CONTINUOUS, SLOPE-PRESERVING MAPS OF SIMPLE GLOSED CURVES

TIBOR BISZTRICZKY AND IVAN RIVAL

How many of the continuous maps of a simple closed curve to itself are slope-preserving? For the unit circle S^{1} with centre $(0,0)$, a continuous map σ of S^{1} to S^{1} is slope-preserving if and only if σ is the identity $\operatorname{map}[\sigma(x, y)=(x, y)]$ or σ is the antipodal map $[\sigma(x, y)=(-x,-y)]$. Besides the identity map, more general simple closed curves can also possess an "antipodal" map (cf. Figure 1).

Examples of plane curves with continuous, slope-preserving (antipodal) maps.

Figure 1

It is perhaps somewhat unexpected that an arbitrary simple, smooth, closed curve behaves, in this respect, very much like S^{1}. It is the purpose of this paper to establish:

Theorem. There are at most two continuous, slope-preserving maps of a simple, smooth, closed curve, to itself. Each such map σ is a homeomorphism satisfying $\sigma \circ \sigma=\mathrm{id}$.

Preliminaries. In this section we consider some of the elementary properties of simple plane curves.

For distinct points p and p^{\prime} in the Euclidean plane \mathbf{R}^{2} let $\left\langle p, p^{\prime}\right\rangle$ denote the line through p and p^{\prime}. Let I denote the unit interval $[0,1]$ in \mathbf{R}^{1} and set $I^{-}=[0,1)$.

A simple parameter curve f is a continuous map of I to \mathbf{R}^{2} such that $f \mid I^{-}$is one-to-one. We call $f(0)$ the initial point and $f(1)$ the terminal point of $f(I)$. If $f(0)=f(1)$, we identify 0 and 1 in I and call $f(I)$ a simple closed curve.

For an element x of I, a line T_{x} is the tangent to f at x if

$$
T_{x}=\lim _{x^{\prime} \rightarrow x}\left\langle f\left(x^{\prime}\right), f(x)\right\rangle .
$$

We say that f is a simple differentiable parameter curve of finite type or, more briefly, a simple differentiable parameter curve, if T_{x} exists for each $x \in I$ and there is a positive integer n such that $|L \cap f(I)| \leqq n$ for each line L in \mathbf{R}^{2}.

Let f be a simple differentiable parameter curve, let L be a line in \mathbf{R}^{2}, and let $x \in I$ satisfy $f(x) \in L$. As $L \cap f(I)$ is finite, there is a deleted neighbourhood N_{x} of x in I such that $L \cap f\left(N_{x}\right)=\emptyset$. Now, L separates \mathbf{R}^{2} into two regions. We say that L supports f at x if $f\left(N_{x}\right)$ is entirely contained in one of these regions; otherwise, L cuts f at x.

Lemma 1. ([3]). Let f be a simple differentiable parameter curve, let $x \in I$ and let L_{x} denote the set of all lines in \mathbf{R}^{2} containing $f(x)$ and distinct from T_{x}. Then every $L \in L_{x}$ supports f at x or, every $L \in L_{x}$ cuts f at x.

From this standpoint there are precisely four types of points in $f(I) \subseteq \mathbf{R}^{2}$. We define the characteristic $\left(\alpha_{0}(x), \alpha_{1}(x)\right)$ of a point $f(x)$ by taking $\alpha_{0}(x)=1[2]$ if some $L \in L_{x}$ cuts [supports] f at x and by taking $\alpha_{1}(x) \in\{1,2\}$ such that $\alpha_{0}(x)+\alpha_{1}(x)$ is odd [even] if T_{x} cuts [supports] f at x. There are then four types of points: ordinary, characteristic $(1,1)$; inflection, characteristic $(1,2)$; cusp, characteristic $(2,1)$; beak, characteristic (2, 2) (cf. Figure 2).

Figure 2
In this connection we note:
Lemma 2. ([2]). A simple differentiable parameter curve contains only finitely many points that are not ordinary.

For what follows we assume that f is a simple differentiable parameter curve. We put $C=f(I)$ and refer directly to C as a simple differentiable curve. If $p=f(0) \neq f(1)=q$, we also call C a simple differentiable arc and denote it also by $A(p, q)$ or A. From this viewpoint a simple closed differentiable curve $C(f(0)=f(1))$ consists of simple differentiable arcs. Indeed, if p and q are distinct points of C then there are simple differentiable $\operatorname{arcs} A(p, q)$ and $A(q, p)$ satisfying

$$
A(p, q) \cup A(q, p)=C \text { and } A(p, q) \cap A(q, p)=\{p, q\}
$$

For convenience we often identify $x \in I$ with $p=f(x) \in C$ and also write T_{p} for the tangent T_{x} of C at p. As a connected subset of C with only ordinary points has continuous tangents, it follows from Lemma'2 that T_{p} depends continuously on $p \in C$.

For distinct $p=f(x)$ and $q=f(y)$, we say that p precedes $q[q$ follows $p]$ in C if $x<y$ in I and we write $p<q$. If $f(0) \neq f(1)$ then, evidently, either $p<q$ or $q<p$ for any distinct $p, q \in C$. If $f(0)=f(1)$ then $p=f(0)$ both precedes and follows each $q \in C \backslash\{p\}$ and $f(0)<q<f(1)$. In either case, we say that C is oriented in the direction of increasing $x \in I$. This orientation of C induces, in turn, an orientation of every arc of C. In fact, if p and q are distinct points of C then $A(p, q)[A(q, p)]$ is oriented from p to $q[q$ to $p]$ and, as above, $C=A(p, q) \cup A(q, p)$.

For distinct points q, r in C, let $\overrightarrow{g r}$ denote the vector in \mathbf{R}^{2} with initial point q and terminal point r. Let $\|\overrightarrow{q r}\|$ denote the usual length of $\overrightarrow{q r}$ in \mathbf{R}^{2}. Now, let $p \in C$ and let $\left(p_{\lambda}\right)$ be a sequence of points in C such that $p_{\lambda}<p$ for each λ and $\lim p_{\lambda}=p$. We put

$$
\mathbf{p}=\lim _{p_{\lambda} \rightarrow p} \frac{\overrightarrow{p_{\lambda} p}}{\left\|\overrightarrow{p_{\lambda} p}\right\|}
$$

and call \mathbf{p} the tangent vector of C at p. For completeness we set

$$
\mathbf{p}_{0}=\lim _{p \rightarrow p_{0}} \mathbf{p}
$$

if C is an arc with initial point p_{0}.
Evidently, \mathbf{p} exists for each $p \in C$ and \mathbf{p} is parallel to T_{p}. Moreover, the tangent vectors \mathbf{p} of C depend continuously on $p \in C$ provided that C contains neither cusps nor breaks. We shall for brevity call a simple differentiable curve with only ordinary points and inflection points a simple smooth curve.

From Lemma 2 it now readily follows that
Lemma 3. Let C be a simple differentiable curve, let L be a line in \mathbf{R}^{2}, and let $q \in C$. Then both

$$
\mathscr{P}(L)=\left\{p \in C \mid T_{p} \text { is parallel to } L\right\}
$$

and

$$
\mathscr{P}(q)=\{p \in C \mid \mathbf{p}=\mathbf{q} \text { or } \mathbf{p}=-\mathbf{q}\}
$$

are finite sets.
If p_{0} is the initial point of C, then we may so enumerate the elements $p_{0}, p_{1}, \ldots, p_{k}$ of $\mathscr{P}\left(p_{0}\right)$ that $p_{0}<p_{1}<p_{2}<\ldots<p_{k}$. Let p_{k+1} denote the terminal point of $C\left(p_{k+1}=p_{0}\right.$ if C is closed $)$. Then

$$
C=\bigcup_{i=1}^{k+1} A\left(p_{i-1}, p_{i}\right)
$$

and, for each $i=1,2, \ldots, k+1$,

$$
\operatorname{int} A\left(p_{i-1}, p_{i}\right) \cap \mathscr{P}\left(p_{0}\right)=\emptyset
$$

where int A denotes the interior of A.
The measure of a point and a curve. Let C be a simple differentiable curve with initial point p_{0} and terminal point p_{k+1}, where

$$
\mathscr{P}\left(p_{0}\right)=\left\{p_{0}<p_{1}<p_{2}<\ldots<p_{k}\right\}
$$

Let the unit circle S^{1} in \mathbf{R}^{2} with centre $(0,0)$ be assigned the counterclockwise orientation. For $p \in \operatorname{int} A\left(p_{i-1}, p_{i}\right)$, the vectors \mathbf{p} and \mathbf{p}_{i-1} positioned with initial point $(0,0)$ meet S^{1} at, say, t and t_{i-1}, respectively. Let $\angle\left(\mathbf{p}_{i-1}, \mathbf{p}\right)$ denote the arclength of the smaller of the two arcs of S^{1} determined by t_{i-1} and t. Denote the smaller arc by $A\left(t_{i-1}, t\right)$ and set

$$
\bar{\mu}_{p_{i-1}}(p)=\angle\left(\mathbf{p}_{i-1}, \mathbf{p}\right)
$$

if the orientation from t_{i-1} to t in $A\left(t_{i-1}, t\right)$ is counter-clockwise; otherwise, set

$$
\bar{\mu}_{p_{i-1}}(p)=-\angle\left(\mathbf{p}_{i-1}, \mathbf{p}\right)
$$

Note that, for each $p \in \operatorname{int} A\left(p_{i-1}, p_{i}\right)$ and for each $i=1,2, \ldots, k+1$

$$
0<\left|\bar{\mu}_{p_{i-1}}(p)\right|<\pi
$$

Finally, let

$$
\mu_{p_{0}}\left(p_{0}\right)=0
$$

for $p \in \operatorname{int} A\left(p_{i-1}, p_{i}\right)$ and for each $i=1,2, \ldots, k+1$, let

$$
\mu_{p_{0}}(p)=\mu_{p_{0}}\left(p_{i-1}\right)+\bar{\mu}_{p_{i-1}}(p)
$$

and

$$
\mu_{p_{0}}\left(p_{i}\right)=\lim _{p \rightarrow p_{i}, p_{i-1}<p<p_{i}} \mu_{p_{0}}(p)
$$

Evidently $\bar{\mu}_{p_{0}}(p)$ is defined only for $p \in \operatorname{int} A\left(p_{0}, p_{1}\right)$ while $\mu_{p_{0}}(p)$ is
defined for all $p \in C$. Moreover, for any $q \in C, q$ is the initial point of some oriented $\operatorname{arc} A$ of C and if $p \in A$ then $\mu_{q}(p)$ is defined.

Recall that $p_{0}\left[p_{k+1}\right]$ is the initial [terminal] point of C. We call $\left|\mu_{p_{0}}\left(p_{k+1}\right)\right|$ the measure of C and denote it by $\mu(C)$.

Proposition 4. ([4], [1]). Let C be a simple smooth closed curve. Then $\mu(C)=2 \pi$ for any choice of initial point for C.

We conclude this section with several elementary observations intended as a rationale for arguments to follow.

Let C be a simple differentiable curve with initial point p_{0}, terminal point p_{k+1}, and $\mathscr{P}\left(p_{0}\right)=\left\{p_{0}<p_{1}<p_{2}<\ldots<p_{k}\right\}$. Let $0 \leqq i \leqq k+1$ and let $p \in \operatorname{int} A\left(p_{i-1}, p_{i}\right)$.
(a) If p is an ordinary point or an inflection point then there is a neighbourhood $N(p)$ of p in int $A\left(p_{i-1}, p_{i}\right)$ such that either $\mu_{p_{0}}(q)>0$ for all $q \in N(p)$ or $\mu_{p_{0}}(q)<0$ for all $q \in N(p)$.
(b) If p is either a cusp point or a beak point and $\left|\mu_{0}(p)\right|<\pi / 2$, then in any neighbourhood $N(p)$ of p in C there exist points q and r such that

$$
\mu_{p_{0}}(q) \cdot \mu_{p_{0}}(r)<0
$$

(c) If $A\left(p_{i-1}, p_{i}\right)$ is a smooth arc then either $\mu_{p_{0}}(q) \geqq 0$ for all $q \in A\left(p_{i-1}, p_{i}\right)$ or $\mu_{p_{0}}(q) \leqq 0$ for all $q \in A\left(p_{i-1}, p_{i}\right)$.

Simple closed curves with beaks and cusps. Our main result is concerned with simple, closed, smooth curves C and continuous, slopepreserving maps σ of C to C (that is, continuous maps σ for which $T_{\sigma(p)}$ is parallel to T_{p}, for each $\left.p \in C\right)$. It is perhaps instructive at this point to indicate just how "smoothness" of a simple closed curve must enter into our consideration.

Example 1. A simple, closed curve with beaks. Let C be the curve consisting of the arcs A_{1}, A_{2} described by

$$
A_{1}=\left\{\left(x,\left(1-x^{2}\right)^{1 / 2}\right) \mid 0 \leqq x \leqq 1\right\}
$$

and

$$
A_{2}=\left\{\left(x,\left(1-x^{4}\right)^{1 / 4}\right) \mid 0 \leqq x \leqq 1\right\}
$$

This curve is illustrated in Figure 3. Evidently, C has a beak at $(1,0)$ and at $(0,1)$.

We define a map ρ of int A_{1} to A_{2} by

$$
\rho\left(\left(1+m^{-2}\right)^{-1 / 2},\left(1+m^{2}\right)^{-1 / 2}\right)=\left(\left(1+m^{-4 / 3}\right)^{-1 / 4},\left(1+m^{4 / 3}\right)^{-1 / 4}\right)
$$

for all $m>0$. (Note that the slope at $\left(\left(1+m^{-2}\right)^{-1 / 2},\left(1+m^{2}\right)^{-1 / 2}\right)$ of int A_{1} is $-m$ and equals the slope at $\left(\left(1+m^{-4 / 3}\right)^{-1 / 4},\left(1+m^{4 / 3}\right)^{-1 / 4}\right)$

Figure 3
of A_{2}.) Evidently, ρ is continuous. We now define the map σ of C to C by

$$
\sigma(p)=\left\{\begin{array}{cl}
\rho(p) & \text { if } p \in \operatorname{int} A_{1} \\
p & \text { if } p \in A_{2} .
\end{array}\right.
$$

Then σ is continuous and slope-preserving. It is, however, neither one-toone nor onto.

Example 2. A simple close curve with cusps. Let C be the curve consisting of the arcs

$$
\{(x,-1-\cos x) \mid-\pi \leqq x \leqq \pi\}
$$

and

$$
\{(x, 1+\cos x) \mid-\pi \leqq x \leqq \pi\}
$$

This curve is illustrated in Figure 4. It has a cusp at $(-\pi, 0)$ and at $(\pi, 0)$.

Figure 4

Let A denote the arc consisting of the points of $\{(x, 1+\cos x)\}$ $-\pi / 2 \leqq x \leqq \pi / 2\}$ and define a map σ of C onto A by
$\sigma((x,-1-\cos x))= \begin{cases}(x-\pi, 1+\cos (x-\pi)) & \text { if } \pi / 2 \leqq x \leqq \pi \\ (-x, 1+\cos (-x)) & \text { if }-\pi / 2 \leqq x \leqq \pi / 2 \\ (x+\pi, 1+\cos (x+\pi)) & \text { if }-\pi \leqq x \leqq-\pi / 2\end{cases}$
and
$\sigma((x, 1+\cos x))= \begin{cases}(\pi-x, 1+\cos (\pi-x)) & \text { if } \pi / 2 \leqq x \leqq \pi \\ (x, 1+\cos x) & \text { if }-\pi / 2 \leqq x \leqq \pi / 2 \\ (-\pi-x, 1+\cos (-\pi-x)) & \text { if }-\pi \leqq x \leqq-\pi / 2 .\end{cases}$
Again, σ is a continuous, slope-preserving map of C to C. Of course, σ is neither one-to-one nor onto C.

The curve C illustrated in Figure 3 has no tangent vector with inclination $\pi / 4$, for instance, while the curve of Figure 4 has no tangent vector with inclination $\pi / 2$. The curve C illustrated schematically in Figure 5 has tangent vectors with inclination $0 \leqq \theta \leqq 2 \pi$, yet it is a straightforward matter to construct a continuous, slope-preserving map of C onto the arc A.

Each of the curves described above is simple differentiable. Indeed, for our purposes only simple differentiable curves need apply. A simple,

Figure 5
closed curve C containing a proper line segment will evidently give rise to infinitely many continuous, slope-preserving maps of C to itself.

Slope-preserving maps of smooth curves. In this section we intend to prove the result announced in the introduction.

We call a simple differentiable curve ordinary if it contains only ordinary points.

Lemma 5. Let ρ be a continuous, slope-preserving map of a simple, smooth, closed curve C onto a simple, ordinary curve $A^{*}=A^{*}\left(a_{0}, a_{1}\right)$.
i) If $q_{0}<q_{1}<\ldots<q_{k}$ are all inflection points of C then $\rho \mid A\left(q_{i-1}, q_{i}\right)$ is one-to-one, for each $i=1,2, \ldots, k$.
ii) For each $i=1,2, \ldots, k$, there is an open neighbourhood $N\left(q_{i}\right)$ of q_{i} such that $\rho\left(N\left(q_{i}\right)\right)$ is a one-sided neighbourhood of $\rho\left(q_{i}\right)$.
(iii) If $a_{0} \neq a_{1}$ then every $p \in \rho^{-1}\left(a_{0}\right) \cup \rho^{-1}\left(a_{1}\right)$ is an inflection point of C.

Proof. It is enough to observe that a point p of C is ordinary if there is an open neighbourhood $N(p)$ of p such that, for $r, s \in N(p), r<p<s$, T_{r} is not parallel to T_{s}.

Lemma 6. Let ρ be a continuous, slope-preserving map of a simple, smooth, closed curve C onto a simple ordinary curve $A^{*}=A^{*}\left(a_{0}, a_{1}\right)$. Let $p_{0} \in \rho^{-1}\left(a_{0}\right)$. Then

$$
\mu_{p_{0}}(p)=\mu_{a_{0}}(\rho(p))
$$

for all $p \in C$, or

$$
\mu_{p_{0}}(p)=-\mu_{a_{0}}(\rho(p))
$$

for all $p \in C$.
Proof. Let $\mathscr{P}\left(p_{0}\right)=\left\{p_{0}<p_{1}<p_{2}<\ldots<p_{n-1}\right\}$ with $p_{n}=p_{0}$. We shall show first that

$$
\mu_{p_{0}}\left(p_{i}\right)=\mu_{a_{0}}\left(\rho\left(p_{i}\right)\right) \text { for each } i=0,1,2, \ldots, n
$$

To this end, let I denote the set of all inflection points of C and let q, q^{\prime} be distinct, successive, members of I, that is,

$$
\operatorname{int} A\left(q, q^{\prime}\right) \cap I=\emptyset
$$

Then, for any $p \in C, \mu_{p}$ is either strictly increasing or strictly decreasing on $A\left(q, q^{\prime}\right)$. Now, $\mu_{p_{0}}\left(p_{i-1}\right)=\mu_{p_{0}}\left(p_{i}\right)$ (that is, $\mu_{p_{i-1}}\left(p_{i}\right)=0$) if and only if there is an odd number of inflection points in int $A\left(p_{i-1}, p_{i}\right)$.

Let $\mu_{p_{i-1}}\left(p_{i}\right)=0$. Then there are elements $q_{1}, q_{2}, \ldots, q_{k}$ of I, k odd, satisfying

$$
p_{i-1}<q_{1}<q_{2}<\ldots<q_{k}<p_{i} \leqq q_{k+1}
$$

By Lemma 6 (ii),

$$
\rho\left(A\left(q_{1}, q_{2}\right)\right) \subseteq A^{*}\left(\rho\left(p_{i-1}\right), \rho\left(q_{1}\right)\right)
$$

and, in fact,

$$
\rho\left(A\left(q_{l}, q_{l+1}\right)\right) \subseteq A^{*}\left(\rho\left(p_{i-1}, q_{l}\right)\right)
$$

for $1 \leqq l \leqq k$ and l odd. Therefore, $\rho\left(p_{i}\right) \in A^{*}\left(\rho\left(p_{i-1}\right), \rho\left(q_{k}\right)\right)$. As ρ is slope-preserving,

$$
A^{*}\left(\rho\left(p_{i-1}\right), \rho\left(q_{k}\right)\right) \cap \mathscr{P}\left(a_{0}\right)=\left\{\rho\left(p_{i-1}\right)\right\}
$$

and so $\rho\left(p_{i}\right)=\rho\left(p_{i-1}\right)$ and

$$
\mu_{\rho\left(p_{i-1}\right)}\left(\rho\left(p_{i}\right)\right)=0
$$

Similar considerations show that

$$
\left|\mu_{\rho\left(p_{i-1}\right)}\left(\rho\left(p_{i}\right)\right)\right|=\pi
$$

if

$$
\left|\mu_{p_{i-1}}\left(p_{i}\right)\right|=\pi
$$

Now, A^{*} is ordinary, so $\mu_{a_{0}}(a) \geqq 0$ for all $a \in A^{*}$, or else $\mu_{a_{0}}(a) \leqq 0$ for all $a \in A^{*}$. But ρ is a map of C onto A^{*} so either $\mu_{p_{0}}(p) \geqq 0$ for all $p \in C$, or else $\mu_{p_{0}}(p) \leqq 0$ for all $p \in C$. As

$$
\mu_{p_{0}}\left(p_{0}\right)=0=\mu_{a_{0}}\left(a_{0}\right)=\mu_{a_{0}}\left(\rho\left(p_{0}\right)\right)
$$

our claim is established.
This together with Lemma 5 (i) completes the proof.
Corollary 7. Let ρ be a continuous, slope-preserving map of a simple, smooth, closed curve onto a simple, ordinary curve A^{*}. Then A^{*} is closed.

Proof. This follows at once from the fact that

$$
\begin{aligned}
& \mu_{a_{0}}\left(\rho\left(p_{0}\right)\right)=0, \\
& \mu_{a_{0}}\left(\rho\left(p_{n}\right)\right)=2 \pi \quad \text { and } \\
& a_{0}=\rho\left(p_{0}\right)=\rho\left(p_{n}\right) .
\end{aligned}
$$

Lemma 8. Let A be a simple, smooth arc. Then there exists a continuous, slope-preserving map of A onto an ordinary arc.

Proof. Let A^{\prime} be a spiral (logarithmic or hyperbolic, see Figure 6) such that for any $p \in A$, there is at least one $q \in A^{\prime}$ with T_{q} parallel to T_{p}. An appropriate segment of A^{\prime} will provide the required ordinary arc.

Theorem 9. Let σ be a continuous, slope-preserving map of a simple, smooth, closed curve C to itself. Then σ is a homeomorphism and either $\sigma(\mathbf{p})=\mathbf{p}$ for all $p \in C$, or $\sigma(\mathbf{p})=-\mathbf{p}$ for all $p \in C$ (where $\sigma(\mathbf{p})$ denotes the tangent vector of C at $\sigma(p))$.

Logarithmic spiral
$\log r=a \theta, a$ constant.

Hyperbolic spiral $r \theta=a, a$ constant.

Figure 6
Proof. If $\sigma(C) \neq C$ then $\sigma(C)$ is a simple, smooth arc. There is, then, by Lemma 8, a continuous, slope-preserving map ρ of $\sigma(C)$ onto an ordinary arc A^{\prime}. Then $\rho \circ \sigma$ is a continuous, slope-preserving map of C onto A^{\prime}, which is impossible (cf. Corollary 7). Therefore, σ is onto.

As $|\mathscr{P}(p)|$ is finite for every $p \in C$, and $T_{\sigma_{(p)}}$ is parallel to T_{p} it follows that σ must also be one-to-one, whence σ is a homeomorphism.

Finally, each of the sets $\{p \in C \mid \sigma(\mathbf{p})=\mathbf{p}\}$ and $\{p \in C \mid \sigma(\mathbf{p})=-\mathbf{p}\}$ is closed in C. As C is connected one of these must be empty.

Lemma 10. Let σ be a continuous, slope-preserving map of a simple, smooth, closed curve C to itself. Then $\sigma(\sigma(p))=p$ for each $p \in C$.

Proof. Let us suppose that there is $p \in C$ such that

$$
\left|\left\{\sigma^{i}(p) \mid i=0,1, \ldots, n-1\right\}\right|=n \geqq 3
$$

while $\sigma^{n}(p)=p$.
We shall show that $\sigma^{i}(p)<\sigma^{i+1}(p)$ for each $i=0,1,2, \ldots, n-2$ or $\sigma^{i}(p)>\sigma^{i+1}(p)$ for each $i=0,1,2, \ldots, n-2$. To see this we need only verify that $\sigma(p)<\sigma^{2}(p)$ if $p<\sigma(p)$.

Let

$$
A(p, \sigma(p)) \cap \mathscr{P}(p)=\left\{p=p_{0}<p_{1}<p_{2}<\ldots<p_{k}=\sigma(p)\right\} .
$$

If $\sigma\left(p_{1}\right)<p_{k}=\sigma(p)$ then $\sigma\left(p_{1}\right)=p_{k-1}$. Therefore,

$$
\sigma\left(p_{0}\right)=p_{k}>\sigma\left(p_{1}\right)=p_{k-1}>\sigma\left(p_{2}\right)=p_{k-2}>\ldots>\sigma\left(p_{k}\right)=p_{0}=p
$$

So

$$
\sigma^{2}(p)=\sigma\left(\sigma\left(p_{0}\right)\right)=\sigma\left(p_{k}\right)=p
$$

contrary to our supposition. Thus, $\sigma\left(p_{0}\right)<\sigma\left(p_{1}\right)$. From the fact that σ is one-to-one we deduce that

$$
\sigma(p)<\sigma\left(p_{1}\right)<\ldots<\sigma\left(p_{k}\right)=\sigma^{2}(p) .
$$

Let us then assume that

$$
p=\sigma^{0}(p)<\sigma(p)<\ldots<\sigma^{n-1}(p)
$$

and $\sigma^{n}(p)=p$. Then

$$
C=\bigcup_{i=0}^{n-1} A\left(\sigma^{i}(p), \sigma^{i+1}(p)\right),
$$

and from

$$
2 \pi=\mu(C)=\mu_{\sigma^{0}(p)}\left(\sigma^{n}(p)\right)=\sum_{i=0}^{n-1} \mu_{\sigma^{i}(p)}\left(\sigma^{i+1}(p)\right) .
$$

Moreover, $\sigma(\mathbf{p})=\mathbf{p}$ for all $p \in C$ or $\sigma(\mathbf{p})=-\mathbf{p}$ for all $p \in C$. In either case from

$$
\sigma\left(A\left(\sigma^{i-1}(p), \sigma^{i}(p)\right)\right)=A\left(\sigma^{i}(p), \sigma^{i+1}(p)\right)
$$

we conclude that

$$
\mu_{\sigma}^{i^{i-1}(p)}\left(\sigma^{i}(p)\right)=\mu_{\sigma}(p)\left(\sigma^{i+1}(p)\right)
$$

for $i=1,2, \ldots, n-1$. Therefore,

$$
2 \pi=n \mu_{\sigma 0(p)}(\sigma(p))=n \mu_{p}(\sigma(p))
$$

and

$$
\mu_{p}(\sigma(p))=2 \pi / n
$$

But $\sigma(\mathbf{p})= \pm \mathbf{p}$ so $\mu_{p}(\sigma(p))$ is an integral multiple of π which is impossible unless $n=1$ or $n=2$.

Finally, we are ready to complete the proof of our main result. (Note that while Theorem 9 discloses an important feature of the collection of all continuous slope-preserving maps of simple smooth closed curves it does not yet enumerate them.)

Theorem 11. Let σ be a continuous, slope-preserving map of a simple, smooth, closed curve C to itself. Then either σ is the identity map of C $(\sigma(p)=p$ for each $p \in C)$ or σ is the unique antipodal map of $C(\sigma(\mathbf{p})=$ $-\mathbf{p}$ for each $p \in C)$.

Proof. Suppose there are points p_{0}, p_{1} of C satisfying $\sigma\left(p_{0}\right) \neq p_{0}$ yet $\sigma\left(p_{1}\right)=p_{1}$. Then $\sigma\left(\mathbf{p}_{1}\right)=\mathbf{p}_{1}$ implies that $\sigma(\mathbf{p})=\mathbf{p}$ for all $p \in C$. Now from $\sigma\left(\sigma\left(p_{0}\right)\right)=p_{0}$ it follows that

$$
\mu_{p_{0}}\left(\sigma\left(p_{0}\right)\right)=k \cdot 2 \pi
$$

and, as in the proof of Lemma 10 above,

$$
2 \pi=\mu(C)=2(k \cdot 2 \pi) .
$$

As this is impossible we conclude that either σ is the identity map, or else, $\sigma(\mathbf{p})=-\mathbf{p}$ for all $p \in C$.

Suppose that $\sigma(\mathbf{p})=-\mathbf{p}$ for all $p \in C$. Let $p_{0} \in C$ and suppose that $\sigma\left(p_{0}\right)=p_{i}$, where $\mathscr{P}\left(p_{0}\right)=\left\{p_{0}<p_{1}<p_{2}<\ldots<p_{n-1}\right\}$ and $p_{n}=p_{0}$. Evidently, $\left|\mathscr{P}\left(p_{0}\right)\right|$ must be even, that is, n is even, and since σ is a homeomorphism $i=n / 2$. It follows that σ is unique.

While implicit in the proof of Theorem 11 it is perhaps appropriate to record

Corollary 12. Let σ be a continuous map of a simple, smooth, closed curve C to itself. If $\sigma(\mathbf{p})=\mathbf{p}$ for each $p \in C$ then $\sigma(p)=p$ for each $p \in C$.

Acknowledgement. We are grateful to Professors J. Schaer and P. Scherk for their helpful comments in the preparation of this paper.

References

1. H. Hopf, Über die Drehung der Tangenten und Sehnen ebener Kurven, Compositio Mathematica 2 (1935), 50-62.
2. A. Marchaud, Sur les continus d'ordre borné, Acta Math. 55 (1930).
3. P. Scherk, Über differenzierbare Kurven und Bögen. I. Zum Begriff der Charakteristik, Časopis Pest. Mat. Fys. 66 (1937), 165-171.
4. G. N. Watson, A problem in analysis situ, Proc. London Math. Soc. 15 (1916), 227-242.

University of Calgary,
Calgary, Alberta

