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Abstract

.?••' Let LV{£1, K) denote the Banach space of weakly measurable functions F
'• defined on a finite measure space and taking values in a separable Hilbert
;«, space K for which 11 F | | s = ( J | F(w) I")1'" < + oo. The bounded Hermitian
l< operators on LP(Q,, K) (in the sense of Lumer) are shown to be of the form

';* AF(w) = B(w) F(OJ),

where B{m) is a uniformly bounded Hermitian operator valued function on K.
j This extends the result known for classical Lp spaces. Further, this characteri-

k| zation is utilized to obtain a new proof of Cambern's theorem describing the
* surjective isometries of V(Q, K). In addition, it is shown that every adjoint
| abelian operator on L'(£l, K) is scalar.

Subject classification (Amer. Math. Soc. (MOS), 1970): primary 46E40, 46 E 30,
: 47 B 99

s 1. Introduction

The concept of a hermitian operator on a Banach space is due to G. Lumer (1961).
Lumer (1963) characterized all bounded hermitian operators on a non-atomic

1 reflexive Orlicz space as multiplications by real L00 functions and used this character-
ization to determine the surjective isometries. The atomic case was treated by

: Tam (1969). Similar characterizations have been undertaken by the present authors
I for certain direct sums of Hilbert spaces (Fleming and Jamison, 1974a, b) and for

lp sums of Banach spaces by Berkson and Sourour (1974). It is of interest then
to consider the problem of finding the bounded hermitian operators on Lp(fj)
spaces of vector valued functions when the measure is not necessarily purely
atomic.

In the present paper we characterize the bounded hermitian operators on the
spaces LP(D., k) of weakly measurable functions with values in a separable Hilbert
space. From these results we obtain a characterization of the surjective isometries
which has been obtained also by Cambern (1974) with different methods. The
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130 R. J. Fleming and J. E. Jamison [2]

results on hermitian operators are also used to show that the adjoint abelian
operators on LP(Q, k) are scalar. This is related to an open problem of Stampfli
(1969).

Some comments are in order concerning the generality of the theorems proved
in the paper. In the first place, standard adjustments in the arguments will allow
the measure space Q. to be a-finite. More delicate is the assumption that K is a
separable Hilbert space. Although the theorem is true if K is assumed to be a
separable smooth Banach space, we feel that the essential elements of the proof
are best revealed and understood by assuming K to be a Hilbert space. However,
this last assumption seems to be essential for our proof of Theorem 4.14. More
will be said on this subject in Section 4.

2. Hermitian operators and the spaces LP(L\ K)

For the definition of a semi-inner-product (abbreviated s.i.p.) we refer the reader
to Lumer's paper (1961). A s.i.p. [,] on a complex Banach space X is said to be
compatible with the norm if [F,F] = ||-*1I2 for every FeX. A bounded linear
operator T on a complex Banach space is said to be hermitian if there is a s.i.p.
compatible with the norm, such that [TF,F] is real for every FeX. In the case
that X is a Hilbert space this definition yields the usual class of bounded hermitian
operators.

Let (D, 2, n) be a finite measure space and let K be a separable Hilbert space with
norm and inner product denoted by |-|2 and (,) respectively. A K valued function
F on O is said to be weakly measurable (Hille and Phillips, 1957) if the complex
valued function (F(-),z) is measurable for each zeK. For 1</?<OO, we denote by
LP(Q., K) the Banach space of (equivalence classes of) weakly measurable K valued
functions on O for which || F\\p < oo, where

= ( J |F ( w ) | f ^ )^ , p<co,

= ess sup | F(w) |2 for p = co.

It is important to note that the vector simple functions of the form

l
where the Ei are disjoint measurable sets and the xt are distinct elements of K,
are dense in LP(D.,K). For further facts concerning LP(Q,K) we refer the reader
to Dunford and Schwartz (1958), Hille and Phillips (1957) and Lang (1969).

3. Hermitian operators on Z,P(Q, K)

In what follows, the support ofaK valued function F on D. is the set {to | F(co) ̂  0}
where 0 is the zero vector in K, and if ze K, x is the function which is equal to z
for all eiieQ, We use script letters to denote operators on LP(Q, K).
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[3] Classes of operators 131

Since the dual space of LP(Q,K) for 1</><OO is L"(Q,K) where l/p+l/q= 1
(Lang, 1969), it is easy to show that a s.i.p. compatible with the norm on LP(Q.,K),
l^p < oo, is given by

Before we state the main theorem on hermitian operators on LP(Q., K) we offer
the following example of a bounded hermitian operator on Z,P(Q, K).

EXAMPLE: Let H(u>) be a&(K) valued function on Q such that
(3.2) H(<A>) = H(a>)* almost everywhere,
(3.3) H(w)z is weakly measurable for each zeK, and
(3.4) | | i / (w)| |^M<oo almost everywhere, where ||*|| denotes the uniform norm

on3§{K). If we define (JfHF)(a>) = H(a>)F(a>) then in view of (3.3) and
(3.4) it is clear that J(H is a bounded linear operator on Lp(£l, K). Further-
more, since

(3.5) [Jta F, F] = $(H(a>) F(co), F(a>

it follows from (3.2) that JKH is hermitian.
In this section we will show that every bounded hermitian operator on LP(Cl, K)

is of the form ^m-) f ° r some^CK) valued function H(-) satisfying the conditions
of the example. To do this we first need to establish some preliminary results.
Henceforth, 1 ^p<co and

(3.6) LEMMA. Let Fv F2 eLp(Q., K) with disjoint supports Ex and E2. If s/ is a
bounded hermitian operator on LP(Q, K) then

r ~?
(3.7) ((s/Fj) (co), F2(CJ)) | F2(co) \p-2 dfi = ((j/F2)(aj),F1(a>))|F1(w)||""2c(r/x.

J Et JEi
The proof of this lemma follows immediately by writing out the requirement that

f is real for every choice of <p e&. We omit the details.

(3.8) LEMMA. Let EeT, with n(E) > 0 and zeK. If Jt/ is a bounded hermitian
operator on LV(Q., K), l^p<oo,p^2, then

(3.9) ->*(XBZ) = XB •*(*)•

PROOF. It is enough to prove this for vector z with |z | 2 = 1. Thus we let z e K
with norm 1 and E be a set in S with positive measure. Let L\ be any subset of
Q\E with positive measure. Let F1 = XEZ a n d F2 = aF where a is a non-zero real
number and FeLp(D.,K) with support in E± and |.F(a>)|2 = 1 almost everywhere
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132 R. J. Fleming and J. E. Jamison [4]

on E1. Then from (3.7) we have

(3.10) f (
JEi

= (
J

For a = 1 then we have

(3.11) f (s/(xB z) (a,), F(a>)) dp = f (jtf(f) (a,),

Combining (3.10) and (3.11) we obtain

(3.12) (1 -1 a |*-2) f (j*0te z) (w), F(a/» </p = 0.
JEi

Since /»?£ 2 we see from (3.12) that

(3.13) f (^(XEz)(a,),F(co))^ = 0.

If we now suppose that ^ = supp(«j/(xEz))n(O\£) has positive measure,
then from (3.13) we are forced to conclude that

(3.14) f
JEi

Clearly this is impossible and we must conclude that the set E1 has zero measure.
Whence, the support of ^(xEz) is contained in E. The conclusion of the lemma
is now easily seen.

With what we have established we will now show that a bounded hermitian
operator on LP(Q., K), 1 ^p< oo, p=£2, is induced by a.&(K) valued multiplication.

In what follows we shall assume that s/ is a bounded hermitian operator on
U>{Q.,K), \^p<co,p^2. Thus

(3.15)

for each FeLP(Q.,K). From (3.15) and (3.9) we see that for each zeK there
exists a set is2eE such that n(Ee) = 0 and

(3.16) |j/(*)(a>)|2s$||j^|||z|2 for every co e Q \ £ r

Let L be a countable dense subset of K. Then from (3.16) we see that there is
a set i i oe2 with p(E0) = 0 such that for any z and z' in JLU{0}

(3.17) | J / ( * - * 0 ( W ) | , < | | J / | | | Z - Z ' | 8 foro>e£l\E0.

If (zm) is a Cauchy sequence from L u {0} then it is clear from (3.17) that («s/(*m) (w))
is a Cauchy sequence in K for each cu £ O \ £0. Since L is dense any z e .K is the limit
of some sequence (zm) from L. Thus we define for each w eii\£'o and zeK

(3.18) #(a>) z = lim .s/(*m) (a>),
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[5] Classes of operators 133

where (zn) is a sequence from L converging to z. It is easy to see that H(tS)z is
well defined and we note that for each zeK,H(-)z is a weakly measurable K
valued function. Furthermore, from (3.17) we have

(3.19) | / 7 (CO)Z | 2 ^ | | J / | | |Z | 2 forweQ\E0.

Whence H(-)z belongs to Lv(Q,K) for each zeK.
If zeKand (zn) is a sequence fromL which converges to z then| H(a>)z — s/(%n)|f

converges to zero for almost all u> and since it is dominated by an integrable
function it follows by Lebesgue's dominated convergence theorem that

(3.20) l im| | t f ( - )z -^(* n )L = 0.

But since lim||*—«n||p = 0 we must have

(3.21) H(-)z=rf(z)(-).

In view of (3.21) we have established that for each coe£l\E0, //(•) is a linear
transformation on K. Moreover from (3.19) we have that H(<o) is bounded for
each w e Q \ EQ and in fact

(3.22) | | / f ( w ) | |< | | ^ | | foro,eO\£'0.

Therefore if we define uT^., on Lv(Q,K) by M^(.,.F)(w) = H(w)F(o) it will
follow that ~#H(.) = s/. To see this let $ = 2"=iXE(Zt> where the z{ are distinct
elements of K and the E% are disjoint measurable sets. By the linearity of s# and
the definition of JtH<.> it is clear that

(3.23) Jlm.rt=s/t.
Since vector simple functions are dense in LP(Q, K) it follows that

(3.24) J(nu F = s/F for each FeL*>(Q, K)-

(3.25) THEOREM. Let l^p<co, p+2. Then si is a bounded hermitian operator on
LP{Q,K) if and only if there is a 3t(K) valued function H(-) defined on Q. such that

(3.26) H((D)Z is weakly measurable for each zeK.

(3.27) || H(u>) || < || j / 1 | almost everywhere,

(3.28) H(CD) = H(o))* almost everywhere,

(3.29) stF = ufH(., Ffor FeLp{D., K).

PRCXJF. The sufficiency is clear and in view of the preceding argument all that
remains to be shown is (3.28). To this end let zeL with |z|2 = 1. Then

(3.30) [s/(*)t *] = j(H(a>) z, z

Since si is hermitian, there is a set Eze1l with fi(Ez) = 0 such that (H{a>)z,z) is
real for weO\£2. But since L is countable it follows that there exists a set i r oe2
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with [i(E0) = 0 such that for each zeL

(3.31) (H(a>)z,z) is real for weQ\E0.

Furthermore, since L is dense and since the inner product is continuous on both
variables (3.31) holds for each zeK and hence H(a>) = H(u)* for ate£l\E0.
This completes the proof.

4. The isometries of D>(Q., K)

In what follows we shall assume that W is a surjective isometry of £p(Q, K).
If Te£8{K) we denote by JtT the operator denned by (JKTF)(u>) = T[F(ui)] for
FeLP(Cl,K). *£T is a bounded linear operator and is hermitian on LP{Q.,K)
whenever T = T*. We note that J(T = J(Tl+iJ(Ti where Tx = T*, T2 = r | and
T= Ti+i^ . Similarly if £ e 2 we denote by ^E the operator on LP(Q.,K) denned
by

(4.1) ( ^ F ) ( ^ ) = X s JF 'H.

The operator ^E is a hermitian projection on LP{Q., K). It is clear that 7F# E W~x

is a projection and by a result of Koehler and Rosenthal (1970) it is also hermitian.
We can say more.

(4.2) LEMMA. For each £ e 2 there exists a set £>(is)eZ such that

PROOF: Let ^ e S with fi(E)>0. Since W^B'^r-1 is a hermitian projection,
there exists by Theorem (3.25) a 88(K) valued function PE(-) on Q such that
PE(ca) is projection for almost all a» and Hr((SE iT'1 = ^Ps{.).

Since ̂  commutes with every operator of the form ufff(.), where /?(•) satisfies
the conditions of Theorem (3.25), and since

it follows from (3.25) that

(4.3) Jtp^JtT^JCTJtp^ for each

Thus for each Te$?(K) and FeD>(n,K) there exists a set E(F,T)eI, with
fi(E(F, T)) = 0 such that

(4.4) PE(o>)r[F(o,)] = r[P£(a,)F(a>)] for («eil \£(F,r) .

By considering constant functions and using the separability of K we can conclude
from (4.4) that for each Te@{K) there exists a set £(T)eS with fi(E(T)) = 0
such that

(4.5) PE(CJ) T(z) = rP^a/) (z) for each z e /sT and w 6Q \ E(T).
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[7] Classes of operators 135

Finally, since K is separable, every rank 1 operator in 9S(K) can be approximated
by a sequence of rank 1 operators from a given countable class. Hence there
exists .E^eS with fx(E^) = 0 such that for every rank 1 operator

(4.6) P£(w) T(z) = TPE(a>) (z) for each z e K and o> e O \ ^

The important thing to note about (4.6) is that i% does not depend on z or 71.
Now let us define <D(£) = {co | P^eo) # 0}. Suppose there exists E' <= <b(E) n (O \ £,)

with /*(£")>0 such that PE(w)^I for each meE'. If a)xeE' then there exists zx

and zzeK, each with norm 1, such PE(OJ1)Z1 = zx and P^o)])^ = 0. But if we
define r by Tz = (z.z^Zg we find that PE(o)i)Tz1 = 0 while rPE(cui)z1 = z2! This
contradicts (4.6) and consequently PE(cS) must be the identity operator on K
for a>eO(£). This completes the proof.

Lamperti (1958) calls a map O of S onto S (defined modulo sets of measure

zero) a regular set isomorphism if (i) $(£) = O(£), (ii) $(£/£•*) = C/O^) and
(iii) /i(O(£)) = 0 if and only if /*(£) = 0.

The following lemma is easy to verify.

(4.7) LEMMA. The map E->Q>(E) is a regular set isomorphism.

We will now show how the preceding results enable us to obtain a representation
of W. To that end let zeK with |z|2 = 1 and E a measurable set. If we define
ZE = (&EX> t n e n

(4.8) f z j B - * *

Since if is an isometry of LP(C1, K) we have

Kll£= f(4-9)

Moreover, since the measure v(2s) = ^ (O" 1 ^ ) is absolutely continuous with
respect to ft we have

J*<B>\«/V
(4.11)

Comparing (4.9) and (4.11) we have by the uniqueness of the Radon-Nikodym
derivative that there exists £ ,cf l with n(Ez) = 0 such that

(4.12)

By an argument analogous to that preceding Theorem (3.25) it can be shown that
there exists a 3!(K) valued function {/(•) such that U(io) is a surjective isometry
for almost all co and

(4.13)
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136 R. J. Fleming and J. E. Jamison [8]

Now using the fact that the vector simple functions are dense in LP(iZ, K) we
have:

(4.14) THEOREM (Cambern). Let W be a surjective isometry ofLp(Q, K),
p^2. Then there exists a regular set isomorphism <& of the a-algebra 2 of measurable
sets onto itself (defined modulo null sets), a scalar valued function h defined on
O satisfying \h\p = dv\d\t., and a 3§{K) valued function U defined on Q such that
U(oS)z is measurable for each zeK and U(co) is a surjective isometry of K for
almost all co such that for FeLp(Q,K),

(4.15) (WF) (o>) = V(w) h(w) <D(F) (co).

Conversely, every map W of this form is a surjective isometry of Lp(Cl, K).

REMARKS. Theorem (4.14) generalizes the theorem of Lamperti (1958). The
proof given by Cambern does not rely on the theory of hermitian operators but
does require the use of Lamperti's theorem.

Cambern asked whether a similar characterization can be given for the surjective
isometries of Z-P(O, B) for the case that B belongs to a suitable class of finite
dimensional Banach spaces. The following example shows that even when B is
two dimensional, the theorem does not hold.

EXAMPLE. Let (fl, 2 , /A) be a finite measure space and consider V(Q., /f2)). Let
O1} $ 2 be distinct regular set isomorphisms with hk = (dvkldn)Vp where
vk(E) = niQ-jfiE)) for EeX and A: = 1,2. If FeD>(£l, /f2)) then F(-) = (FX{-),F2(-)).
Let (TF)(a>) = (A1(a>)O1(F)(a>),/i2(w)O2(F)(a))). It follows from Lamperti's
theorem (1958) that Tis an onto isometry of LP(Q, /f2)). Clearly J i s not of the form
(4.15).

The techniques used to prove (4.14) can be extended to the case LP(Q.,B) when
B is a separable smooth Banach space having the following property: If P is a
projection such that PT = TP for every hermitian T then P is the identity on B.
We note, however, that this condition seems to be very restrictive. It does not
hold even when B = lp(2). This possibly accounts for the existence of an isometry
such as the one given in the example above. It is tempting to conjecture that this
restrictive condition holds only when B is a Hilbert space. In any case it would be
interesting to characterize the class of Banach spaces for which the condition holds.

5. Adjoint abelian operators on LP(Q, K)

Stampfli (1969) introduced the notion of an adjoint abelian operator on a
Banach space. An operator S? on a complex Banach space X is said to be adjoint
abelian if there is a semi-inner product [, ] compatible with the norm on X such
that
(5.1) [^F,G]= [F, SfG\ for all F,GeX.
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[9] Classes of operators 137

If AT is a Hilbert space, the adjoint abelian operators coincide with the usual
hermitian operators.

Stampfli (1969) left as an open question as to whether every adjoint abelian
operator on a weakly complete Banach space is scalar. In Fleming and Jamison
(1976) we showed that this is indeed the case for the classical spaces Lp and ^{K),
£ compact metric. We now show that this is the case for LP(Q.,K).

If £f is an adjoint abelian operator on Lp(£l, K) then Sf* is hermitian as well
as adjoint abelian and hence there is a 3§(K) valued function //(•) satisfying the
conditions of Theorem (3.25) such that &** = ^Km.y Since JKH^ is adjoint
abelian it follows (5.1) and (3.1) that for each GeLP(Q.,K) there exists a set
Eae£l with ii(EG) = 0 and

(5.2)

where

By considering constant functions and using the separability of K we can conclude
from (5.2) that there exists lso<= Q. with n(E^) = 0 such that

(5.3) | # ( « 0 4 = ll"<ff<.>*L foro)eQ\(£'0u£ff).

It is now an easy matter to show that there is a fixed constant A such that

(5.4) |H(u>)z|8 = A for every zeK with |z |2 = 1
and for all o> e Q \ (Eo u EH).

Hence X^Hiw) is an isometry for O)E£1\(E0UEH). Furthermore, it follows from
(5.2) and (5.4) that fi(EH) = 0. Therefore, if an operator is adjoint abelian on
£*>(£}, K), its square must be a multiple of an isometry. There is more that can be
said.

(5.5) THEOREM. A linear operator Sf on LP(Q,K) is adjoint abelian on U>(Q.,K),
I <p<co, p^2 if and only if there is a real constant A and an isometry if such
that #"* = / and

(5.6) Sf = ATT.

PROOF. The sufficiency follows from Theorem 6 of Fleming and Jamison (1976).
To prove the necessity, let ^ be an adjoint abelian operator. We may suppose
that || £f\ = 1. Then by the arguments given above there exists an isometry H^
such that SP* = ifr

1 and by Theorem 1 of Stampfli (1969) it follows that
II «*T = II ^11 = 1- Thus II ^HP <! for a n y F m Lv^ K) of norm 1- If we
suppose that there exists F in LP(Q., K) of norm 1 such that || ^"^11^ < 1 then we
see that

(5.7)
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which is absurd. Therefore Sf is an isometry. From Theorem 6 of Fleming and

Jamison (1976) there exists an isometry "W of Lp(£l,K) such that if2 = / and

S? = if. This completes the proof.

The next result follows from Corollary 4(a) of Stampfli (1969).

(5.8) COROLLARY. Every adjoint abelian operator on LP(Q, K) is a scalar operator.

REMARK : It is possible to give a more complete description of adjoint abelian

operators on L"(Q,K) using Theorem (4.14) and arguments similar to those used

in Fleming and Jamison (1976).

References

E. Berkson and A. Sourour (1974), "The hermitian operators on some Banach spaces", Studia
Math. 52, 33-41.

M. Cambern (1974), "The isometries of L*(X, K)", Pacific J. Math. 55, 9-17.
N. Dunford and J. T. Schwartz (1958), Linear Operators, Part 1 (Interscience, New York).
R. J. Fleming and J. E. Jamison (1974a), "Hermitian and adjoint abelian operators on certain

Banach spaces", Pacific J. Math. 52 (1), 67-84.
R. J. Fleming and J. E. Jamison (1974b), "Isometries of certain Banach spaces", / . London

Math. Soc. (2), 9, 121-127.
R. J. Fleming and J. E. Jamison (1976), "Adjoint abelian operators on L" and C(K)", Trans.

Amer. Math. 1YI, 87-98.
E. Hille and R. Phillips (1957), Functional Analysis and Semi-groups (Colloquium Publications,

Vol. 31, Providence, R.I.).
D. Koehler and P. Rosenthal (1970), "On isometries of normed linear spaces", Studia Math. 38,

215-218.
J. Lamperti (1958), "On the isometries of certain function spaces", Pacific J. Math. 2, 459-466.
S. Lang (1969), Analysis II (Addison-Wesley, Reading, Mass.).
G. Lumer (1961), "Semi-inner-Product Spaces", Trans. Amer. Math. Soc. 100, 26-43.
G. Lumer (1963), "Isometries of reflexive Orlicz spaces", Ann. Inst. Fourier, Grenoble, 13,

99-109.
J. G. Stampfli (1969), "Adjoint Abelian operators on Banach spaces", Canadian J. Math. 31,

505-512.
K. W. Tarn (1969), "Isometries of certain function spaces", Pacific J. Math. 31, 233-246.

Department of Mathematics

Memphis State University

Memphis Tennessee 38152

USA

https://doi.org/10.1017/S1446788700020152 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020152

