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HARDY SPACES OF CONJUGATE SYSTEMS
OF TEMPERATURES

MARTHA GUZMAN-PARTIDA AND SALVADOR PEREZ-ESTEVA

ABSTRACT. We define Hardy spaces of conjugate systems of temperature functions

on RTl. We show that their boundary distributions are the same as the boundary
distributions of the usual Hardy spaces of conjugate systems of harmonic functions.

Introduction. In[4], C. Feffermanand E. M. Stein definedfor (n—1)/n < p < oo,
the HP spacesin R as (n + 1)-tuples of harmonic functions F = (Uy. ... . . Uy, Un+1) ON
R™?! satisfying the equations of conjugacy

c Dy = Dy Ui ij=1,..., n+1
(CR) <E?=+11 Dyl =0
and the condition
(G) sup/n IF(x, t)|P dx < oo.
t>0 /R

Every such F is determined by u = u and finaly by the boundary value f =
lime—o+ u(-, t) which exists as a temperate distribution. Then they gave a real-variable
characterization of the corresponding space of distributions in terms of maximal func-
tions constructed using any “nice” test function. In particular the Gaussian function
G = We"x'z/ 2 can be used to characterize the HP spaces as boundary values of
temperature functions (solutions of the heat equation). The purpose of this article is to
express these spacesin terms of (n + 1)-tuples of temperatures satisfying certain conju-
gacy eguations and a condition like (CR). The equations introduced by Y. Sagher and
E. Kochneff in the case n = 1, involve Weyl fractional derivatives to decompose the
partial derivative D, appearing in the heat operator. This paper is the extension to several
variables of previouswork by one of the authors[7].

The paper will be organized as follows: In the first section we study temperature
functions on R satisfying (G). We give growth estimates for these functions at the
boundary, based upon Lemma 1.1 which has interest of its own. These estimates will
lead to the existence of the fractional derivatives and boundary limits used in the second
section. In the second section we define Hardy spaces of (n + 1)-tuples of temperature
functions and the system of equationsruling them; as in the harmonic case their coordi-
natesare linked by the Riesz transforms. In the main theorem we provethat the boundary
values are exactly asthe classical real HP spaces.

Received by the editors November 25, 1996.
AMS subject classification: Primary: 42B30, 42A50; secondary: 35K 05.
(©Canadian Mathematical Society 1998.

605

https://doi.org/10.4153/CJM-1998-034-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-034-0

606 M. GUZMAN-PARTIDA AND S. PEREZ-ESTEVA

The following notation will be used throughout the paper. If f € L2(R"), f denotesthe
Fourier transform of f based on the kernel e=27x¢,

If g is a real-valued function which is sufficiently regular for t > 0, the Weyl's
fractional derivative of order o > 0 is defined by

DY) =

fg) [ d(s(s— v ds.

wherea =n—a,n e N, 0 < & < 1, and the Weyl’sfractional integral of order « > Ois

D~%g(t) = % /too g(s)(s— t)*1ds.

The 1-dimensional Gauss-Weierstrass kernel will be denoted by k(x, t), that is,
1 2
k(x.t) = ——=e*/%, t>0
0= e

and k(x,t) = Ofor t < 0. The n-dimensional Gauss-Weierstrasskernel is defined as

n 1 2
Kee) = [Tk(x. ) = L
(0 =[[Kx. 0 = e

and the theta functionfort > 0 as

Bt = S Kx+2n,1),

n=—oo
andd =0fort <O.
1. Hardy spacesof temperaturefunctions. Wewill denote by
n
H(RTY = {u e C2(R™Y : ,Zl Dlu= Dtu}.
HP(RT™) = {u € HRT) : Julle < oo}
where

lullwe = sup JuC-. O]l 0 <p < oo.
0

We shall write H and HP, respectively, if the context does not cause confusion. The
elements of H will be called temperature functions.

It iswell known that the following representation holdsfor u € HP when 1 < p < oo
(see [5, Theorem 5]): u € HP if and only if u(x,t) = K(-,t) * f(x), where f € LP(R"),

1<p<oo.
Moreover, we have the following estimates for x € R" and t > 0[5, Theorem 2(ii),
(iv) and (V)]
(D) Ju(x. Y] < CJf ot~
@ |Duu(x.B)] < Clf ||t ™"/
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Asaconsequenceof the aboveestimates, uand D;u are boundedin each proper half-space
{(x.t) e RM : t >ty > 0}.

Thecase0 < p < 1 will beanalyzedin Theorem 1.2 below, following the main ideas
of the harmonic case [6, p. 172] adapted to our situation. First, we need to state some
known facts and some notation.

Let Q = (0, )™ and I its parabolic boundary, that is, I" is the union of the sets Iy
and [, fori=1,.... nandj =0.1wherelp={(£.0): £ € (0. )"} and [ = {(¢.7) €
(5 10 <7< 1 ¢ =]} A will bethe n-dimensional Lebesgue measureon T .

We definefor x, ¢ € R" andt,7 >0

R(x, t; &, 7) = ﬁH(xi. &, t—1),
i=1

where
H(X. & t—7) =00 — &i.t—7) — 0(x + & t— 7).

We will consider the kernel K: Q x I' — R defined asfollows:

K(x.t; €. 0) = R(x, t; €. 0).
K. t;€,7) = (DRt €,7), € €Ty

Every temperature function on Q and continuous on 6 can be written on Q as follows:
u(x. t) = /r K(x.t; €, 7)u(€. 7) AA(E. 7).

(Compare with the resultsin [1] and [3]).
We shall also consider for 0 < r < 1 the mapping T, (X, t) = (X, t;) where

X =X+
t =r’t+(1—r?).
Noticethat Q = {T,(¢.7) : (§,7) € T,0<r < 1}.

LEMMA 1.1. Let ubeatemperaturefunction ona (n+ 1)-dimensional parallelepiped
P c RT such that P = P’ x (c. d), where P’ is a n-dimensional cuboid which satisfies
|P’|?/" = (d — c). Suppose also that u is continuous on P. If (Xo. d) is the center of the
upper face of P, then for every p € (0, 1]

1
U P < Corgy [, lué P dé

where C, is a constant only depending on p, and |P’|, |P| denote the Lebesgue measure
of P’ and P, on R" and R™?, respectively.
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PrROOF. Without loss of generality we can supposethat P is the unit cuboid Q, since
the mapping ®: Q — P such that

®E.7) = (JP[M"e+a (d - o) +c).

whereP’ = (a1, by) X - -+ X (an, by), makes uo @ atemperature function. Notice also that
for 0 <r < 1, uo T; isatemperature function on Q. For every r > 0 define

1/p

() = | [u(Te(e.7) " dre. )|

and
Moo (r) = sup{|u(Te (€, M) : (¢, 7) €T}

We may assumethat Jq |u(¢, 7)[P d¢ dr = |Q| and my,(r) > 1for every r € (0., 1).
Let g > 1. We notice that

©) My(r) < Moo(r) &P/ Iy (r)P/.

We have the representation

u(Tr(x.1)) = /r K% t; €. 7)U(Te(€.7)) dAE. 7).
If (x,t) € Qr = T{(Q) then

00t = [ K (T 00 €. 7)u(Te(6 7)) dACE ).

andsince T, o Ts = Tyg, then for (x,t) € Q;, 0 <s<r <1,
@) u(x.t) = ‘/r K(To/r(TH . 1); & Du(Te(€.7)) dAEE. 7).

We need to estimate fr K(T,(y. n); & 7)u(T:(&.7)) dA(¢, 7) for (y. ) € Qand p € (0. 1).
First, we notice that (comparewith [7, Lemma 1])

5) oy RTA0 1) €. 0)u(Ti(€. 0) d| < €1 = o) Pmy(0).
Next, we will analyze
©) Jr, KOy € DU(Te(€. 7)) AGE.7):
Thisintegral equals
b Jor 200001, = LTHOS. &3 = DU(TO. 21 . 7)) - i

and its module is majorized by (see[7, Lemmal])

o o) [ (11 ) Hox. &1, 0 d o]
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where ¢’ is the conjugate exponent of q.
Sincefor everyi=1,..., n

1

l /
e g _—
/o H(i. &iamp —7)7 d§ < C(ﬂp — 1)@=z’

if we choose g suchthat (n — 1)(q' — 1) /2 < 1, we can ensure that the expression (6) is
majorized by C(1 — p)~2mq(r).
A similar argument showsthat for everyi =1...., nandj=0,1

™ . K107 € 0(Te(6.7) AN(E.7)| < €L~ ) Pmy(r)
and from (4), (5) and (7) we get for p = s/r and (x,t) € Qs
8 Moo(8) < C(L — /1)~ 2"my(r).
If we choose s = r2 with a > 1 we obtain from (3) and (8)
Mo (r?) < C(1 — ra—1)—2nmoo(r)(q—p)/qmp(r)p/q_
Taking logarithms, multiplying by 1 /r and then integrating respect to r, we get

(a—p) 2

1
9) logm(r¥)dr/r <C+ /2

1/2

1 1

- p
logm,,(r)dr /r + : ./1/2Iogmp(r) dr/r.
Now, we have

(10) 1= [jugnPdedr= [ fuEnPdedr+3 [ (ue.n)P dedr.
. JQo i,j U

where Qo and Q;; are defined as follows:

Qo =¥(Io x (0.1))
Qj = W(r x (0, 1)),

and W:T x (0.1) — Qsends ((¢.7).1) — Ti(&.7).
First, we see that

fo ue.nPdgdr= [ [ 2rmu(Ti(c.0) deer
= ./01 -/ro 2rn+1’u(Tr(€-T))‘pdA(f.T) dr.

Also, it is easy to seethat

n+l
Jo ute- TP dg o = b I, Slu(Tie ) dae .
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Hence, collecting all the aboveintegrals, we obtain from (10)

/Olr“+lrnp(|r)p dr < C/Ol/l_‘u(Tr(é,T))‘pd)\(é,T) dr
<c
Thus

1 1 1 n+
(11) a/l/zlog my(r)Pdr/r < C./O r™Imy(r)P dr < C.

Using inequality (11), making a change of variable on the left hand side of (9) and
choosing a in a such way that % — % > 0, we can conclude that

1
‘/1/251 logmy(r) dr/r < C,,

where C, is a constant depending on p only. This inequality implies that there exists
ro € [1/22 1] such that m,(rg) < C, and from the maximum principle the proof
follows. ]

REMARK. Notice that Lemma 1.1 is also true for 1 < p < oo, sinceit is valid for
p=1.

THEOREM 1.2. Let u € HP, 0 < p < 1. Then, there exists a constant C depending
only on p such that for every (x.t) € R

(12) |u(x, )] < Clluljuet ™.

In particular, u(x. t) is bounded in each proper half-space Qg = {(x,t) : t >t > 0}. In
fact, u(x, t) — Oif (x,t) — oo in Qp.

PROOF. Let (x.t) € RI™ and R = (ITL,(6 — vt/2v2. % +/1/2V2)) x (t/2.1).
Using Lemma 1.1, the rest of the proof follows exactly asin the harmonic case (see [6,
p. 174)). "

Now, we analyze the growth of Diuforue HP, 0 < p < 1:
Lett > 0andx € R. Fixto > Osuchthatt/2 < ty < t. Estimate (12) implies that

ueet) = [ KX =Y.t —to)u(y. to) dy
and using (a) in Lemma 2.3 below we obtain

1 1
K=y o)

- —n/2p _dy
- CH UH Hpto /|y7x|”*2>(tfto)(”*z)/2 |y _ X|n+2

—n/2p dy
+ CH u|| HptO ./|y—x|”+2<(t—to)("+2)/2 (t _ to)(n+2)/2

< Cljul|me(t — to) "1/,

dy

IDw(e 9] < Clulhaty" [, minf
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Letting to — t/2 we obtain
(13) ID(x. )] < Cllufluet >,

Next, we examine the boundary behavior of u € HP, 0 < p < oo. For 1 < p < oo,
u(-.t) — finthe LP norm ast — 0, where u(-, t) = K(-,t) * f(x), f € LP, therefore the
family (u(~.t))t>0 convergesin S’ ast — 0. 1f u € HP, 0 < p < 1, Theorem 1.2 implies
that every u(-, t) is abounded function, hence atempered distribution. Moreover, as we
will statein the following theorem, (u(-, t))t>0 convergesin S’.

THEOREM 1.3. Letu € HP, 0 < p < oo. Then lim_gu(-,t) = f existsin S’ and f
uniquely determines u.

PrROOF. It remains to prove the case 0 < p < 1. Since estimate (12) holds, taking
a=b=0andc=n/2pin[5, Theorem 17], we get u(x.t) = K(-,t) = f(x) wheref € S’
Denoting FW = W, we see that for every ¢ € S (u(-.t), ) = (eI PFf, F1p) —
(f.p) ast — 0. It isclear that f uniquely determines u. n

2. Hardy spaces of conjugate systems of temper ature functions. Following the
idea of conjugacy introduced by Kochneff and Sagher in [9], we will define conjugate
systems of temperature functions on R,

DEFINITION 2.1. A C? vector field in RT™, F = (ug..... Un, Un+1) Will be called a

conjugate system of temperature functions, if there exist Dtl/ 2u,-, on R™! for every
j =1,....n+ 1and thefollowing equations hold:
(1) 3Ly Dy =D} u.
(1) Dy =DyxUg, j, k=1,....n.
(1) Dxu=—iD%y,j=1,....n,
whereu = Uy and Dtl/ 2 isthe Weyl’sfractional derivative operator or order 1,/ 2 respect

tot. Wewill write F € AH (RT*) or simply, F € AH .

It isimportant to remark that if F = (ug, ..., Un, Une1) € AH , then every function uy,

k=1,..., n+ 1is atemperature function on R},

If 'Rj denotes the j-th Riesz transform for j = 1,..., n, we will write §(x,t) =
RiK(-, t)(X), where R; is taken with respect to the spacial variable. Since K(-.t)(x) =

e’ and RiK(-.t)(X) = —i%R(-, t)(x), from the Fourier inversion formula, we have

(14) K(x,t) = /R e 4T cog(2re - ) d¢ and
S(x.t) = / ) %e-“ﬁszz sin(2r¢ - X) de.

PROPOSITION 2.2.

(S 1), ... . Six. 1. K(x.1)) € AH  onRI™.
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PROOF.

Dy (- 1)(€) = rig)S (. 1)(€)
_ 5 SKS] el

Exchanging the roles of k and j, we see that

Dy § (- )(€) = Dy S(-- 1)(€).

which proves (I1) in Definition 2.1. Now, using the expressions (14) we have

—iDtl/zﬁ(X. t) / [/IR(”€ HE g A (st sin(2r¢ - X) d{]s‘l/z ds

_ﬁ /Uo e“‘ﬂzS'E'Zs‘l/zds]gj|§|e‘4”2t‘5‘2sin(27r§ -X) d¢

- /R (2ngj)e U sin2n¢ - x) de
Dy K(x. 1),

showing (I11). With asimilar argument, we can complete the proof of the proposition. =
In[9, Lemma2] itisprovedthat if 0 < o < 1, 3 > 2a, x > O andif for all t > 0,

1 1
[Dew(t)| < mm{xﬂ tﬁ/z}
then 1 1
1-
(15) D "w(t)] < mln{ 20" 10— 2a)/2}

With this result we can prove the following Lemma.

LEMMA 2.3. Lett > Oandx € R". Thenforj, k=1,..., n
(@ DiK(x t)] < Cmi n{‘x‘%+2~ t<n+12)/2}'
(b) [De§x O < Cmin{ . o }-
(©) Dy S0 B] < Cmin{ k. b}
PROCF. To seepart (a), we write

1
2(4m)n/2

DK(x. t) = g /4

X2 }
— —n

t(n+2)/2
Since 4
_B—|x\/4t ( 5) o fort>0andj >0,

we get for |x|2 > 2nt

X? e
IDiK(x.1)] < C (n+4)/ze X% /4t

1
|x|m2”

<C
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and for |x|? < 2nt

2
IDK(x. 1) < C (M)/ze X2/
1

< Ct(n+2)/2’
showing part (a).
To show (b), it is not difficult to seethat for x € R fixed
1
DS 1) = o(t—z) and
1
D2S(x.t) = o(t—s).
then DtDl/ZS,(x t) € LY and Dl/2 1/2§(X t) = D§(x, t). Thus Proposition 2.2 implies
De§ (% t) = iDY/*DyK(x. t).

Now, since

Dth,.K(x.t)— K(x t)— DtK(x t),

2t2
making asimilar analysis as above, we get

. 1 1
|Dth‘. K (X, t)| < mm[ |X|n+3“ t(n+3)/2 }

and applying (15) we obtain the desired inequality.

In order to prove (c), first we observethat fork,j =1,....n
1/2 . 1 1
(16) IDI*56c.] < Cmin| o s |
and
(17) D2, K(x,t)] < Cmin 1 1
XX ? — |X|n+2 ’ t(n+2)/2 :

Thus, using Proposition 2.2, and estimates (16) and (17), we see that
Dy § (X t) = iDg Dy Dy K(x. 1)

iD; 7/2D2, K(x.1).

It follows that L L
|ka§(x Bl < len[ |x |n+1 t(n+l)/2}
which concludesthe proof of the lemma. ]

ProrPosITION 2.4. If g € LP(R™), 1 < p < oo, then

(g* S ). ....g*x S 1).gxK(xt)) € AH .
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PrROOF. From Proposition 2.2 we haveforj=1,....n

—iD{*(g * §)(x.1) = % ‘/OOO [./IR{” DiS(x —y, s+ t)g(y) dy|s ¥/2ds

—i [, 9W)DI*§(x—y. ) dy
Dy (9 * K)(x, 1).

The application of Fubini’s Theorem isjustified by Lemma2.3 and

1
VT2 s+ a7

}5*1/2 ds

/OOO DiS(y, s+ 1t)s 2ds < C/min{

. 1 1
S len W.W .

The rest of the proof is similar. ]

DEFINITION 2.5. For (n—1)/n < p < oo we define the following set

HP = {F:(ul ..... Un. Une1) € AH :wg/Rn|F(x,t)|pdx<oo}.
>

We remark that estimates (2) and (13) in previous sectionimply foru e H?,0 < p <
oo
IDY2u(x.t)] < CB(1/2.1/2+n/2p)t 22/,

where B is the beta function. Hence any u € HP hasfractional derivative Dtl/ 2u,

THEOREM 2.6. For 1 < p < oo
HP = {(Ryu,..., Rnu, u) : u € HP},

where Rju is taken with respect to the spacial variable,j =1,..., n.

Proor. Let(Ryu,.... Rnu. u) in the set on the right hand side. Then, Proposition 2.4
impliesthat (Ryu. .. ., Rnu,u) € AH and since R; is bounded from LP to LP for p > 1
andj=1...., n, we havethat (Ryu. ..., Rnu, u) € HP.

Conversely, if F = (ug,..., Un.U) € HP, there exist f, f1,...,f, € LP such that
u(x.t) = K(- 1) * (), G t) = K, %), j = 1,....n. Using that D, u = —iD{’?u,
j=1,....nwehavethat

(2mix)e "M (x) = (Dyu(- 1) ()

= (-0 9)
(—)D*G(-. ¥
—2n[x|e” 1 f (x).
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where the second equality isjustified by Lemma 2.3 (). Thus

09 = —i|x‘7'|f(x) = RHK

and thereforef;(x) = Rif (), j = 1..... n. "
COROLLARY 2.7. For (n—1)/n<p<1

HP C {(Ryu, ..., Rnu, u) : u € HP}.
ProOF. LetF =(uy,.... Un, U) € HP and fix t, > 0. Then

U B) = U(x t+0) = K(. 1) * U (- 1)),
U (%) = U0 T+ 10) = K(. 1) % U 1) (9.

Theorem1.2impliesthat uj(-. t), u(-, to) € LPNL™ C L9foreveryq > landj=1,...,n.
Since (Uit: - - - - Ung,s U,) € AH it follows that (upy,. . . -, Unt- U,) € HY, therefore

Theorem 2.6 implies that uj(-, t +to) = Rju(:, t + to) for every t > 0. Now, t and to are
arbitrary and we can conclude that for any s > 0 yi(-.s) = Rju(-.s),j =1,.... n. ]

For F € HP, (n—1)/n < p < oo, we define

[IFlw = ?SE’[/R IF(x. 1) dx]l/p.

F — ||[F|lw isanormfor 1 < p < oo and F — ||F||f, isap-normfor (n—1)/n < p < 1.
THEOREM 2.8. HP is complete for every (n— 1) /n < p < oo.
PROOF. The proof is an easy consequenceof estimates (2) and (12). ]

Next, we shall characterize our HP spaces. We will denote by HE,,, the classical Hardy
spaceswhose elementsare the (n+1)-tuples of harmonic functionsF = (uy, . . . , Uy, Un+1)
on R satisfying the equations of conjugacy (CR) and the condition (G) with the p
-norm ||F||%, if (n—1)/n<p < landthenorm||F|[ if p> 1.

It is well known that for 1 < p < oo, Y, = LP. Theorem 2.6, [5, Theorem 2(xi)]

and continuity of R; from LP to LP imply

P ) = (B 1| llg,)-

It remains to analyze the case (n — 1) /n < p < 1. Since each element of the Hardy
space HP is uniquely determined by its last component, we shall refer to u = un.1 asthe
element of HP instead of the (n+ 1)-tuple (uy, . . . . Un, Un+1) iN HP. Moreover, u hasalimit
f € S’ and thislimit uniquely determinesu. So, we can think HP as the space of boundary
distributions f € S’ corresponding to the (n + 1)-tuples F = (us. ... . U, U) € HP, with
the p-norm f +— ||F||F,. We will also adopt the same point of view for the space Hj . It
can be shown asin the case of HE,,, the continuity of theinclusion HP C S,
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The following two results will be crucial for the proof of the main theorem of this
section. Thefirst oneisaclassical result by Fefferman and Stein [4, Theorem 11] which
states:

For0<p<ooandf € S/, the following are equivalent

(@ u*(x) = supyy_y<t e * F(y)| € LP for some ¢ € S satisfying fin o(X) dx = 1.

(b) Thedistribution f arisesasf = lim_ou(-,t) inS’, whereu € HE,,.

Moreover ||u||ﬁg [|u*||B, where ~ means the standard equivalence of norms (p-
norms).

The second result gives another characterization of HY,, [12, Proposition 3, p. 123]:

If f € S’ isrestricted at infinity (that is, f x ¢ € L' for every ¢ € S andforal r < oo
sufficiently large) and (n — 1) /n < p < oo, thenf € HY,, if and only if

n
sup{[If = el + - IRi(F) # il ) < € < oo,
t>0 j=1

where p € S, finp = 1, pi(X) = t™"p(x/t) and C is a constant. Here, R;(f) means the
j-th Riesz transform of adistribution f that is restricted at infinity (see[12, p. 123]).
Before to state the main result, we need to prove the following lemma.

LEMMA 2.9. Let f € S’ and w(x.t) = K(-.t) * f(x) for (x,t) € RTL If w'(x) =
SUPo [W(X. t)| € LP then w'(X) = supyy_y /2 [W(Y. )| € LP and [lw*||§ ~ [|w"]|p, for
0<p<oo.

PROOF. Let x € R" and take any point (y.t) € {(¢.7) : |¢ — x| < 72} If R =

(T, (6 — v/t/2v/2.% + /1/2v/2)) x (t/2.1), then according to Lemma 1.1 we will
have

WY, )P/2 < C——— / \w(z, t')["/2 dzdt’

(n+2) /2
c—tM > / W (2)P/2 dzdt’

/ w'(2)?/? dz.

< Co
with S= T, (% — v/t X ++/1). Thisimplies that
W)P/2(x) < CM (WH)P/?)(),
where M is the Hardy-L ittlewood maximal function, thus
[LorPe < c [ (M(w)?) mdx
<C /R (WP dx.

The other inequality isimmediate. ]
THEOREM 2.10. For (n—1)/n < p < 1, H® =~ HY,..
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ProoF. Let f adistribution in HP, then there exists (us. ..., Un. U) € HP such that

f = lim_gou(-.t) in S’. Fix t, > 0. If we denote by G(X) = We*lxlz/% then K(x.t) =
Gz (¥, thus Corollary 2.7 implies u, (-, ) = G s * U(, to), Uit,( 1) = G * Rju(:, o),
j=1.... n, moreover

ijg{HG@*u(uto)HLp R R o)l < 00

and since u(-, tp) € L9 for any g > 1 it is adistribution restricted at infinity, then [12,
Proposition 3, p. 123] impliesthat u(-, to) isadistribution in H,,,,. Also, from Lemma2.9
and [4, Theorem 11] we have

(18) |G% (uC- 1)) [~ |G (uC- ) o ~ luC- w)IEs

where GE(u(-t0))(¥) = sup, vz [Gyz * UC.t)(y)| and G*(u(- )0 =
SUPo |G vz * U(, 0)(X)[. On the other side, if we define

Fo06 ) = (Ra(Pe U 1)) (0 - -« Ra(Peox U(-1 1)) (09 Py U( 1))

where Py is the Poisson kernel, we obtain a conjugate system of harmonic functionsin
HY,,, which satisfies

Fio(x. t) — (Rau(x. to). . .. . Rati(X. o). (X, to) ) = (Us(X. to), . .. . Un(X. to). U(X. o) )

ast — Oae.onR" and asin [6, Corollary 1.2, p. 233] it can be shown that

1Pl ~ (U t0). - thC--to). uC- )
Therefore
UG )P, = Il
(19) < Cf(wl- ). - th ), uC- 1))
< Cf 1%

Combining (18) and (19) we get

|

and since G () = limy,—o G& (u(-. to) ) on R", an application of Fatou's Lemmayields

Gy (uC-t0)) [} < ClluC- )15, < CIIfIIE

IGSMIIE < ClIflI5-

consequently
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(20) 1%, < 5.

which showsthat f isadistribution in HS ...
Conversely, if f is a distribution in Hb,,,, there exists a conjugate system of har-
monic functionsF = (ug, ..., Un. U) € HB,, suchthat f = lim_ou(:,t) in S’. From [12,

Proposition 3, p. 123] we have
n
sup{ [+ G zllio + 3 IRiF % G gllr ) < oo
>0 i=1

thus, the function w(x, t) = K(-, t) * f(x) belong to HP. Moreover, for arbitrary t, to > 0
we can write w(x. t + tg) = K(-, t) x w(X. to) and since w(-, t;) € LP N L> C LY for every
q > 1, it follows that for j = 1.....n, Rw(-,t) € LY. Thus, the function (Wl(x.t +
to). ... Wa(X. t + fo). W(x.t +t0)) € AH, where w(x.t +to) = K(-.t) % Rjw(-, to)().
Furthermore, (wy, ..., Wh. W) € HP because wj(x, t + to) = K(-.t + to) * R;f(x). Now, by

Theorem 1.3, w(-. t) convergesin HP and in S’. Since S’ is a Hausdorff space, the limit

must bef.

To finish the proof, it is sufficient to notice from (20) that the bijective linear mapping
T:HP — WY F = (Ug, .. ., Un. U) — f = limy_ou(-, t) in S” is continuous, and the result
follows by Open Mapping Theorem. ]

COROLLARY 2.11. Letf € S’and (n—1)/n < p < 1. Thenf isa distribution in HP
if and only if the maximal function

U= sup |G z*f(y)

ly—x|<v2t
belongsto LP.
PrROCF. It is sufficient to apply Theorem 2.10 and Lemma 2.9. ]
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