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AN ARITHMETICAL DIFFERENCE SYSTEM WITH 
APPLICATION TO B.I.B. DESIGNS 

KULENDRA N. MAJINDAR 

1. I n t r o d u c t i o n . In this paper we have established the existence of an 
ar i thmetical difference system by a construct ive method. Our ar i thmet ical 
difference systems are a generalization of cyclic difference sets. 

Let Vy k, h, n, X be positive integers, 1 < k < v. By an /z-block ar i thmetical 
difference system (mod v), with block size k and residue frequency X, we mean 
h blocks (i.e. sets) of integers dUj d2t, • . • , dku t = 1, 2 , . . . h such t h a t among 
t\\ehk{k — 1) differences of the f o r m ^ t — dt> t (modz/), i ^ i' ,i,i' = 1, 2 , . . . &, 
/ = 1, 2 . . . A, each non-zero residue class mod v appears X times (necessarily 
\(v — 1) = hk(k — 1) ) . An ar i thmetical difference set is merely a 1-block 
ari thmetical difference system (equivalently called a cyclic difference se t ) . 

These ar i thmetical difference systems may be called supplementary cyclic 
difference sets h — (y, k, X) in the terminology of J . Wallis [4]. These are also 
related to the sets of differences discussed by S tan ton and Spro t t [5] and differ
ence families in e lementary abelian groups of Wilson [6]. 

If two different blocks dUl d2t, . . . dkt and du>, dit>, . . . dkt> are such t h a t 
there is an integer i for which the residues du>, d^, • • • dkt> (mod v) equal 
du + h d2t + i, • • • dkt + i (mod v) in a certain order, we say t h a t one of 
the two blocks is a t ransla te of the other and in this case the set of residues 
dit — di't (mod v) are the same as the set of residues dit> — di>t> (modz;), i, i' = 
1, 2 . . . k in a certain order. A difference system in which no block is a t rans la te 
of another is called translate-free. 

T h e main result of this paper is s ta ted in the following theorem. 

T H E O R E M . If q = pm is a prime power and n is any even integer ^ 4, then 
there exists a translate-free h-block arithmetical difference system (mod v) with 
block size k and residue frequency X where v = (qn+l — l)/(q — 1), k = 

(qn-i _ 1 ) / ( g _ 1)y h = (2» _ 1 ) / ( g 2 - 1) , X = (qn~* - l ) ( 2 » - i - 1 ) / 
(<Z2- l ) ( g - 1). 

As an example, taking q = 2, n = 4, we have a 5-block ar i thmetical differ
ence system (mod 31) given by 

[1, 2, 3, 5, 12, 19, 20], [2, 3, 5, 8, 20, 29, 31], [2, 3, 11, 18, 20, 23, 27], 

[1, 8, 12, 18, 20, 23, 31], [1, 2, 8, 19, 23, 27, 29] with k = 7, X = 7. 

T h e theorem has been applied to construct a series of balanced incomplete 
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block designs in the last section. An alternative proof of Singer's Theorem on 
difference sets has also been given in section 4. 

2. Singer's difference set . In the paper [1] (which inaugurated the interest
ing topic of difference sets in number and group theories), James Singer proved 
the following: 

SINGER'S THEOREM. For q = pm a prime power and any n, there is an arith
metic difference set (mod v) with block size k and residue frequency X where 
v = (qn+i - i ) / ( 2 -i),k = (<f - i ) / ( 2 - i ) , x = ( g - 1 - i ) / ( s - i ) . 

So far, no purely arithmetical proof of this theorem has been discovered. In 
this paper we prove Singer's theorem anew by simple arithmetical and alge
braical arguments. This new proof led the author to the theorem of section 1. 

3. Preliminaries. Let F = GF(q) be a Galois field where q = pm is a 
prime power, F* = the nonzero elements of F. We extend F to a Galois field 
GF(qn+l) by means of a polynomial of degree n + 1 with coefficients in F and 
irreducible in F in the usual manner. If w is a generator of the multiplicative 
group of the nonzero elements of GF(qn+1)f then w satisfies an equation of 
the form a0 + a\W + a2w

2 . . . + an+iwn+1 = 0, an+i ^ 0, af G F and w, w2, 
ws, . . . w*^^, where 

(3.1) V= ( g - + l - l ) / ( g - l ) , 

are all distinct and give the nonzero elements of GF(qn+1). If au a2, . . . an+i G F 
and not all of them are 0, then there is a unique integer i, 1 S i ^ v(q — 1), 
such that ai + a2w + . . . + anw

n~x = w\ If c G F*, and c(ai + a2w . . . + 
an-iw

n~l) = wv, then i = i' (mod A). Also wi G F* if and only if i is a multiple 
of v. 

Vectors everywhere below have their components in F. The coefficients of 
any polynomial in w belong to F. 

A ^-vector (ai, #2 , . . . a») is said to be equivalent to the vector (a\, a'2, • • • a/) 
if and only if (ai, #2 • • • av) = c(a'i, a'2 . . . a/) for some c in i7*. Clearly this 
is an equivalence relation. 

If 5 is any vector space of ^-vectors and is of rank a, then the (qa — 1) 
nonnull vectors of 5 can be classified by means of the above equivalence rela
tion into (q* — l)/(q — 1) equivalence classes C*. Each class d determines 
uniquely a residue class dt (mod v), 1 ^ d{ ^ v by 

(3.2) wdi = ai + a2w + . . . + anw
n~l with (ai, a 2 . . . an) G C* 

These (ga — l)/(q — 1) distinct integers dt make up a set to be denoted by 
[5]. Let 

(3.3) U = the vector space of all n-vectors, 

(3.4) [U] = [du d2l... dt] with k = (qn - 1)/(<Z - 1). 
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Amongst the k(k — 1) differences d^ — dt (mod v) du dt> G [U], dt ^ dx>, 
let there be e distinct residue classes (mod v) and j , 1 ^ j ^ v — 1, be one of 
the residue classes. So j = dt> — dt (mod v), dt> ̂  du and there exist at least 
one pair of nontrivial polynomials ax + a2w + . . . + anw

n~l, bi + b2w + . . . 
+ bnw

n~l connected by wj(ai + a2w + . . . + anw
n-1) = 6i + b2w + . . . + 

bnw
n~l. Till the end of this section, j is fixed. 

We now define an important subspace V of U. (ai, a2, . . . , an) G V if and 
only if there exists a polynomial bi + b2w + . . . + bnw

n~l such that 

(3.5) wj(ai + a2w + . . . + anw
n-1) = bx + b2w + . . . + bnw

n-\ 

By the definition of j , V contains non-null vectors. Also if d G [V] then 
j -\- d = some d' of [IT] (mod «;). 

Let W be the collection of w-vectors not belongong to V. Thus 
(ci, c2, . . . cn) G IF if and only if 

(3.6) ?£>;(ci + c2w + . . . + cnw
n~l) = a polynomial in w with degree n. 

This implies that if d G [£/] but not to [F], then j + d ^ any integer of 
[U] (mod v). 

We show that W is not empty. If T^ is empty, then all w-vectors belong to V. 
Using (3.5), we get 

H wJ(ai + a2w + . . . + anw
n~l) = f j Q>i + b2w . . . + bnW71'1) 

where (ai, a2, . . . aw), (&i, b2 . . . bn) run through all non-null ^-vectors. By 
cancellation, we infer that YLwj = 1, i.e., wj{an~l) = 1 which implies j(qn — 1) 
is divisible by ^ + 1 - 1. But qn+1 - 1 = (qn - l)q + q - 1 so that the 
greatest common divisor of qn+1 — 1 and qn — 1 is q — 1. So j is divisible by 
(gw+1 - l ) / (g - 1) = v of (3.1), a contradiction. 

If 5i, b2 G W, then, because of (3.6), a linear combination Cibi + c2ô2 with 
Ci, c2 G ^*, is in V. From this, 

(3.7) rank V = n - 1. 

Thus [F] consists of a subset of (gw_1 — 1)/(<Z — 1) integers of [U]. More
over j + d = dr (mod v) with d, d' G [£/] holds if and only if d G [V]. So 
among all the differences dt- — d^ (mod v) dt 9^ d^y du dt' G [U] the residue 
class j (mod v) appears X = (q71'1 — l)/(q — 1) times, a number independent 
of j . 

4. Proof of Singer's Theorem. [U] of (3.4) is a difference set (mod*/). 
For, each of e possible residue sets (mod v) can be represented as d — d' 
(mod v) with d ^ df, d, d' G [U] in X possible ways. So 0X = &(& — 1) whence 
e = v — 1. In other words, each non-zero residue (mod v) can be represented 
as d — dr (mod v) with d, df G [£/] in X possible ways. This completes the proof. 
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5. Some vector spaces associated with subspaces of V. U, V, W are 
as in (3.4), (3.5), (3.6). If S is a collection of z>-vectors and 7 is a ^-vector then 
let 7 + 5 = {7 + s : s Ç S}. Associated with each nontrivial subspace T 
(i.e., rank T > 1) of F, we define two useful vector spaces T, T'. Let j , 1 ^ 

j ^ v — 1 be an integer. There exist polynomials a,\ + a2w + . . . + anw
n~l and 

bi + b2w + . . . bnw
n-1 connected by wj(ai + a2w + . . . + anw

n-1) = b\ + 
b2w + . . . + bnw

n~l as seen in the proof of Singer's Theorem. Fix j in this 
section, rj everywhere is a non-null w-vector. Let 

(5.1) T = {(&!, fa...bH): wtfa + a2w + . . . anw
n~l) = 

&i + &2w + . . . bnw
n-1 with (ai, a2 . . . a«) G r } . 

Since T is a subspace of F, f is well defined. Note that (<2i, a2 . . . an) and the 
corresponding (61, b2. . . 6J are inequivalent. T is a vector space and 

(5.2) rank T = rank T. 

Let 

(5.3) V = {(au a2 . . . an> bu b2 . . . bn) : w ;(ai + a2w + . . . a ^ " 1 ) = 

61 + &2W + • . . M>w_1 with (ai, a2 . . . an) G JT}. 

Note that if (ai, a2, . . . an, ôi, b2f . . . ôw) Ç 7"' then (ax, a2 . . . an) is not equi
valent to (61, b2, . . . frn). Clearly J1' is a vector space and 

(5.4) rank T' = rank 7\ 

We establish now a few lemmas relating to T and T'. 

LEMMA 1. If T = f awd rank r = a ^ l then (a, n + 1), i.e. //*£ greatest 
common division of a and n + 1 is greater than 1. 

Proof. Any vector (ai, a2, . . . an) of !T uniquely determines a vector 
(61, &2, . . . bn) of r by the relation wj(ai + a2w + . . . + anw

n~l) = 
bi + &2w + . . . + bnw

n~l. Since 7" = 7\ as in section 3 we infer that wj{qa~l) = 
1 whence the divisibility of j(qa — 1) by qn+1 — 1. 

If a divides n + 1 the lemma holds. So suppose a does not divide n + 1. 
We now show by the familiar Euclid's algorithm for finding the greatest 
common divisor that (qa — 1, qn+l — 1) = qh — 1 where & = (a, n + 1). This 
result is known. For the sake of completeness, we give the proof. 

Let n + 1 = ati + Wi, 1 ^ Wi < a. If a, & are integers we know (a, 6) = 
(a, b — a) and (a, c£) = (a, fr) if £ is relatively prime to a. Thus 

(qa - 1, gn+1 - 1) = (g" - 1, qn+1 - qa) = ( f - 1, qn~a+1 - 1) = 

( f - 1, g n - + 1 - qa) = (qa - 1, qn~2a+l - 1) = . . . = (qa - 1, qmi - 1) 

If mi divides a, then (a, w + 1) = mi and ( f — 1, qmi — 1) = gmi — 1, and 
the result holds. 
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Suppose mi does not divide a, and a = m it 2 + ^ 2 , 1 ^ w 2 < mi, then, 
as before (qa — 1, gmi — 1) = (q™2 — 1, gmi — 1). Proceeding thus , we see t h a t 
(q* - 1, qn+1 - 1) = qh - 1. 

As gn + 1 — 1 divides j(qa — 1), it follows t h a t j is divisible by 
(g«+i _ i ) / ( g » - i ) . If ft = l , j would be divisible by (qn+l - \)/{q - 1), 
a contradict ion. This completes the proof. 

COROLLARY 1. If r ank T = a and (a, « + 1) = 1, £ften ? contains at least 
one vector not belonging to T. 

COROLLARY 2. If n is even, then V contains at least one vector not belonging to V. 
This is because rank V = n — 1 and (n — 1, n + 1) = (w — 1, 2) = 1. 

If 77 = (ci, £2 • • • cn) and £ = (&i, # 2 . . . an, 61, 62, . . . 6W), we say t h a t one of 
them is total ly or part ial ly orthogonal to the other according as 

n n 

X) atCi = 0 = 22 ôjCi or 
(5.5) n n 

For a given w-vector 77, let 
2/(77) = the vector space of all ?z-vectors orthogonal to 77, 
V(JI) = the vector space of all vectors in V orthogonal to 77, 

(5.6) V*(TJ) = the vector space of all 2w-vectors in V total ly 

orthogonal to 77(where V is defined by (5.3) with T replaced by V). 

i = (au a2, . . . an, bu b2, . . . bn) G V*(rj) if and only if 

(5.7) (au aif . . . a»), (61, b2j . . . 6n) G 1/(17) and 

w ' ( a i + a 2 ^ + . . . + anw
n~l) = 61 + b2w + . . . -f bnw

n~l. 

This implies t h a t 

(5.8) j + dt = dv (mod v) with d*, ^ G [U(ri)] 

where [U(rj)] contains (qn~l — 1)/(<Z — 1) integers. 
Exact ly as in the case of Singer's Theorem, we easily establish the following 

lemma. 

L E M M A 2. Amongst the residue classes dt — d? (mod v),i^ i', du dt> 6 [U(rj)] 
the nonzero residue class j (mod v) appears (qa — l)/(q — 1) times where 
a = rank V*(ri). 

As rank V = n — 1 there is an w-vector, call i t specially 770, such t h a t all 
vectors orthogonal to it make up V. No te t h a t 770 depends on j . Easily 

(5.9) rank V(rj) = n — 1 if 77 is equivalent to 770, 

= n — 2 if 77 is inequivalent to 770. 
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If £, £1, are 2w-vectors, each partially orthogonal to 77, then a suitable combi
nation c£ + £1, c G F* is totally orthogonal to 77. Consequently the collection 
V (r)) of all partially orthogonal vectors can be expressed as c% + V*(ri) where 
J is a part icular vector, partially orthogonal to 77 and c varies over F*. If all 
2^-vectors of V are totally orthogonal to 77, then rank V*(r]) = rank V(rj); 
otherwise rank V*(rj) = rank V(rj) — 1. So 

(5.10) rank V*(ri) = rank V(rj) or rank V(rj) - 1. 

T h u s V*(r)o) = n — 2 or n — 1. We have the following lemma. 

LEMMA 3. If n is even, rank V*(rjo) = n — 2. 

Proof. If possible, let rank V*(rjo) = n — 1. As rank V = n — 1 we have 
F ' = F*(r7o). This means all vectors in V are orthogonal to 770. As rank V = 
rank V = n — 1, we must have V = V, contradicting Corollary 2 of Lemma 1, 
n being even. Hence the lemma. 

By (5.10), rank V*(rj) can be n — 3 or n — 2. Call a vector rj ( inequivalent 
to rjo) to be of type 1 or type 2 according as rank V*(rj) = n — 3 or n — 2. 
T h u s 77 is of type 1 or type 2 according as V has a vector partially orthogonal 
to 77 or not. Note t ha t the type of a given 77 depends on j . 

We shall now count the number of type 1 vectors. This number will be 
shown to be q2(qn~2 — l)/(q — 1), as s tated in the following lemma. 

LEMMA 4. If V 7^ V, then the number of type 1 vectors (no two equivalent) 
is equal to q2(qn~2 — l)/(q — 1) and the number of type 2 vectors (no two 
equivalent) is equal to q. 

Proof. As V 9^ V, there is a vector in V not orthogonal to 770 and so V has 
a vector part ial ly orthogonal to 770. 

Let 1 (̂770) be the collection of vectors in V, partially orthogonal to 770. 
Then as rank V = n — 1 and rank F*(T7O) = n — 2, V (rjo) contains 
((<ZW_1 — 1) ~~ (<r -2 — l ) ) / ( ^ — 1) = qn~2 vectors, no two equivalent. Let 
$ = (ai, a2, . . . a„, &i, 62, . . . 6n)-

Case I. I $ 1^(770): We can find a non-null vector 77 = (ci, c2, . . . cw) which 
is part ial ly orthogonal to §, since we have merely to choose the c / s so as to 
have X) #*£* = 0» Z) ^ * = 1- This is possible, as (ai, a2, . . . a j and 
(61, &2, . • . M are inequivalent, ? being in V'. There are qn~2 such vectors 77, 
automatical ly no two equivalent. None of these is equivalent to 770 as £ g V (770) 

Case I I . £ G F'(i/o): As in case I, we get qn~2 vectors, no two equivalent and 
each partial ly orthogonal to £. Bu t one of these vectors is equivalent to 770. 

T o get the number of type 1 vectors we proceed as follows. Take a vector 
£ of V. Find all vectors 77, no two equivalent and none equivalent to 770 and 
each partial ly orthogonal to J. Let t ing £ va ry over the (qn~1 — l ) / ( g — 1) 
inequivalent vectors in V, we get in all gn~2((gn""1 — l)/(q — 1) —qn~2) 
+ qn~2(qn~2 — 1) vectors none equivalent to 770, the first summand corresponds 
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to Case I and the second to Case I I . These qn~1(qn~2 — 1)/ (q — 1) vectors are 
not all dist inct. 

In the above procedure, each vector 77 of type 1 arises from qn~z inequivalent 
vectors in V, namely from £ + V*(rj) where £ is a part icular vector in V, 
partial ly orthogonal to this 77. Tak ing this into consideration, we get the 
number of type 1 vectors, no two equivalent . 

T h e number of type 2 vectors, no two equivalent , is therefore ((qn — 1) — 
q2(qn~2 — l))/(q — 1) — 1 = q. Th i s completes the proof. 

6. Proof of t h e t h e o r e m i n s e c t i o n 1. W e take n even, n ^ 4. Corre
sponding to each of the h! = (qn — 1)/ (q — 1) w-vectors (no two of which are 
equivalent) , we have a vector space U(r}t) of vectors orthogonal to rjt and so 
a block, 

(5.11) [U(rjt)] = [dlud2tj...dkt] 

of k = (qn~l — 1)/(<Z — 1) dist inct integers dit, 1 ^ dit ^ v. W e get hf such 
blocks in all. 

Case I. 77z equivalent to 770 or of type 2: Now rank V*(rjt) = n — 2. By 
Lemma 2, the residue class j (mod v) appears (qn~2 — l)/(q — 1) amongst the 
residue classes dit — d ^ ( m o d v), i ^ i', diu dit> G [U(rjt)]-

Case I I . 771 of type 1: Now rank V*(r)t) = n — 3. By Lemma 2, this residue 
class j (mod v) occurs (qn~d — l)/(q — 1) t imes amongst the residue classes 
dtt - di>t(modv),i ^ i', diu dVt G [U(r]t)]. 

By Lemma 4, the number of type 1 vectors rjt is q2(qn~2 — l)/(q — 1) and 
the number of type 2 vectors is q. So the h'k(k — 1) d i f f e r e n c e s ^ — ^ ^ ( m o d y ) , 
i 7^ i', i, i' = 1, 2 . . . k, t = 1, 2, . . . h' contain the residue class j ( m ° d v) 
X' t imes, where 

X' = ( g - * - l ) / ( g - 1) + g ( g - 2 _ l)/(q _ 1) + g2((2»-2 _ j ) 

( g -« - l ) / ( g - l ) 2 = (g""1 - l ) (g" - 2 - l ) / ( g - l ) 2 . 

As j is a rb i t ra ry and X' is free of j , we conclude t h a t the above hf blocks form 
an h! — block difference system (mod v). As yet , the difference system is not 
translate-free. 

We show next t h a t the above hf blocks can be broken up into h = hf'/' (q + 1) 
families, each consisting of q + 1 blocks such t h a t of any two blocks in it, one 
is a t ransla te of the other. 

Given [U(rj)]} we now find its t ranslates . Wi th this end in view, we proceed 
as follows. For any given nonnull 77 and integer i > 0, let Q(r), i) = the vector 
space of all (n + 1) — vectors 

(5.12) (61, 62, • • • 6»+i) where bx + b2w . . . + bn+1w
n = 

wl(ai + a2w + . . . + anW71'1) with (au a2, . . . an) <E t/(i?). 

Ço(77, i) = the subspace of <2(r7, i) consisting of all vectors of 

the form (bi, b2, . . . bn, 0 ) . 
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Note t ha t rank Q(>q, i) = rank U(rj) = n - 1 and Qb, i) = Q(y, i') if 
i = i' (mod v). Moreover Q(r), i) ^ Q(r), ir) if i ?é i' (mod *;) ; for Q{y\, i) = 
Q(?7, if) implies (as seen by forming product as in section 3) t h a t 
(i — i') {(f-1 — 1) is divisible by qn+1 — 1 and as n is even this means (i — ir) 
is divisible by (q71-1 — l)/(q — 1), i.e., v. 

If Q(rj, i) contains a vector (61, b2j . . . bn+\) with bn+i ^ 0, then as Q(r], i) = 
c(bi, b2, . . . 6w+i) + c'Q0(r), i) c, c' varying over F, we see t ha t 

(5.13) the number of (n + 1) — vectors in Q(r}, i) with last component 

nonzero = qn~2(q — 1), 
and we have 

(5.14) 61, + b2vw + . . . + bn+ijVwn = w\aiv + a2vw + . . . + anvw
n), 

v = 1,2, . . . qn~2(q - 1), 

with (au, a2v, . . . anv) G U(t]) and bn+lv 9^ 0. 

For some i's, 1 ^ i ^ v, Q(T), i) = Qo(y, i). We need the number of such i. 
T o get this number, we use the following procedure assuming t h a t the non-null 
vectors of U(r)) have been arranged into k = (qn~1 — l)/(q — 1) equivalence 
classes. 

Take a vector (61, b2, . . . bn+i) with bn+i 9^ 0. Determine the unique integer i, 
1 ^ i < v such tha t bi + 62w + . . . + bn+iWn = wi(a\ + a2w + . . . + a w ^ _ 1 ) 
for some vector (ai, a2, . . . aw) in the first equivalence class of U(rj). Corre
sponding to this i, we get a vector space Q(r], i) (containing by (5.13), qn~2 

vectors with last component nonzero and no two equivalent) . 
Next determine the unique integer i', 1 ^ i' < v such t h a t b± + b2w + 

. . . + bn+1w
n = wv' (a,\ + a2w + . . . + anw

n~l) for some vector (ai, a2, . . . aw) 
in the second equivalence class. Note t ha t i 9^ i''. Corresponding to i', we get 

Q(v,i') *Q(n,i). 
Proceeding thus with the same (61, b2, . . . bn+i), we get (qn~l — I)/(q — 1) 

dist inct integers and t h a t many distinct Q(rj, i)'s. 
Varying (61, b2, . . . bn+i) over the qn (n + 1) — vectors, no two equivalent 

and having their last components nonzero, we get qn(qn~1 — l)/(q — 1) integers 
i, 1 ^ i < v bu t not all of them distinct. 

Each such i arises qn~2 t imes in the above procedure as seen from (5.14). 
Consequently we get qn(qn~1 - l)/((q - l)qn~2) = q2{qn~l - l)/(q - 1) dis
t inct i's and t h a t many distinct vector spaces Q(rj, i) each containing vectors 
with last components nonzero. 

Hence there are precisely v — q2(qn~1 — 1)/(<Z ~ 1)» i-e-> <Z + 1 integers i, 
1 ^ i < v such t ha t all vectors in Q(rj, i) have their last components zero. 
Le t these be Q{T\, ix), Q(r), i2), . . . Q(rj, iq+i). 

Omitt ing the last zero in each vector in Q(r], iv) we get a vector space Tiv of 
rank n — 1 and containing ^-vectors and so Tiv = U(r]iv) for some w-vector 
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7]iv. The vectors (biy b2, . . . bn) in U(r)iv) are connected with the vectors 

(au a2, . . . an) in U(r)) by bi + b2w + . . . + bnw
n-x = 

wiv{ai + a2w + . . . + anw
n~l). 

This immediately implies that [U(rjiv)] is a translate of [U(YJ)], obtained by 
adding iv to the integers in [U(r])] then reducing (mod v). 

We have thus shown that given a block [U(r))]y there are q other blocks 
[U(rj, iv)] forming a family such that all these are translates of [U(T])] and 
hence of one another. [U(rj)] has no other translate. 

If we take one block from each such family, we get h = hf/(q + 1 ) blocks 
[du, d2u . . • dkt], t = 1, 2, . . . h. Any nonzero residue class (mod v) appears 
X = XV(q + 1 ) times amongst the differences dit — di> t(mod v). The number 
of blocks now is h''/'(q + 1), i.e., (qn — l)/(q2 — 1). This completes the proof. 

7. Construction of a series of balanced incomplete block designs. 
Given a difference system, it is well-known [2; 3] how to construct a balanced 
incomplete block design by "developing" the initial blocks of the difference 
system. So from our translate-free difference system, we get a balanced in
complete block design (with no two blocks identical) with parameters. 

V = (q2n+i _ Xy(q __ ^ b = V(q2n _ ^ / ( ^ _ X ) 

r = k{q™ - l ) / ( 2 ' - 1), k = (g2""1 - l ) / (g - 1) 
X = (q2n-2 _ 1 ) ( g 2 W - l _ 1 ) / ( ( 2 2 _ 1 } (q _ 1 ) } 

where g is any prime lower and n ^ 2. 
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