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A b s t r a c t . Two nonlinear dynamos have been analyzed by numerical means: 3D-simulation of the 
magneto-hydrodynamic equations and qualitative analysis of a simplified low-dimensional mean 
field model. It turns out that both are capable of deterministic chaos in a certain parameter range. 
As the basic tool the calculation of Lyapunov exponents has been used. 

1. Introduction 

Self-organization has been regarded as one of the main features of evolutionary 
processes. The theory of dynamical systems is a suitable tool to describe such 
self-organizing processes because they are capable of creating new structures as 
parameters of the system change. If new structures spontaneously emerge at a 
critical parameter value, this kind of evolution is called a transition phenomenon. 
In particular, transitions from regular to complex (chaotic) behaviour, which are 
often reported in the literature (cf. Schuster, 1984), can only be explained through 
nonlinear interactions within a system far away from equilibrium. Using central 
quantities of the theory of nonlinear dynamics as fractal dimensions and Lyapunov 
exponents, we can distinguish different structures and the transitions between them 
in a unique manner (cf. Ruelle, 1989) (Section 2). 

The solar activity is an interesting example of a self-organizing system. It is 
caused by the interaction between the motion of charged particles and magnetic 
fields. These processes of magnetohydrodynamics can be explained in the framework 
of dynamo theory (Krause & Rädler, 1980). In Section 3 we study two nonlinear 
dynamo models to describe several aspects of creating structures. 

2. Characteristics of Nonlinear Systems 

Complex systems can often be described by a finite number of modes or generalized 
coordinates. It is instructive to represent the dynamics of such a system in an 
abstract phase space spanned by these modes. The number of variables η defines 
the dimension of the phase space. A steady state of the system becomes a point 
in this space, whereas the evolution in time defines a curve, the trajectory. As 
time proceeds, trajectories of a deterministic dissipative system often reach an 
invariant regime, the attractor, and remain there forever unless changes of the 
parameters of the system occur. Simple attractors corresponding to well-ordered 
motions are either fixed points, indicating steady states, or limit cycles reflecting 
periodic motions. Aperiodic behaviour refers to more complex attractors, and can 
only arise from the nonlinear nature of the system. 

Various quantities, such as (fractal) dimensions, Lyapunov exponents and Kol-
mogorov entropy, describe different aspects of the attractor structure. Methods 
taken from the theory of linear systems, such as power spectra and correlation 
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functions, are often not sufficient to distinguish between nonlinear deterministic 
systems and stochastic ones (cf. Ruelle, 1989). 

1. Dimensions refer to the geometric properties of an attractor. To determine a 
dimension, the structure of an attractor is examined under different levels of 
magnification. If the patterns observed at these different levels are essentially 
indistinguishable, this kind of scaling, called self-similarity, yields the capacity 
or box dimension Db- Loosely speaking, the dimension indicates the number 
of independent variables which characterize the motion on the attractor. The 
dimension of complicated attractors can be a finite, often fractal, number, in 
which case we speak of a strange attractor. A stochastic process, on the other 
hand, has generally no finite dimension. 

2. Lyapunov exponents are global dynamical invariants, based on a stability analy-
sis of the system. The maximum Lyapunov exponent Αχ describes the evolution 
of small perturbations. A positive Ai expresses an exponential divergence of ini-
tially nearby trajectories. A system with such a sensitive dependence on initial 
conditions is defined to be chaotic. 

Both concepts together, dimensions and Lyapunov exponents, provide an efficient 
tool for a quantitative diagnosis of dynamical systems. In the case of a fixed point 
all A,· are less than zero and Db vanishes.'If the dynamics on the attractor can be 
decomposed into k incommensurate periods, the k largest A,· are equal to zero and 
Db = k. Chaotic systems (Ai > 0) are often characterized by a fractal number Db-

3. Dynamo Models for Solar Activity 

Processes inside, on the surface of, and nearby our sun are examples of solar activity 
caused by the interaction between the motion of charged particles and magnetic 
fields which can be explained in terms of dynamo theory. 

In the following we discuss two ways of studying the dynamics of the magnetic 
fields and the fluid motions. Firstly, equations for the mean magnetic field are 
studied to describe the large-scale variations of the solar activity. Secondly, the 
induction equation and the Navier-Stokes equation are solved and local effects in 
the dynamics within the convection zone are illustrated. 

It is known that the equations of mean-field dynamo theory can have periodic 
solutions corresponding to regular dynamo waves, which provide the basis of an ex-
planation of a periodic solar cycle. However, complicated amplitude- and frequency 
modulation is observed for solar activity which calls for a more general theory in 
which nonlinear and/or stochastic effects have to be included. 

3.1. A Nonlinear Mean-field Model 

Based on an approach presented by Zeldovich et al. (1983) Malinetzky et al. (1986) 
proposed a rather simplified nonlinear dynamo model obtained by truncation of 
the partial differential equations for the mean magnetic field. As the crucial point 
an additional effect has been included, namely the feedback of the magnetic field 
upon the helicity. The corresponding equation that expresses temporal changes of 
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the helicity is highly nonlinear. Furthermore, the equations for the magnetic field 
become nonlinear, since the helicity is no longer a constant but varies with time. 
To make this model numerically tractable the equations are truncated by using 
a lowest-order mode ansatz. This yields a 7-dimensional system of autonomous 
differential equations for the coefficients of the first modes: 

αχ - - σ α ι + ( α + c 0 ) 6 i + ^(e i&i + c2b2) 

ά2 = -σα2 + (a + c0)b2 - %(c\bi - c2b2) 

bi = —61 - Da2 

62 = - 6 2 + Dax 

Co = —vqCq + p(a\b\ + a2b2) - q[(a + c 0 ) ( 6 ? + 6^) + \ci(b\ - b\) + c2bxb2] 
Cl = - I / C i + p{a\b\ - a2b2) - q[(a + c 0 ) ( 6 2 - b\) + d ( b \ + 6 2 ) ] 

C2 = -vc2 + p(a\b2 + a2bi) - q[(a + c0)2M2 + <^2(^1 + b\)] 

The qualitative behaviour of this model has been analyzed by means of numeri-
cal methods implemented in the software system CANDYS/QA (Feudel L· Jansen, 
1992). This software package is an efficient tool for studying invariant sets of non-
linear systems, such as steady-states, periodic, and quasi-periodic motions, their 
stability, and bifurcation phenomena. 

For this model the dynamo number D is the crucial bifurcation parameter. It is 
associated with all processes mentioned which play an important role in the solar 
magnetic cycle. Here, D is proportional to differential rotation and mean helicity 
and is inversely proportional to the square of the coefficients of turbulent diffusivity. 
Additionally, the values at which qualitative transitions occur mainly depend on 
the parameter q quantifying the influence of the higher-order terms. 

As shown in the D) ^-bifurcation diagram (Fig. 1) the qualitative behaviour of 
this rather simple model exhibits rich dynamics. Several different structures, such as 
steady-state, periodic, and quasi-periodic motions, are found to be stable in certain 
parameter regimes. The transitions from one structure to another correspond to 
bifurcations of different types, such as Hopf- and torus bifurcations. With increasing 
dynamo number we observe a more complicated nature of the solutions ending up 
in chaos (see Feudel et al., 1992). Lyapunov exponents λ,· are used as the basic tool 
to distinguish quasi-periodic and chaotic structures. 

The route to chaos which has been found to be typical for this system is charac-
terized by the following transitions. Beyond the torus bifurcation a quasi-periodic 
motion on Τ 2 with two incommensurate frequencies arises which corresponds to 
two vanishing Lyapunov exponents (λι = λ2 = 0). With increasing dynamo num-
ber D we obtain a transition T 2 —• T 3 referring to a stable motion on T 3 with three 
incommensurate frequencies (λι = λ2 = λ3 = 0). For higher dynamo numbers the 
system returns again to a motion on Τ 2 due to a frequency locking (which occurs 
when the ratio of two frequencies becomes a rational number). This is followed by a 
torus doubling cascade which ends up in a chaotic motion (λι > 0). As Fig. 1 shows, 
we observe in all parameter regions the same route to chaos via quasi-periodicity, 
only the torus bifurcation and the onset of chaos are shifted towards lower values 
of the dynamo number D with increasing influence of the higher order terms (i. e. 
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Fig. 1. Bifurcation diagram for the truncated nonlinear dynamo model dependent on the 
parameters D and q. 
Τ - torus bifurcation, T D - torus doubling, T 2 - stable 2-torus, T 3 - stable 3-torus , C -
chaos (a = 1.0, σ = 1.0, ρ = - 1 . 0 , ν = 0.5, ι/0 = 1.0) (adapted from Feudel et al., 1993). 

increasing q). 
A similar route to chaos has been reported by Jones et al. (1985) who studied 

a nonlinear dynamo model based on the feedback of the differential rotation upon 
the magnetic field. 

3.2. Simulation of Hydromagnetic Convection 

As is well-known from other areas, any simplification of the dynamo equations, 
such as mean-field theory, may suppress the essential nature of the process under 
consideration. An important progress in understanding hydromagnetic convection 
has come from the use of modern supercomputers, since they enable the treatment 
of the original three-dimensional (3D) hydromagnetic equations. 

Indeed, it has been demonstrated by 3 D-simulations that spontaneous onset and 
maintenance of dynamo action can result from turbulent motions of a conducting 
fluid (Meneguzzi et al., 1989, Brandenburg et al., 1991, Nordlund et al., 1992). 
During the saturation phase there is a complicated balance of transfers between 
thermal, kinetic, and magnetic energies. This process is a typical example of self-
organization. 

Previously, we have shown that dynamo action occurs in a chaotic regime 
(Kurths and Brandenburg, 1991). To specify this kind of hydromagnetic convection 
we have calculated instantaneous divergence exponents A ( t n s i \ t ) . Starting from a 
small initial distance d(to) of two trajectories at time <o> which becomes the distance 
d(t0 -f t ) after an evolution time t, we get the dilatation rate e(^) = d(to + i)/d(to). 
It can always be written as For deterministic systems these ex-
ponents converge to λ χ as t tends to infinity. In order to investigate spatial nonuni-
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Fig. 2. Histogram of instantaneous and local divergence exponents A(x, i) obtained from 
the 3 D-simulation (adapted from Kurths & Brandenburg, 1991). 

Fig. 3. Local divergence exponents A(x) obtained from the 3 D-simulation (adapted from 
Kurths L· Brandenburg, 1991). 

formity we analogously define local and instantaneous exponents λ(χ, ί) . The his-
togram of A(Xyt) obtained from the 3D-simulation is extremely broad, indicating 
an inhomogeneous nature of this process (Fig. 2). We observe a marked spatial 
nonuniformity of local exponents A(x) (Fig. 3). Unstable regions (A(x) > 0) are 
often close to stable ones resulting in a pattern of A(x) that is interwoven in a 
complicated manner. 

Video animations of this simulation show that the magnetic field is highly inter-
mittent and organized into thin elongated flux tubes, undergoing repeated stretch-
ing and folding. This intermittency is expressed in a relatively high value of the 
kurtosis of the distribution of B(x,2). Surprisingly, the kurtosis of the distribution 
of A(x,<) is also very high and of similar magnitude. 

4. Conclusions 

We have analyzed qualitative properties of two nonlinear dynamo models by means 
of nonlinear dynamics. It comes out that both models are capable of deterministic 
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Fig. 4. Component αϊ depending on time in the chaotic regime in arbitrary units. 

chaos in a certain parameter range. 
We have got the following main results. 

L The 7-dimensional ordinary differential equation system obtained from a first-
order mode truncation of a nonlinear dynamo model for the mean magnetic 
field exhibits different kinds of qualitative behaviour. Beyond a Hopf bifurcation 
point, there occurs periodic, quasi-periodic, and chaotic behaviour. We find that 
the route to chaos via the transitions T 2 —• T 3 —> T 2 —> chaos is typical for 
this system. The trajectories calculated from the chaotic state display aperiodic 
cycles characterized by complicated amplitude and frequency modulation as 
well as epodies with very low amplitudes (Fig. 4). Such intervals of extremely 
low solar activity may be related to the grand minima reported by Eddy (1976). 

2. For the second model basing on simulations of the 3D hydromagnetic equations, 
we have shown that dynamo action occurs in a chaotic regime . The analysis of 
instantaneous and local divergence exponents helps us to understand the rele-
vant dynamics, in particular to describe the intermittent nature of the magnetic 
field. 

It is, however, important to note that there is still a large gap to relate both kinds 
of models to each other. There are two reasons for this gap. 

— It is very complicated or even impossible to perform a complete bifurcation 
analysis for high-dimensional systems. Due to the hugh computational effort 
needed, only some parts of the bifurcation phenomena can be investigated in 
this case. 

— All results depend on the reduction scheme from partial differential equations 
to ordinary ones. Several techniques should be used to improve the approxi-
mation of the solutions of the partial differential equations. 

From the viewpoint of nonlinear dynamics, a more complete analysis of the origi-
nal dynamo equations will be possible if improved approaches to these two points 
become available. 
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