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CW DECOMPOSITIONS OF EQUIVARIANT CW COMPLEXES

M. CENCELJ AND N. MRAMOR KOSTA

We discuss conditions which ensure that a G-CW complex is G-homotopy equivalent
to a CW complex with cellular action with respect to some CW decomposition of the
compact Lie group G. For G = SU(2), we prove that for every G-CW complex X,
there exists a CW complex Y which is G-homotopy equivalent to X, such that the
action G x Y —> Y is a cellular map.

1. INTRODUCTION

Let G be a compact Lie group. A G-cell of dimension n is a space of the form
G/H x Dn, where H is a closed subgroup of G and Dn is an n-cell. A G-CW complex
X (or an equivariant CW complex in the terminology of [9]) is constructed by iterated
attaching of G-cells. It is the union of G-spaces X^> such that X^ is a disjoint union of
G-cells of dimension 0, that is, orbits G/H, and X'n + 1 ) is obtained from X( n ) by attaching
G-cells of dimension n + 1 along equivariant attaching maps G/H x dDn+x -* X^nK The
space X^"\ which is called the n-skeleton of X, is thus the union of all G-cells of dimension
at most n (the topological dimension of X^ is in general greater than n). For basic facts
about G-complexes see the original papers [5] and [3] or the exposition in [9].

For discrete groups G it is well known that every G-CW complex is also a CW
complex with a cellular action of G (this follows for example from [9, Proposition 1.16,
p. 102]). For non-discrete groups, Illman [4] gave an example showing that a G-CW
complex X does not always admit a CW decomposition, compatible with the given G-
CW decomposition, and proved that there always exists a homotopy equivalent CW
complex Y which is finite if X is a finite G-complex.

In this paper we consider the following problem. Given a G-CW complex X, does
there exist a G-space Y, G-homotopy equivalent to X, with a CW decomposition such
that the action p: G xY -> Y is a. cellular map with respect to some decomposition of G.
The existence of such a Y is interesting from the point of view of equivariant homology
and cohomology. For example, Greenlees and May showed that for some groups G the
generalised Tate cohomology defined in [1] can be calculated from the CW decomposition
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of Y. Also, the Borel equivariant cohomology H^(X) = H'{EG xG X) of a G-CW
complex X can be computed using the cellular cohomology of the CW complex Y which
is G-homotopy equivalent to EG xc X.

In general, it is not known to the authors if, for a given group G, every G-CW
complex is G-homotopy equivalent to a CW complex Y with the required properties. For
G = Sl, Greenlees and May [1, Lemma 14.1] gave a construction of Y for any X. In case
of non-Abelian groups, the construction of Y is more difficult, since the fixed point sets
(G/H)K of actions of subgroups K < G on the orbits G/H are in general nontrivial. In
[7], the two non-Abelian 1-dimensional compact Lie groups, the orthogonal group 0(2)
and the continuous quaternionic group Nsu(2)T, are considered but the construction of Y
rests on a property of these two groups which is satisfied only for a few particular groups
G. In this paper we consider the 3-dimensional group G = SU(2).

The paper is organised as follows. In Section 2, two conditions on the set of isotropy
subgroups of a G-CW complex X which enable the construction of a G-homotopy equiv-
alent CW complex Y by induction on the G-skeletons of X are stated. We show that the
class of G-CW complexes with finitely many isotropy types satisfies these two conditions.
We also show that if a group G has the property that the set of all closed subgroups
satisfies these two conditions, then every G-CW complex has a G-homotopy equivalent
CW complex with a cellular action of G. In Section 3, the actions of subgroups of the
group SU(2) on orbits of SU(2) are analysed. We show that a set of closed subgroups of
SU(2) satisfies the two conditions of Section 2 and as a result obtain our main theorem.

THEOREM 1. Any SU(2)-CW complex X is G-homotopy equivalent to a CW
complex Y which is an SU(2)-space with a cellular action of SU(2).

Finally, in Section 4 some other examples are discussed.

2. REPRESENTATIVE FAMILIES OF SUBGROUPS

Let G be a compact Lie group, X a G-CW complex, and H the family of isotropy
subgroups of the action.

For a G-CW complex X, a representative family K. of isotropy subgroups is a family
of closed subgroups of G such that each isotropy subgroup of X is conjugate to a member
of K,. We shall call a representative family good with respect to a given CW decomposition
of G if the following two conditions are satisfied.

(1) For each H £ tC, there is a CW decomposition of G/H with respect to
which the action /J. : G x G/H -»• G/H is cellular.

(2) For each K € /C, the fixed point set (G/H)K is a subcomplex of the CW
complex G/H.

Let us first prove that the existence of a good representative family suffices for the
construction of a G-homotopy equivalent CW complex Y.
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PROPOSITION 1 . Let G be a compact Lie group with a given CW decomposi-

tion, X a G-CW complex and K, a good representative family ofisotropy subgroups. Then

there exists a CW complex Y with a cellular action ofG and a G-homotopy equivalence

h: X - v y .

PROOF: Following [1, Lemma 14.1], we shall construct a CW complex Y and a
G-homotopy equivalence h: X —> Y by induction on the G-skeletons X^ of X.

Since every isotropy subgroup of X is conjugate to a member of K., the 0-skeleton
X^ is homeomorphic to a disjoint union of orbits G/Hi, where Hi £ K. Since K, is good,
every orbit G/H has a CW decomposition satisfying conditions (1) and (2). Let Yo be
JV(0> with this CW decomposition on every G-cell G/Hi. Because of condition (1), the
action /z: G x y0 —> y0 is cellular, and because of condition (2),

(Y0)
K =

is a subcomplex of Yo for every K € K.. The G-homotopy equivalence on the 0-skeleton
is the identity h0 = id: X<0) -» y0.

By induction we assume that there exist a CW complex yn_i with a cellular action
of G, such that for every K € K. the fixed point set (Yn-i)

K is a subcomplex, and a
G-homotopy equivalence

/ i n _ ! : X'"- 1 ' -»• y n _ j .

For any G-cell e£ e X( n ) , the attaching G-map (?/#„ x Sn~l - » J ^ " - 1 ' is determined by
its restriction

V>,: Sn~l

Let f/v be a non-equivariant cellular approximation of the composition

Since the action of G on Yn_i is cellular, the natural G-extension

4iv : G/Hu x S " - ' - > yn_!

of tjju is also cellular, and the space

Yn=

is a CW complex with a cellular action of G. For each K € >C, the fixed point set (Fn)^
is obtained by gluing the subcomplexes (G/HU)K x Dn, corresponding to the n-cells, and
the subcomplex (yn_i)K along a cellular map. So (Yn)

K is a subcomplex of Yn. The
G-homotopy hn is obtained so that /in_i is extended G-cell by G-cell over the whole
space Yn. In the direct limit, we obtain the desired CW complex y 'and G-homotopy
equivalence h. D
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For example, for any compact Lie group G, every G-CW complex which consists of
a free part and a part which is fixed by the action is G-homotopy equivalent to a CW
complex with a cellular action of G. More generally,

PROPOSITION 2 . For every G-CW complex with a finite representative family
of isotropy groups K. which satisfies condition (1) there exists a G-homotopy equivalent
CW complex Y with a cellular action of G.

P R O O F : By assumption, condition (1) is satisfied. The following lemma shows that
condition (2) is also satisfied, so the family K. is good. D

LEMMA 1 . If for a given H € IC the collection of fixed point sets (G/H)K, K e /C,
is a finite family of subsets of G/H, then the orbit G/H has a CW-decomposition with
respect to which every fixed point set (G/H)K, K 6 K, is a subcomplex.

P R O O F : For every K 6 fC the orbit (G/H) is a smooth Zf-manifold, and the fixed
point set (G/H)K is a submanifold [9, p. 42] which is nontrivial only if K is conjugate
to a subgroup of H. The family {(G/H)K,K e K] is a finite family of smooth sub-
manifolds of G/H which, by the differentiate slice theorem (compare for example [2,
Theorem 1.5]), intersect transversally. By [6, 10.11,10.14], this implies that there exists
a CW decomposition of G/H such that each (G/H)K, K S K, is a subcomplex. D

COROLLARY If there exists a good representative family of all closed subgroups of
a compact Lie group G, then every G-CW complex X has a G-homotopy equivalent CW
complex Y with a cellular action of G.

P R O O F : This follows immediately from Proposition 1. D

3 . A GOOD REPRESENTATIVE FAMILY FOR SU(2)

Let G be SU(2) = Sp(l). An element x € G can be represented in the form

x —
Z\ Z2

or as the unit quaternion q = zx + jz2- The centre Zc is generated by - / S SU{2) (or
- 1 € Sp(l)), the only element of order 2. The projection G -> G/ZG = 50(3) associates
to a unit quaternion written in polar form as q = (cos <p, je) the rotation with axis e € R3

through the angle <p.

The isomorphism classes of closed subgroups of SU(2) are known. Since there are
no non-Abelian 2-dimensional Lie groups, the dimension of a proper closed subgroup is
at most 1. The 0- and 1-dimensional subgroups are ([10, p. 155]: [8, p. 404]):

1. the circle group T, which is a maximal torus;

2. the normaliser NT = NSu{2)T of a maximal torus;
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3. a cyclic group Z/n;

4. the quaternionic group

(x,y | x2 = y2,y~lxy = x~1)

or a generalised quaternionic group

(x,y | xn = y2, y~1xy = x~l);

5. the special linear group 5L2(F3), which is a lift of the tetrahedral subgroup

of 50(3);

6. the special linear group SL2(F5), which is a lift of the icosahedral subgroup

ofS0(3);

7. a lift of the octahedral subgroup of 50(3), which is an extension of the

symmetric group 54.

Let the representative family K. consist of the following closed subgroups of SU{2).

1. The conjugacy class of maximal tori is represented by the group of real rotations

50(2) • { -
cos t — sin t
sin t cos t

2. The conjugacy class of normalisers of maximal tori is represented by NS0(2)
which is generated by 50(2) and the element

u =
0 i
1 0

3. The cyclic groups Z/n are represented by subgroups Cn < 50(2), generated by
rotations a27r/n- In a group of rank 1, a cyclic group of order n is completely determined
by the maximal torus in which it lies, and so, since the maximal tori are all conjugate,
every cyclic subgroup of order n is conjugate to Cn.

4. The generalised quaternionic groups are represented by subgroups G2n <
NS0(2), where the generator x is the rotation a^/n and y is u. Let us show that
there is only one conjugacy class of groups isomorphic to G2n in SU{2). Every sub-
group H = (x, y) = G2n of SU(2) is contained in the normaliser NT of some maximal
torus T, more precisely in NT = T • y, where T is the maximal torus through x. Since
all normalisers of maximal tori are conjugate, we can assume that H < NSO(2). In this
case, x e 50(2), and y is in the non-identity component of NS0(2). All elements of the
non-identity component of iV5O(2) are of the form

u(t) =
i cos t i sin t
isint —i cost
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and are of order 4. For every t, the group H(t) = (a2^/n,u(t)) = G2n, and is conjugate
to G2n by the element u(t/2).

5. The remaining three groups have only one conjugacy class each in SU(2), since
their projections to 5O(3), the symmetry groups of the tetrahedron, octahedron or icosa-
hedron, have only one conjugacy class each in 50(3). Two copies, Hi and H2, of the
same symmetry group in 5O(3) are conjugate by the matrix describing the change of
basis which takes the polyhedron fixed by Hi to the polyhedron fixed by H2. An obvious
choice for the representative of SL2(W3) is NG4. For the remaining two groups, any
choice of representatives is good.

PROPOSITION 3 . Tie family K is a good representative family of conjugacy
classes of all closed subgroups of 51/(2) with respect to the standard decomposition of
SU{2) into one Q-cell and one 3-cell.

P R O O F : Let us first prove that the representative family K. satisfies condition (1). D

LEMMA 2 . IfG = SU(2) is given the standard CW decomposition into one 0-cell
and one 3-cell and H < G is a closed subgroup, then for any CW decomposition of the
orbit G/H, the action fi: G x G/H -> G/H is cellular.

P R O O F : Choose e° = / € SU{2). For any closed subgroup H, the quotient G/H is
a connected manifold of dimension 2 or 3. For any CW decomposition of G/H, the 0, 1
and 2 skeletons of G x G/H consist of cells of the form e° x fl, where fl is a j-cell of
G/H, and j = 0,1 or 2. Since multiplication by e° = / is the identity,

M(e° x fl) = ft C (G x G/H)V\

For j ^ 3, the j-skeleton of G x G/H is mapped to G/H = (G/H)W. D

This implies that it suffices to find a CW decomposition for every orbit G/H, H £ /C,
such that all fixed point sets (G/H)K, K £ /C, are subcomplexes. In order to prove this
we shall show that for every H € K. the family {{G/H)K, K e K) of fixed point sets is
a finite family of subsets of G/H. By Lemma 1 it follows that the family K. is good.

The fixed point set of the action of K on G/H can be described as

(G/H)K = {gH I g-'Kg < H).

It is nontrivial only if K is subconjugate to H. So, for every H £ K,'it suffices to consider
the subgroups K £ K. which are subconjugate to H.

If H is a finite group, it has only finitely many subconjugate groups, so the family
of fixed point sets (G/H)K is finite. It remains to consider the two 1-dimensional groups
in /C.

The only nontrivial groups K £ K. subconjugate to 50(2) are 50(2) and the cyclic
groups Cn. A short computation shows that for every n'^t 2,

(G/5O(2))C n = jV50(2)/5O(2) = Z/2.
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If n = 2, then G2 is the centre ZG, and (G/SO{2))C7 = G/SO(2). The family
{(G/SO{2))K,K e IC) therefore has two members: the whole space G/SO(2) and
NSO{2)/SO(2).

A nontrivial group K e K subconjugate to NS0{2) is either a cyclic group Cn, a
quaternionic group G2n, 50(2), or the whole group NS0{2). For K = Cn, n ^ 2,4, every
subgroup of NS0(2) conjugate to Cn must be contained in 50(2), since every element
u(t) of the non-unit component of NS0(2) has order 4. So K = Cn. Any conjugation
cg: G -> G which maps Cn into NS0(2) must therefore map the generator of Cn to an
element of Cn. So

(G/NS0{2))Cn = (G/NSO(2))SO{2) = NSO(2)/NSO(2)

is a point. The group d is conjugate to every cyclic subgroup of NSO(2) generated by
an element u(t), and

(G/NSO(2))C4 = {gNS0(2) | g^a^g = «(t) for some t}.

For n = 2, (G/NSO(2))C2 = G/NS0(2). The only subgroup of NS0{2) conjugate to
G2n is G2n, anc* a n v conjugation cg: G -t G which maps G2n into NS0(2) must preserve
the subgroup Cn, and it must map u into some element u(t). A simple computation shows
that this is true for every g € NS0{2). On the other hand, it is not true if g <£ NS0{2),
since no such element preserves rotations. So, (G/NSO(2))G2n — NSO{2)/NSO{2) is
a point for all n. The remaining finite three subgroups in /C are not isomorphic to any
subgroup of NS0(2). The family (G/NS0(2))K, K € K., therefore has three members.

P R O O F OF T H E O R E M 1: Since we have found a representative family for the fam-
ily of all closed subgroups of SU(2) which is good with respect to the standard CW
decomposition of the group SU(2), the theorem follows from the Corollary. D

4. S O M E EXAMPLES

In this section, we give several examples concerning a question posed in [7]. In [7] it
is proved that for G = 0(2) or G = Nsu(2)T, a G-CW complex is G-homotopy equivalent
to a CW complex with cellular action of G. The proof rests on the following property
of these two 1-dimensional groups. The natural projection IT from the set of all closed
subgroups S{G) to the set of all conjugacy classes of closed subgroups C(G) has a section
v. C(G) -> S(G) such that if (H) < (K) then v((H)) < v({KJ), where the notation
(H) < (K) means that H is subcojugate to K. The question of necessary and sufficient
conditions for the existence of such a u is posed.

Let us first show that this condition is not satisfied in SU(2). Let us pick any
representative T for the maximal torus. A representative for the conjugacy class of G4
must contain the representative H^ <T for Z/4. Once a representative for G4 is chosen,
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it determines the representative for NG4 S SL2(F3), which also contains H4 <T but no
cyclic groups Z/n = Hn < T, n > A. Specifically, it does not contain the representative
for the conjugacy class Z/6. On the other hand, SL2(¥3) has elements of order 6, so it
contains a copy of Z/6. Therefore, Z/6 is subconjugate to NG4, but the representatives
HQ and NH4 for the conjugacy classes of these two groups in SU(2) cannot be chosen so
that H6 < NH4.

A similar argument shows that, although the tetrahedral group contains a copy of
Z/3 , we cannot choose a representative for the conjugacy class of Z/3 which would be
contained in the conjugacy class of the tetrahedral group in SO(3).

It follows that no compact Lie group containing either SU(2) or 50(3) has a section
with the required properties.

Here is an example of a finite group which does not have a section with the required
properties. The authors would like to thank Ales Vavpetic for pointing out this example.
Let SV be the symmetric group on 7 letters. We have the following subgroups.

1. H2 = Z/2, generated by one transposition,

2. H3 = Z/3 generated by a 3-cycle,

3. H4 = Z/A generated by a 4-cycle,

4. H6 = Z/2 x Z/3 generated by a transposition and a disjoint 3-cycle,

5. Hs = Z/2 x Z/A generated by a transposition and a disjoint 4-cyc!e,

6. Hn = Z/3 x Z/A generated by a 3-cycle and a disjoint 4-cycle.
Assume that ((123), (4567)) is the representative of Hl2. Since H3 < H\2, we must
pick ((123)) for H3, and for the same reason, ((4567)) for H4. Since H3 < H6, the
representative for H& must contain the 3-cycle (123), and the transposition generating
H2 must be some (ab), where a,b € {4 , . . . , 7} . Since H2 < H6, where ({ab)) is the
representative for H2, then for H$ the only possibility is {(ab), (4567)). But (ab) is not
disjoint to (4567), and so ((ab), (4567)) is not isomorphic to H$.

Furthermore, it obviously follows that no finite group containing S7 has the required
section.
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