) = \emptyset$. Now, L separates \mathbb{R}^2 into two regions. We say that L supports f at x if $f(N_x)$ is entirely contained in one of these regions; otherwise, L cuts f at x.

LEMMA 1. ([3]). Let f be a simple differentiable parameter curve, let $x \in I$ and let L_x denote the set of all lines in \mathbb{R}^2 containing f(x) and distinct from T_x . Then every $L \in L_x$ supports f at x or, every $L \in L_x$ cuts f at x.

From this standpoint there are precisely four types of points in $f(I) \subseteq \mathbb{R}^2$. We define the *characteristic* $(\alpha_0(x), \alpha_1(x))$ of a point f(x) by taking $\alpha_0(x) = 1$ [2] if some $L \in L_x$ cuts [supports] f at x and by taking $\alpha_1(x) \in \{1, 2\}$ such that $\alpha_0(x) + \alpha_1(x)$ is odd [even] if T_x cuts [supports] f at x. There are then four types of points: *ordinary*, characteristic (1, 1); *inflection*, characteristic (1, 2); *cusp*, characteristic (2, 1); *beak*, characteristic (2, 2) (cf. Figure 2).

FIGURE 2

In this connection we note:

LEMMA 2. ([2]). A simple differentiable parameter curve contains only finitely many points that are not ordinary.

For what follows we assume that f is a simple differentiable parameter curve. We put C = f(I) and refer directly to C as a simple differentiable curve. If $p = f(0) \neq f(1) = q$, we also call C a simple differentiable arc and denote it also by A(p,q) or A. From this viewpoint a simple closed differentiable curve C(f(0) = f(1)) consists of simple differentiable arcs. Indeed, if p and q are distinct points of C then there are simple differentiable arcs A(p,q) and A(q,p) satisfying

$$A(p,q) \cup A(q,p) = C \text{ and } A(p,q) \cap A(q,p) = \{p,q\}.$$

For convenience we often identify $x \in I$ with $p = f(x) \in C$ and also write T_p for the tangent T_x of C at p. As a connected subset of C with only ordinary points has continuous tangents, it follows from Lemma 2 that T_p depends continuously on $p \in C$.

For distinct p = f(x) and q = f(y), we say that p precedes q [q follows p]in *C* if x < y in *I* and we write p < q. If $f(0) \neq f(1)$ then, evidently, either p < q or q < p for any distinct $p, q \in C$. If f(0) = f(1) then p = f(0) both precedes and follows each $q \in C \setminus \{p\}$ and f(0) < q < f(1). In either case, we say that *C* is *oriented* in the direction of increasing $x \in I$. This orientation of *C* induces, in turn, an orientation of every arc of *C*. In fact, if p and q are distinct points of *C* then A(p, q) [A(q, p)] is oriented from p to q [q to p] and, as above, $C = A(p, q) \cup A(q, p)$.

For distinct points q, r in C, let \vec{qr} denote the vector in \mathbb{R}^2 with initial point q and terminal point r. Let $\|\vec{qr}\|$ denote the usual length of \vec{qr} in \mathbb{R}^2 . Now, let $p \in C$ and let (p_{λ}) be a sequence of points in C such that $p_{\lambda} < p$ for each λ and lim $p_{\lambda} = p$. We put

$$\mathbf{p} = \lim_{p_{\lambda} \to p} \frac{p_{\lambda} \dot{p}}{||\vec{p_{\lambda}}\vec{p}||}$$

and call **p** the *tangent vector* of *C* at *p*. For completeness we set

$$\mathbf{p}_0 = \lim_{p \to p_0} \mathbf{p}$$

if C is an arc with initial point p_0 .

Evidently, **p** exists for each $p \in C$ and **p** is parallel to T_p . Moreover, the tangent vectors **p** of *C* depend continuously on $p \in C$ provided that *C* contains neither cusps nor breaks. We shall for brevity call a simple differentiable curve with only ordinary points and inflection points a *simple smooth curve*.

From Lemma 2 it now readily follows that

LEMMA 3. Let C be a simple differentiable curve, let L be a line in \mathbb{R}^2 , and let $q \in C$. Then both

$$\mathscr{P}(L) = \{ p \in C | T_p \text{ is parallel to } L \}$$

and

$$\mathscr{P}(q) = \{ p \in C | \mathbf{p} = \mathbf{q} \text{ or } \mathbf{p} = -\mathbf{q} \}$$

are finite sets.

If p_0 is the initial point of C, then we may so enumerate the elements p_0, p_1, \ldots, p_k of $\mathscr{P}(p_0)$ that $p_0 < p_1 < p_2 < \ldots < p_k$. Let p_{k+1} denote the terminal point of C ($p_{k+1} = p_0$ if C is closed). Then

$$C = \bigcup_{i=1}^{k+1} A\left(p_{i-1}, p_i\right)$$

and, for each i = 1, 2, ..., k + 1,

int $A(p_{i-1}, p_i) \cap \mathscr{P}(p_0) = \emptyset$

where int A denotes the interior of A.

The measure of a point and a curve. Let *C* be a simple differentiable curve with initial point p_0 and terminal point p_{k+1} , where

$$\mathscr{P}(p_0) = \{ p_0 < p_1 < p_2 < \ldots < p_k \}.$$

Let the unit circle S^1 in \mathbb{R}^2 with centre (0, 0) be assigned the counterclockwise orientation. For $p \in \text{int } A(p_{i-1}, p_i)$, the vectors \mathbf{p} and \mathbf{p}_{i-1} positioned with initial point (0, 0) meet S^1 at, say, t and t_{i-1} , respectively. Let $\angle (\mathbf{p}_{i-1}, \mathbf{p})$ denote the arclength of the smaller of the two arcs of S^1 determined by t_{i-1} and t. Denote the smaller arc by $A(t_{i-1}, t)$ and set

 $\bar{\mu}_{p_{i-1}}(p) = \angle (\mathbf{p}_{i-1}, \mathbf{p})$

if the orientation from t_{i-1} to t in $A(t_{i-1}, t)$ is counter-clockwise; otherwise, set

 $\bar{\mu}_{p_{i-1}}(p) = - \angle (\mathbf{p}_{i-1}, \mathbf{p}).$

Note that, for each $p \in \text{int } A(p_{i-1}, p_i)$ and for each $i = 1, 2, \ldots, k + 1$

 $0 < \left| \bar{\mu}_{p_{i-1}}(p) \right| < \pi.$

Finally, let

$$\mu_{p_0}(p_0) = 0,$$

for $p \in \text{int } A(p_{i-1}, p_i)$ and for each $i = 1, 2, \ldots, k+1$, let

$$\mu_{p_0}(p) = \mu_{p_0}(p_{i-1}) + \bar{\mu}_{p_{i-1}}(p)$$

and

$$\mu_{p_0}(p_i) = \lim_{p \to p_i, p_{i-1}$$

Evidently $\bar{\mu}_{p_0}(p)$ is defined only for $p \in \text{int } A(p_0, p_1)$ while $\mu_{p_0}(p)$ is

defined for all $p \in C$. Moreover, for any $q \in C$, q is the initial point of some oriented arc A of C and if $p \in A$ then $\mu_q(p)$ is defined.

Recall that $p_0[p_{k+1}]$ is the initial [terminal] point of *C*. We call $|\mu_{p_0}(p_{k+1})|$ the *measure* of *C* and denote it by $\mu(C)$.

PROPOSITION 4. ([4], [1]). Let C be a simple smooth closed curve. Then $\mu(C) = 2\pi$ for any choice of initial point for C.

We conclude this section with several elementary observations intended as a rationale for arguments to follow.

Let *C* be a simple differentiable curve with initial point p_0 , terminal point p_{k+1} , and $\mathscr{P}(p_0) = \{p_0 < p_1 < p_2 < \ldots < p_k\}$. Let $0 \leq i \leq k+1$ and let $p \in \text{int } A(p_{i-1}, p_i)$.

(a) If p is an ordinary point or an inflection point then there is a neighbourhood N(p) of p in int $A(p_{i-1}, p_i)$ such that either $\mu_{p_0}(q) > 0$ for all $q \in N(p)$ or $\mu_{p_0}(q) < 0$ for all $q \in N(p)$.

(b) If p is either a cusp point or a beak point and $|\mu_0(p)| < \pi/2$, then in any neighbourhood N(p) of p in C there exist points q and r such that

$$\mu_{p_0}(q) \cdot \mu_{p_0}(r) < 0.$$

(c) If $A(p_{i-1}, p_i)$ is a smooth arc then either $\mu_{p_0}(q) \ge 0$ for all $q \in A(p_{i-1}, p_i)$ or $\mu_{p_0}(q) \le 0$ for all $q \in A(p_{i-1}, p_i)$.

Simple closed curves with beaks and cusps. Our main result is concerned with simple, closed, smooth curves C and *continuous*, *slopepreserving maps* σ of C to C (that is, continuous maps σ for which $T_{\sigma(p)}$ is parallel to T_p , for each $p \in C$). It is perhaps instructive at this point to indicate just how "smoothness" of a simple closed curve must enter into our consideration.

Example 1. A simple, closed curve with beaks. Let C be the curve consisting of the arcs A_1, A_2 described by

 $A_{1} = \{ (x, (1 - x^{2})^{1/2}) | 0 \leq x \leq 1 \}$

and

 $A_{2} = \{ (x, (1 - x^{4})^{1/4}) | 0 \leq x \leq 1 \}.$

This curve is illustrated in Figure 3. Evidently, C has a beak at (1, 0) and at (0, 1).

We define a map ρ of int A_1 to A_2 by

$$\rho((1+m^{-2})^{-1/2}, (1+m^2)^{-1/2}) = ((1+m^{-4/3})^{-1/4}, (1+m^{4/3})^{-1/4})$$

for all m > 0. (Note that the slope at $((1 + m^{-2})^{-1/2}, (1 + m^2)^{-1/2})$ of int A_1 is -m and equals the slope at $((1 + m^{-4/3})^{-1/4}, (1 + m^{4/3})^{-1/4})$

$$\sigma(p) = \begin{cases} \rho(p) & \text{if } p \in \text{int } A_1 \\ p & \text{if } p \in A_2. \end{cases}$$

Then σ is continuous and slope-preserving. It is, however, neither one-to-one nor onto.

Example 2. A simple close curve with cusps. Let C be the curve consisting of the arcs

$$\{(x, -1 - \cos x) | -\pi \leq x \leq \pi\}$$

and

 $\{(x, 1 + \cos x) \mid -\pi \leq x \leq \pi\}.$

This curve is illustrated in Figure 4. It has a cusp at $(-\pi, 0)$ and at $(\pi, 0)$.

FIGURE 4

Let A denote the arc consisting of the points of $\{(x, 1 + \cos x) | -\pi/2 \le x \le \pi/2\}$ and define a map σ of C onto A by

$$\sigma((x, -1 - \cos x)) = \begin{cases} (x - \pi, 1 + \cos(x - \pi)) & \text{if } \pi/2 \leq x \leq \pi \\ (-x, 1 + \cos(-x)) & \text{if } - \pi/2 \leq x \leq \pi/2 \\ (x + \pi, 1 + \cos(x + \pi)) & \text{if } -\pi \leq x \leq -\pi/2 \end{cases}$$

and

$$\sigma((x, 1 + \cos x)) = \begin{cases} (\pi - x, 1 + \cos(\pi - x)) & \text{if } \pi/2 \leq x \leq \pi \\ (x, 1 + \cos x) & \text{if } -\pi/2 \leq x \leq \pi/2 \\ (-\pi - x, 1 + \cos(-\pi - x)) & \text{if } -\pi \leq x \leq -\pi/2. \end{cases}$$

Again, σ is a continuous, slope-preserving map of *C* to *C*. Of course, σ is neither one-to-one nor onto *C*.

The curve *C* illustrated in Figure 3 has no tangent vector with inclination $\pi/4$, for instance, while the curve of Figure 4 has no tangent vector with inclination $\pi/2$. The curve *C* illustrated schematically in Figure 5 has tangent vectors with inclination $0 \le \theta \le 2\pi$, yet it is a straightforward matter to construct a continuous, slope-preserving map of *C* onto the arc *A*.

Each of the curves described above is simple differentiable. Indeed, for our purposes only simple differentiable curves need apply. A simple,

FIGURE 5

closed curve C containing a proper line segment will evidently give rise to infinitely many continuous, slope-preserving maps of C to itself.

Slope-preserving maps of smooth curves. In this section we intend to prove the result announced in the introduction.

We call a simple differentiable curve *ordinary* if it contains only ordinary points.

LEMMA 5. Let ρ be a continuous, slope-preserving map of a simple, smooth, closed curve C onto a simple, ordinary curve $A^* = A^*(a_0, a_1)$.

i) If $q_0 < q_1 < \ldots < q_k$ are all inflection points of C then $\rho | A(q_{i-1}, q_i)$ is one-to-one, for each $i = 1, 2, \ldots, k$.

ii) For each i = 1, 2, ..., k, there is an open neighbourhood $N(q_i)$ of q_i such that $\rho(N(q_i))$ is a one-sided neighbourhood of $\rho(q_i)$.

(iii) If $a_0 \neq a_1$ then every $p \in \rho^{-1}(a_0) \cup \rho^{-1}(a_1)$ is an inflection point of C.

Proof. It is enough to observe that a point p of C is ordinary if there is an open neighbourhood N(p) of p such that, for $r, s \in N(p), r , <math>T_r$ is not parallel to T_s .

LEMMA 6. Let ρ be a continuous, slope-preserving map of a simple, smooth, closed curve C onto a simple ordinary curve $A^* = A^*(a_0, a_1)$. Let $p_0 \in \rho^{-1}(a_0)$. Then

$$\mu_{p_0}(p) = \mu_{a_0}(\rho(p))$$

for all $p \in C$, or

$$\mu_{p_0}(p) = -\mu_{a_0}(\rho(p))$$

for all $p \in C$.

Proof. Let $\mathscr{P}(p_0) = \{p_0 < p_1 < p_2 < \ldots < p_{n-1}\}$ with $p_n = p_0$. We shall show first that

$$\mu_{p_0}(p_i) = \mu_{a_0}(\rho(p_i))$$
 for each $i = 0, 1, 2, ..., n$.

To this end, let I denote the set of all inflection points of C and let q, q' be distinct, successive, members of I, that is,

int
$$A(q, q') \cap I = \emptyset$$
.

Then, for any $p \in C$, μ_p is either strictly increasing or strictly decreasing on A(q, q'). Now, $\mu_{p_0}(p_{i-1}) = \mu_{p_0}(p_i)$ (that is, $\mu_{p_{i-1}}(p_i) = 0$) if and only if there is an odd number of inflection points in int $A(p_{i-1}, p_i)$.

Let $\mu_{p_{i-1}}(p_i) = 0$. Then there are elements q_1, q_2, \ldots, q_k of I, k odd, satisfying

 $p_{i-1} < q_1 < q_2 < \ldots < q_k < p_i \leq q_{k+1}.$

By Lemma 6 (ii),

$$\rho(A(q_1, q_2)) \subseteq A^*(\rho(p_{i-1}), \rho(q_1)),$$

and, in fact,

 $\rho(A(q_l, q_{l+1})) \subseteq A^*(\rho(p_{l-1}, q_l))$

for $1 \leq l \leq k$ and *l* odd. Therefore, $\rho(p_i) \in A^*(\rho(p_{i-1}), \rho(q_k))$. As ρ is slope-preserving,

$$A^*(\rho(p_{i-1}), \rho(q_k)) \cap \mathscr{P}(a_0) = \{\rho(p_{i-1})\}$$

and so $\rho(p_i) = \rho(p_{i-1})$ and

$$\mu_{\rho(p_{i-1})}(\rho(p_i)) = 0$$

Similar considerations show that

$$\left|\mu_{\rho(p_{i-1})}(\rho(p_{i}))\right| = \pi$$

 $|\mu_{p_{i-1}}(p_i)| = \pi.$

Now, A^* is ordinary, so $\mu_{a_0}(a) \ge 0$ for all $a \in A^*$, or else $\mu_{a_0}(a) \le 0$ for all $a \in A^*$. But ρ is a map of C onto A^* so either $\mu_{p_0}(p) \ge 0$ for all $p \in C$, or else $\mu_{p_0}(p) \le 0$ for all $p \in C$. As

 $\mu_{p_0}(p_0) = 0 = \mu_{a_0}(a_0) = \mu_{a_0}(\rho(p_0))$

our claim is established.

This together with Lemma 5(i) completes the proof.

COROLLARY 7. Let ρ be a continuous, slope-preserving map of a simple, smooth, closed curve onto a simple, ordinary curve A^* . Then A^* is closed.

Proof. This follows at once from the fact that

$$\mu_{a_0}(\rho(p_0)) = 0, \mu_{a_0}(\rho(p_n)) = 2\pi \text{ and } a_0 = \rho(p_0) = \rho(p_n).$$

LEMMA 8. Let A be a simple, smooth arc. Then there exists a continuous, slope-preserving map of A onto an ordinary arc.

Proof. Let A' be a spiral (logarithmic or hyperbolic, see Figure 6) such that for any $p \in A$, there is at least one $q \in A'$ with T_q parallel to T_p . An appropriate segment of A' will provide the required ordinary arc.

THEOREM 9. Let σ be a continuous, slope-preserving map of a simple, smooth, closed curve C to itself. Then σ is a homeomorphism and either $\sigma(\mathbf{p}) = \mathbf{p}$ for all $p \in C$, or $\sigma(\mathbf{p}) = -\mathbf{p}$ for all $p \in C$ (where $\sigma(\mathbf{p})$ denotes the tangent vector of C at $\sigma(p)$).

1110

if

i loond o

Proof. If $\sigma(C) \neq C$ then $\sigma(C)$ is a simple, smooth arc. There is, then, by Lemma 8, a continuous, slope-preserving map ρ of $\sigma(C)$ onto an ordinary arc A'. Then $\rho \circ \sigma$ is a continuous, slope-preserving map of C onto A', which is impossible (cf. Corollary 7). Therefore, σ is onto.

As $|\mathscr{P}(p)|$ is finite for every $p \in C$, and $T_{\sigma(p)}$ is parallel to T_p it follows that σ must also be one-to-one, whence σ is a homeomorphism.

Finally, each of the sets $\{p \in C | \sigma(\mathbf{p}) = \mathbf{p}\}$ and $\{p \in C | \sigma(\mathbf{p}) = -\mathbf{p}\}$ is closed in *C*. As *C* is connected one of these must be empty.

LEMMA 10. Let σ be a continuous, slope-preserving map of a simple, smooth, closed curve C to itself. Then $\sigma(\sigma(p)) = p$ for each $p \in C$.

Proof. Let us suppose that there is $p \in C$ such that

$$|\sigma^{i}(p)|i = 0, 1, \dots, n-1|| = n \ge 3$$

while $\sigma^n(p) = p$.

We shall show that $\sigma^i(p) < \sigma^{i+1}(p)$ for each i = 0, 1, 2, ..., n-2 or $\sigma^i(p) > \sigma^{i+1}(p)$ for each i = 0, 1, 2, ..., n-2. To see this we need only verify that $\sigma(p) < \sigma^2(p)$ if $p < \sigma(p)$.

Let

$$A(p, \sigma(p)) \cap \mathscr{P}(p) = \{p = p_0 < p_1 < p_2 < \ldots < p_k = \sigma(p)\}.$$

If $\sigma(p_1) < p_k = \sigma(p)$ then $\sigma(p_1) = p_{k-1}$. Therefore,

$$\sigma(p_0) = p_k > \sigma(p_1) = p_{k-1} > \sigma(p_2) = p_{k-2} > \ldots > \sigma(p_k) = p_0 = p$$

so

$$\sigma^2(p) = \sigma(\sigma(p_0)) = \sigma(p_k) = p_1$$

contrary to our supposition. Thus, $\sigma(p_0) < \sigma(p_1)$. From the fact that σ is one-to-one we deduce that

$$\sigma(p) < \sigma(p_1) < \ldots < \sigma(p_k) = \sigma^2(p).$$

Let us then assume that

$$p = \sigma^0(p) < \sigma(p) < \ldots < \sigma^{n-1}(p)$$

and $\sigma^n(p) = p$. Then

$$C = \bigcup_{i=0}^{n-1} A\left(\sigma^{i}(p), \sigma^{i+1}(p)\right),$$

and from

$$2\pi = \mu(C) = \mu_{\sigma^0(p)}(\sigma^n(p)) = \sum_{i=0}^{n-1} \mu_{\sigma^i(p)}(\sigma^{i+1}(p)).$$

Moreover, $\sigma(\mathbf{p}) = \mathbf{p}$ for all $p \in C$ or $\sigma(\mathbf{p}) = -\mathbf{p}$ for all $p \in C$. In either case from

$$\sigma(A(\sigma^{i-1}(p), \sigma^{i}(p))) = A(\sigma^{i}(p), \sigma^{i+1}(p))$$

we conclude that

$$\mu_{\sigma}^{i-1}(p)(\sigma^{i}(p)) = \mu_{\sigma}^{i}(p)(\sigma^{i+1}(p))$$

for i = 1, 2, ..., n - 1. Therefore,

$$2\pi = n\mu_{\sigma^0(p)}(\sigma(p)) = n\mu_p(\sigma(p))$$

and

$$\mu_p(\sigma(p)) = 2\pi/n.$$

But $\sigma(\mathbf{p}) = \pm \mathbf{p}$ so $\mu_p(\sigma(p))$ is an integral multiple of π which is impossible unless n = 1 or n = 2.

Finally, we are ready to complete the proof of our main result. (Note that while Theorem 9 discloses an important feature of the collection of all continuous slope-preserving maps of simple smooth closed curves it does not yet enumerate them.)

THEOREM 11. Let σ be a continuous, slope-preserving map of a simple, smooth, closed curve C to itself. Then either σ is the identity map of C ($\sigma(p) = p$ for each $p \in C$) or σ is the unique antipodal map of C ($\sigma(\mathbf{p}) = -\mathbf{p}$ for each $p \in C$).

Proof. Suppose there are points p_0 , p_1 of C satisfying $\sigma(p_0) \neq p_0$ yet $\sigma(p_1) = p_1$. Then $\sigma(\mathbf{p}_1) = \mathbf{p}_1$ implies that $\sigma(\mathbf{p}) = \mathbf{p}$ for all $p \in C$. Now from $\sigma(\sigma(p_0)) = p_0$ it follows that

$$\mu_{p_0}(\sigma(p_0)) = k \cdot 2\pi$$

and, as in the proof of Lemma 10 above,

$$2\pi = \mu(C) = 2(k \cdot 2\pi).$$

As this is impossible we conclude that either σ is the identity map, or else, $\sigma(\mathbf{p}) = -\mathbf{p}$ for all $p \in C$.

Suppose that $\sigma(\mathbf{p}) = -\mathbf{p}$ for all $p \in C$. Let $p_0 \in C$ and suppose that $\sigma(p_0) = p_i$, where $\mathscr{P}(p_0) = \{p_0 < p_1 < p_2 < \ldots < p_{n-1}\}$ and $p_n = p_0$. Evidently, $|\mathscr{P}(p_0)|$ must be even, that is, *n* is even, and since σ is a homeomorphism i = n/2. It follows that σ is unique.

While implicit in the proof of Theorem 11 it is perhaps appropriate to record

COROLLARY 12. Let σ be a continuous map of a simple, smooth, closed curve C to itself. If $\sigma(\mathbf{p}) = \mathbf{p}$ for each $p \in C$ then $\sigma(p) = p$ for each $p \in C$.

Acknowledgement. We are grateful to Professors J. Schaer and P. Scherk for their helpful comments in the preparation of this paper.

References

- 1. H. Hopf, Über die Drehung der Tangenten und Sehnen ebener Kurven, Compositio Mathematica 2 (1935), 50-62.
- 2. A. Marchaud, Sur les continus d'ordre borné, Acta Math. 55 (1930).
- P. Scherk, Über differenzierbare Kurven und Bögen. I. Zum Begriff der Charakteristik, Časopis Pest. Mat. Fys. 66 (1937), 165–171.
- 4. G. N. Watson, A problem in analysis situ, Proc. London Math. Soc. 15 (1916), 227-242.

University of Calgary, Calgary, Alberta