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Abstract. In this paper we introduce and motivate the concept of orientation
data, as it appears in the framework for motivic Donaldson-Thomas theory built by
Kontsevich and Soibelman. By concentrating on a single simple example we explain
the role of orientation data in defining the integration map, a central component of
the wall crossing formula.
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1. Introduction. The purpose of this expository paper is to introduce the
reader, in a gentle way, to orientation data, as it appears in the work of
Kontsevich and Soibelman [23]. We do this while keeping things as simple as
possible by focusing on a single simple example and also explaining the broad
motivations behind motivic Donaldson-Thomas theory in as down to earth a way as
possible.

In motivic Donaldson-Thomas theory, the central foundational result states that,
given a fixed category C, assumed to be Abelian and also three-dimensional Calabi—
Yau in some appropriate sense (see [23, Section 3.3]), we may form an integration map,
which is a ring homomorphism

DT : st(Ob(C)) — Mot (Spec C)[[x*|a € K(C)]l. (1)

Here, st(Ob(C)) is some version of Joyce’s motivic Hall algebra [17], spanned as a
group by symbols [X — Ob(C)]. These are certain finite type morphisms from Artin
stacks into Ob(C), the stack of objects of C; but one should not be put off at this
stage by the presence of stacks, since in this paper, they will be relegated to the
background. The coefficients of the target ring are a modification of Mot*(Spec C),
the naive Grothendieck ring of ji-equivariant complex varieties, where [ := Lin s
spanned by symbols [X — Spec C] (we will often omit the structure morphism and
just write [X]), for X a u,-equivariant reduced variety with fi-action given by the
surjection it — w,. The multiplication on this ring is the convolution product defined

by Looijenga in [25]. We form %tﬂ(Spec C) by adding inverses to the motives of all
the general linear groups, considered as varieties with trivial fi-action, and a formal
square root L'/ to L, the class of the affine line A, again with the trivial action. On
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both sides, we impose the cut and paste relations!, i.e. for general Y we identify

x4 v =%

Y+ v 25 v, @)
where U C X is Zariski open, with complement V. We consider Mot" instead of Mot
since, in order to deal with the presence of stacks on the left-hand side of the map DT we
have to invert the motives corresponding to stabilisers of closed points of these stacks
(in fact one operates under the assumption that these stabilisers can always be taken to
be subgroups of general linear groups, from which it follows that this localisation can
be simply described by the addition of a formal inverse to the motive of each general
linear group). Finally, we set K(C) to be some finite rank free Abelian group obtained
as a quotient of the Grothendieck group of C, and for M € C we write [M]x for the
class of M in K(C).

In general, a morphism from a finite type scheme Y to Ob(C) should be thought
of as a family of objects of C parameterised by the scheme Y, and the general principle
behind defining any such map DT is that one associates to each closed point y € Y
representing an object M, a motivic weight mw(M,) Mot’z(Spec C), i.e. mw(id1,)
should be some linear combination ) a,[X, ; — y]. These motivic weights are required
in fact to form a family, i.e. there should be some linear combination of symbols
> a[X] — Y] such that restriction to each fibre y gives mw(M,). Then, we ‘integrate’
across Y, by simply forgetting the maps into Y, or equivalently pushing forward along
the structure morphism, i.e. we take [ Y a;[X] — Y]:= ) a[X/]. Finally, we assume
that all the points M, satisfied [M,]x = «, which we may do after decomposition, and
define DT([Y — Ob(O)]) := Y a[X/]x*.

The fact that, no matter what motivic weight mw we choose, the map DT is a
group homomorphism, is a direct consequence of the definition, using the cut and
paste relation (2). The real goal is to show that DT preserves also a product, and so
is a ring morphism. On the left-hand side, the product is the Hall algebra product,
for which, if Y] — Ob(C) and Y, — Ob(C) are two families of objects in Ob(C),
we define [Y] — Ob(C)] x[Y2 — Ob(C)] to be the family of short exact sequences
0> M - M—> M"— 0in Ob(C), with M’ in the family parameterised by Yi, and
M" in the family parameterised by Y. This is considered as a family of objects of C
via the forgetful map that remembers only M. To be a lot more rigorous, using the
language of stacks, there are three projections 77; : SES(C) — Ob(C) from the stack of
short exact sequences in C to the stack of objects in C, taking a short exact sequence
to its first, second or third term, and one can take the Cartesian product of stacks

Ys h

SES(C)

T XT3

Y1 x Y2 225 ob(e) x Ob(C).

mo0h

Then, [¥; — Ob(C)] *[Y2 — Ob(C)] := [¥3 =2 Ob(C)].

I For technical reasons, there is an extra relation on Mot" (SpecC);if p: V — Y is a ,-equivariant rank m
vector bundle on the 1,,-equivariant scheme Y, we identify [V'] = [Y x A{], where the u,-actionon ¥ x A¢
is the product of the p,-action on Y and the trivial action on A{.
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The product on the right-hand side of (1) is given by a twisted version of
Looijenga’s convolution product. To explain what this is, let us first concentrate on
the coefficient ring and define the convolution product itself. Given a w,-equivariant

variety Y, form the mapping torus [Y x* G il G¢l e MotGE’”(GE), a G¢-
equivariant variety over G, with G¢ given the weight n action on itself. There is an
embedding Mot®"(G) — Mot® "(A{) induced by the embedding G — A, and a
complement is provided by the embedding Mot(Spec C) — MotG’E’”(A}C) taking [Y] to

[Y x AGI: Lilins Aql:]. If we denote the image of this second embedding by Z, we obtain
an isomorphism Mot*"(Spec C) = MotGE’”(Aéz) /Z.0On MotGE’”(A}:), there is a natural
associative product

[V & AL v, B AL =[x x ¥, 2022

Acl

for which 7 is an ideal, so this product descends to a product on Mot“"(Spec C). This
defines the product on the coefficient ring on the right-hand side of (1). The product on
the whole ring of formal power series is given by decreeing that the coefficients commute
with the variables x?, and defining? XMl . \Nlk :— [ 2 (=1’ dim(EXCMLN) ([MIk+NIk

We have described the associative product on each of the Abelian groups of (1).
The central foundational result, then, for any candidate for the integration map DT,
is that it commutes with these products. The reason this is a desirable feature for an
integration map is that there are a plethora of identities in the Hall algebra that we
can apply the integration map to in order to obtain product descriptions of motivic
generating series. Perhaps, the archetypal example is the situation in which we have
some stability condition 6 on the elements of C, for which every object F admits
a unique filtration 0 = Fy C ... C F,, = F such that each subquotient F; /F; is 6-
semistable and the slopes 6(F;/F;) are strictly descending — a Harder—Narasimhan
filtration. This translates to the statement in the Hall algebra that the stack of all
objects is some ordered product of the stacks of #-semistable objects of fixed slope.
As we perturb the stability condition 6, the terms in this infinite product, the stacks
of f-semistable objects, change, while the product (the stack of all objects in C) stays
the same. Applying the integration map to this statement, one obtains an equality of
infinite products, that is the famous wall crossing formula (see [18] and [23]).

In this paper, we will describe how one builds a map like DT that respects these
products, and in particular, how one constructs the motivic weight mw. The idea is
to work through a simple example, in order to see the natural candidate for a motivic
weight in action. The endpoint is to motivate the introduction of orientation data: we
will see how the natural choice for the motivic weight fails to define a map preserving the
product of (1), and describe the kind of modification that must be made to fix this defect.

The research in this paper was undertaken while the author was a PhD student at
Oxford university, funded by the EPSRC. Special thanks go to Balasz Szendr6i for his
patient supervision of the project.

2. Some background: The numerical Donaldson-Thomas count. Let X be a
smooth projective three-fold. Then for a given Hilbert polynomial p, we may consider
M, the moduli space of semistable coherent sheaves 7 on X that have Hilbert

2For this definition to make sense, we must make the obvious additional assumption on Ko(C) 5 K(0).
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polynomial p. In order to get a reasonable space, we impose some kind of stability
condition (Gieseker stability or slope stability), and under suitable conditions (e.g.
if there are no strictly semistable objects) this space will be a finite type fine moduli
scheme, which we will denote by M (see for example Huybrechts and Lehn’s book [15]).
It is an important feature of the scheme M that it is proper: the Donaldson-Thomas
count for M is the degree of some cycle class of zero-dimensional subschemes of M,
and in the proper case this is just given by the count of the points in this class, with
multiplicity. In the non-proper case, this breaks down somewhat.

We arrive at this zero-dimensional class by next assuming that our three-fold
X was, all along, a Calabi-Yau three-fold. This implies, in particular, that the
expected dimension of M is zero. More precisely, M comes equipped with a perfect
obstruction theory L* := [E] — Ej] which satisfies the condition rank(E}) = rank(Ej).
In [2], Behrend and Fantechi show that from such data one can construct a virtual
fundamental class of the correct dimension in A*(M), i.e. a class [M]y;; € A°(M).
Finally, the Donaldson-Thomas count is given by deg[M ]yi;.

The justification for taking this virtual fundamental class is the fact that, since our
moduli scheme M ‘should’ be zero-dimensional, there is an intuition that the correct
number (the Donaldson-Thomas count) should be obtained by perturbation. So if M
has a component that is smooth, with an obstruction bundle over it that is just a vector
bundle, the contribution from that component should be the Euler class of that vector
bundle. Similarly, if M has a component that has underlying topological space a point,
but structure sheaf of length n, then its contribution to the DT invariant should be 7,
as this component ‘should’ generically deform to give n points (the inverted commas
here are on account of the fact that we remain vague as to where these deformations
are taking place). The taking of a virtual fundamental class is a way of using excess
intersection theory to make all of this precise.

The perfect obstruction theory L® constructed by Richard Thomas in [30] has the
extra property that it is symmetric, in the sense of [3, Definition 1.10], that is there is
an isomorphism 6 : L* — (L*)"[1] in the derived category of coherent sheaves on M
satisfying 0V[1] = 6. So, returning to the situation in which a component M; of M is
smooth, the obstruction bundle is automatically a vector bundle, and isomorphic to the
cotangent bundle, and in this case we can say exactly what we think the contribution to
the Donaldson-Thomas count of the component should be: (—1)3™Mb y (A1), This
is the first indication that in fact the contribution of every component should be (and
actually is, in the case in which the perfect obstruction theory with which we calculate
our Donladson-Thomas count is symmetric) a weighted Euler characteristic, with the
weighting of smooth points given by the parity of the dimension, and the weight of
isolated points given by the length of their structure sheaves.

The goal, then, is to associate to an arbitrary finite-type scheme Y a constructible
function vy, with image lying in the integers, such that, in the event that Y is compact
and is equipped with a symmetric perfect obstruction theory, there is an equality

deg[ V1o = 3 1 x(vy' (), 3)

neZ

where the class on the left-hand side is the virtual fundamental class constructed from
the symmetric perfect obstruction theory. For schemes defined over C, this is achieved
by Kai Behrend in [1], and this function vy is Behrend’s microlocal function for Y.
Note that in the case in which Y is a noncompact scheme with a symmetric perfect
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obstruction theory, the machinery of [2] still gives us a virtual fundamental class [ Y]yir,
for which (3) does not make sense, since deg[ Y]yi; will be undefined. In this case, how-
ever, we can take the right-hand side as our definition of the Donaldson-Thomas count.

Recall the moduli space M we started with. For gauge-theoretic reasons (see [18,
Section 5.1]), a complex analytic neighbourhood of an arbitrary sheaf F, considered
as a point in M, is given by the following setup. Let C’ be some affine space, and let
f be the germ of an analytic function defined and equal to zero at the origin. Then, a
complex analytic neighbourhood of F is isomorphic to a neighbourhood of the origin
in the critical locus of f. This becomes an important observation given the following
fact regarding the microlocal function v, if a scheme Y is given by the critical locus
of some function f on some smooth d-dimensional scheme, at least analytic locally
around some point y € Y, then

vy(n) = (=11 = x(mf(f, ), 4)

where mf(f, y) is the Milnor fibre of /" at the point y (see [1, Section 1.2] for a discussion
of this point, and more generally of the definition of vy, or [27, Corollary 2.4] for a
proof of (4)).

3. Motivic vanishing cycles and Milnor fibres. If X is a finite type scheme, we may
equip X with the trivial ji-action, and define Mot“(X), as a group, to be generated by
fi-equivariant maps [Y — X], where the fi-action on the finite type reduced scheme Y
isinduced from some u,-action, for n € N. We impose the further technical assumption
on these generators that each closed point of Y lies in a u,-equivariant open affine
subscheme of Y. If we make Mot(Spec C) into a ring via the product structure [ Y1] x
[Y>] = [Y; x Y»], then Mot?(X) is a Mot(Spec C)-module via the action [Y]-[Z LN
X]:=[Y x Z 5% x1.

Leth : X; — X, beafinite type morphism of schemes. Then, we obtain a morphism
hy : Mot"(X1) — Mot"(X>) by sending[f : Y — XjJto[hof : ¥ — X3]. The pullback
morphism /#* : Mot“(X2) — Mot (X}) is defined by sending [/ : ¥ — X;] to [Y Xy,
Xz — Xz].

The motive

> vy (n)] € Mot(Spec C) (5)

nez

is in some sense a motivic refinement of the Donaldson-Thomas count, but it is
a somewhat unnatural halfway point. For we have replaced the measure x with
a motivic measure, without replacing the weight by a motivic weight. The natural
refinement of our weight, from a number to a motive, is given by taking the motivic
vanishing cycle, instead of Behrend’s constructible function. So we next recall some
of the definitions and formulae regarding motivic vanishing cycles and nearby fibres —
the proper background for this material is to be found in [25] and [12].

Let f be a regular function from a smooth complex finite type scheme X to C. Let

Y

|

X
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be an embedded resolution of the function f. Then, the motivic nearby cycle [], as
defined by Denef and Loeser in [12], in terms of arc spaces, has an explicit formula in
terms of this embedded resolution, which we will now describe. The level set (f/)~!(0)
consists of a set of divisors, indexed by a set forever denoted J, with each divisor D;
meeting every other one transversally. We use the symbol a; to denote the order of
vanishing of fh on D;. Given I C J, a nonempty subset, let DY be the complement in
the intersection of all the divisors in I of the union of the divisors that are not in /. So
the DY form a stratification of (f)~'(0), with deeper strata coming from larger subsets
I1cCJ.

Let I C J be a subset. The function f7 defines a section of Oy(— ), ; a;D;), and
so a regular map, f7, linear along the fibres, from the total space of Oy (}_,; a:D;) to
C. The restriction of this bundle to DY is just ®ie1N§ff'y, so that the restriction f7| D
becomes a G¢-equivariant function, where G¢ acts by rescaling each copy of Np,y,
and acts on the target C with weight 3_,_, a;. We define D; = ;! pe(1), and via the
natural projection we obtain étale covers

iel

Dy

Jr

DY.

The scheme D; over D? carries the obvious action under the group of a,th roots of
unity, and so we obtain an element of Mot (X) by pushforward from D to X along h.
Finally, the formula is

W= 3 (- [D; 225 X] e Mot (x). 6)
g£ICT

Let T be a constructible subset of X. Restriction to 7" defines a map from ji-equivariant
motives over X to ji-equivariant motives over 7'. Pushforward from 7T to a point gives
us an absolute ft-equivariant motive. We let fT denote the composition of these two

maps. Explicitly, [,[Y 5 X]:=[¢"'(T)].
Let f be as above, and let p € X be a point in £ ~!(0). Then, the motivic Milnor fibre
of f at p is defined to be

MF(f, p) := f [¥/] € Mot*(Spec C).

p

If X is affine space, and f is a function vanishing at the origin, then we define
MF(f) := MF(f, 0).
Finally, define the motivic vanishing cycle:
L&) = [¥s] = [/~ (0) > X] € Mot"(X). @)

In the equation (7), [f~!(0)] carries the trivial fi-action.
We close this section with a fundamental theorem regarding motivic vanishing
cycles.
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THEOREM 3.1 (Motivic Thom-Sebastiani [11]). Let V and V' be vector bundles on
smooth schemes X and X', respectively. Let w and " be the projections from X x X' to
X and X', respectively. Let f and f' be algebraic functions on the vector bundles V and
V', respectively. Denote by f @ f” the sum of the pullbacks of f and f” to the vector bundle
a*(V) ® 7"™*(V"). Then, there is an equality

[~¢rar] = 7*(=¢7]) - 7*([—¢r]) € Mot (X x X'). ®)

The product structure on the right-hand side of (8) is defined as in the introduction
via the natural product structure on Motﬁé‘”(X x X' x AJ;):

[V 55 X x X' x AL [Ys B X x X' x AL] = [V xyy Vo 25

X x X' x Aqu].

Given a moduli space M, in order to refine the weight with which we integrate
from v, to ¢r, we should first find a way to express M, at least Zariski locally, as the
critical locus of a regular function / on a smooth ambient variety Y. Recently, there
has been significant progress in this direction, through the work of Ben—Bassat, Brav,
Bussi, Dupont, Joyce, Szendréi and Meinhardt, see the papers [6, 7, 4] and [5]. The
first of these is most relevant for the geometric applications above, for it guarantees
that moduli spaces M of coherent sheaves on X a Calabi—Yau three-fold are Zariski
locally modelled on critical loci of regular functions. The second and fourth provide a
detailed description of the way in which one cooks up a motivic weight on M from a
sheaf theoretic version of orientation data in the sense of Kontsevich and Soibelman.

There are, broadly speaking, two stages to the motivation of orientation data. The
first is most clearly stated in the context of the work of Joyce et al., and comes to the
fact that the bare knowledge that a scheme can be expressed Zariski locally as the
critical locus of a regular function /" on a smooth ambient variety Y is not enough to
fix a motivic weight, since there may be more than one such pair (Y, f), and different
choices will give rise to different motivic weights. A very simple example is given by
letting Y7 = Y, = C x C* = Spec(C[x, y*!]), letting f; = x”, and letting f = yx". One
can express essentially the same problem in the language of the current paper by saying
that the knowledge that a family of objects come from a cyclic Calabi—Yau category
is not enough to fix the motivic weight from their (non-minimal) potentials, as this
weight will not be invariant under changing the quasi-isomorphism class of C. In the
framework of this paper, the problem of fixing a motivic weight, will be less prominent,
as in the motivic context there is a canonical choice, given by taking the minimal
potential — see Section 8. This solution is not available in the sheaf theoretic context,
as it relies on passing to a constructible decomposition — see Section (6). The second
stage of motivation for the introduction of orientation data is most easily expressed
in the categorical framework, and is expressed by saying that even though one has a
canonical choice for the motivic weight given by taking minimal potentials, this is the
wrong one for obtaining a ring homomorphism, so that we must modify this canonical
choice in a coherent way — this modification is the orientation data. It is this second
point that we will focus on, with the aid of the main example of this paper.

4. A basic example. Let B = C[x]/(x3). We will study B-mod, the moduli space
of finite-dimensional modules over B. We will let the class of a B-module M in
K(B-mod) = Z be the dimension. In fact, B is a special example of a ‘Jacobi algebra’,
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or a ‘superpotential’ algebra. Let Q be the quiver with one vertex and one loop. Then,
CQ = C(a), where CQ denotes the free path algebra of the quiver Q. Let W be the
cyclic word in this quiver given by W = a*. Then, in forming the Jacobi algebra that
this data defines, we are meant to form the ‘noncommutative differentials’ of W by
differentiating it with respect to each of the arrows in Q (see [14, Section 1.3] or [9]
for an explanation of what this means). Here, this noncommutative generalization of
differential calculus reduces to familiar calculus, since CQ is commutative. So the only
noncommutative differential we need to think about is

0

W = 4d’.
da

The statement that B is a Jacobi algebra amounts to saying that
- d
B=CQ/(—=W).
da

This puts us in a special situation, noted by Ginzburg and E. Segal in [14, Section
2] and [28] and exploited by Szendrdi in his study of the noncommutative conifold
in [29], in which we have a way of coherently embedding the representation spaces
of B-modules as subschemes of smooth schemes. The word ‘coherently’ doesn’t yet
have a precise meaning here, but has to do with the problem of comparing the motivic
weight associated to extensions of modules to the motivic weights of those modules
themselves, which in turn will be the central difficulty when it comes to checking that
putative integration maps from families of B-modules to motives (as in (1)) preserve
associative products. This in turn is the central problem motivating the introduction
of orientation data.
How this works out in our case is as follows. Define

Rep, (B) := Homyg(B, Mat,,(C)),

the set of homomorphisms of unital algebras. This is a scheme, the points of which
correspond to representations of B. In general the more natural object to study is
perhaps the stack formed under the conjugation action of GL,(C), but for the time
being we will really just be looking at the above scheme. Similarly, we define

Repn(CQ) = Homalg(CQv Matnxn(C))-

Then since a representation of Bis just a representation of CQ satisfying some relations,
Rep, (B) is defined as a Zariski closed subscheme of this smooth scheme. There is a map

ev, : Rep,(CQ) — Mat,,(C)
that sends
0 +— 6(a).

In fact this is clearly an isomorphism. It turns out (and this is a general fact about
Jacobi algebras) that

Rep,(B) = crit(tr((eva)")), ©)
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where the object on the right-hand side of (9) is the scheme-theoretic critical locus. For
a general Jacobi algebra, we replace (ev,)* with a function of evaluation maps built
from W, and the corresponding statement remains true.

The goal of this subject is to define motivic Donaldson-Thomas counts, that
soup up the old one, which was just the Euler characteristic weighted by a microlocal
function v. Recall that the microlocal function of a scheme at a point x, at which the
scheme is locally described as crit(f) for some f on a d-dimensional ambient smooth
scheme, is just (—1)?(1 — x(mf(f, x))). Consider just

Rep,(B) = Spec(B).

The fact that we have an explicit presentation of our space as a critical locus enables us to
go ahead and refine the microlocal function vgep,(p) to a motivic weight, which is given
by minus the (absolute) motivic vanishing cycle of the function x*. Here and elsewhere,
we will adopt the shorthand that where a function f(xi, ..., x,) appears without
reference to a space that it is a function on, that space will always be assumed to be affine
n-space, and the motivic vanishing/nearby cycle of it is the motivic vanishing/nearby
cycle of the function on affine n-space. We define?

DT(Rep,(B)) := / [ulx.

Rep,(B)

In order to establish uniform notation with what follows, we rewrite this as

DT(Rep,(B)) = f [ furo)] . (10)

Rep(B)

where tr(T#) is considered as a function on C by identifying C with the ring of 1 x 1
matrices. Since Rep,(B) is just a point, in this case we have

DT(Rep,(B)) = (1 — MF(x*))x.

The unique closed point of the space Rep,(B) is given by a 1 x 1 matrix, the zero
matrix. Call this representation M. Considered as a module for the quiver algebra
CQ/(a), this is the one-dimensional simple module killed by all the arrows of Q. In
this example, it is easy enough to explain what we mean by ‘preservation of the ring
structure’. Define

Rep,(B) » Rep(B)

to be the stack of flags M C N with N/M = M. This stack is defined and its
properties studied by Joyce in [16, Section 10]. The stabilizer at any point is given
by Hom(M, M) = C, and in fact this stack can be described explicitly as a group
quotient of the space Matg, 2x2(C) of strictly upper-triangular 2 by 2 matrices by the
trivial action of the additive group C = Hom(M, M). So we write the motive of this

3The attentive reader will wonder what has happened to the sign (—1)¢ of (4). The answer runs as follows. In
order to fix, once and for all, the contribution of a module M to the numerical DT count of moduli spaces
it occurs as a closed point of, we always pull back the microlocal function, and the motivic weight, from the
stack of finite-dimensional B-modules. This stack is in fact zero-dimensional, so we can safely forget about
signs.
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stack as

[Rep;(B) » Rep, (B)] = [Matq 2x2(C)]/L. (11)

Now what we want is the identity, in %tﬁ(Spec O[Ix]l:
DT[Rep, (B)  Rep; (B)] = DT[Rep; (B)] - DT[Rep; (B)] = (1 — MF(x))’x*,  (12)

where on the right-hand side we use Looijenga’s product on the ring of motives. From
the motivic Thom-Sebastiani Theorem 3.1, we deduce that

DT[Rep,(B)] - DT[Rep,(B)] = (I — MF(x* + %)) x> .

PROPOSITION 4.1. Denote the representation ring of Z4 by Z[a]/o*, where « is the
one-dimensional representation sending 1 € Z4 to multiplication by i. There is an equality
of motives

MF(x* +y*) = [C)] — 4L,

where Cy is a genus 3 curve with the representation 2(a + o> + o) on its middle
cohomology.

We defer the proof of this proposition to the start of Appendix B.

By using Proposition 4.1 and the motivic Thom-Sebastiani theorem, we can
calculate the right-hand side of equation (12). What, then, of the left-hand side? Well,
first we should define it! This we do as follows: the coarse moduli space Matgy; 2x2(C)
of our stack Matgy2,2(C)/A! is a subscheme of Rep,(B). Let

L Matsul,2><2((]:) — Repz(B)

be the inclusion. Then, recall that we want a motivic refinement of the weighted Euler
characteristic

Z 1 X (*(VRep, (B)) ' (n)).

neZ

Itis clear enough what this should be. The space Rep,(B) occurs again as a critical locus
of a function on a smooth space, the function tr(7#) on the space of 2 x 2 matrices, and
so a refinement of the pullback of the microlocal function is already at hand, we can just
pull back the motivic vanishing cycle of the function tr(7*) along the inclusion ¢, i.e.
take fMathz(C)[_‘btf(T“)]' In terms of the weight mw from the introduction, the general

idea here is to set mw(M’) = fx dw(w), where M’ is any n-dimensional B-module, and x
is a closed point of Rep,(B) representing it. The content of the word ‘coherently’ in the
statement that a Jacobi algebra presentation enables us to coherently express different
representation spaces as critical loci will amount to the claim that this naive pulling
back actually gives a good answer, one that gives the equality (12). Let us unpick this
particular case. We follow, then, the natural suggestion for defining the left-hand side
of (12), that is we write

DT[Rep; (B) * Repy(B)] := / [ uiro]L " X (13)
Matsm,ZxZ(C)
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The L~! term here comes from the L in the denominator of (11). Working out what the
right-hand side of (13) is will occupy the next section.

5. Verifying preservation of ring structure: an example. To start with, we should
work out an embedded resolution of

tr(7%) : Mat,,»(C) — C.

The function tr(7*) has its worst singularity at 0, and is homogeneous, so a good start
would be to blow up at the zero matrix. Write X = Mat,.»(C) and let

e
lh
X
be the blowup at the zero matrix. The strict transform of (tr(7#))~'(0) in X, intersected

with the exceptional P3, is the projective surface cut out by the homogeneous equation
tr(7*). Call this projective variety V(tr(7%)). Let

Y

Jn

|]:p3

be an embedded resolution of the singular projective variety V(tr(7*)). Then, we have
a diagram

~ h ~ h
Xi—X—X

lm h l

Y*”>[p3

with the leftmost square a pullback (in fact this is a pullback of a vector bundle, since
X is the total space of the tautological bundle for P?, and 7 is the projection). It is not
hard to see that /' := h o h; is an embedded resolution for tr(7*#). It follows from the
fact that tr(7*) o h vanishes to order 4 on [P3 that there is an equality of divisors

(Ar(T*) o 1)*(0) = (hy o m)* (V(tr(T*)) + 4, (14)

where Y is considered as a divisor on Xj, the zero section of the vector bundle X; — Y.

So we just need to work out an embedded resolution of V(tr(T*#)). Note that
PSL(2, C) acts on X by conjugation, tr(7*) is invariant under this action, the action
lifts to X, and V(tr(T%)) is also invariant under the action. There are exactly three
orbits of the PSL(2, C)-action in ¥ (tr(T*)). Define

(1) S7 to be the orbit consisting of matrices whose eigenvalues differ by a factor of
ein/4,
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(2) S to be the orbit consisting of matrices whose eigenvalues differ by a factor of
3ir /4
e b

(3) S3 to be the orbit of nilpotent matrices.

PROPOSITION 5.1. In the ring Mot’l(Spec C), there are equalities
[S1]=[S:] =[P' x C], 15)

where all of these motives carry the trivial ji-action.

Proof. Fix two nonzero numbers a and b differing by a factor of /4. Then to
pick a matrix with these two numbers as eigenvalues is the same as to pick two distinct
vectors (up to rescaling) to be the respective eigenvalues. So pick the eigenvector for a
first, this gives us a P! of choices, then pick the eigenvector for b, giving a C of choices,
one can in fact see that S| is a line bundle over P!. The motive of any line bundle is
the same as the motive of the trivial line bundle — any ordered open cover underlying
a trivialization induces a stratification on which each restriction of the line bundle is
trivial. O

PROPOSITION 5.2. There is an isomorphism S3 = P

Proof. Give P? coordinates (X : Y : Z : W) by writing matrices as

X Z

w Y/
Then, the nilpotent matrices are precisely those satisfying trace = det = 0. So they are
the ones satisfying

X=-7,
XY =WZ,
giving a P! inside P°. O

The singular locus of V(tr(T*#)) is precisely S3. Since S3 is a PSL(2, C)-orbit, the
singularity is the same all along this P!. We restrict to an affine patch U by setting
W # 0. On this patch, we use the coordinates

(x,p,2) > (T ;)

There is an isomorphism U N S3 = C, and U N S3 can be parameterised as follows:
C— UNSs (16)
t —1
t > <1 _ > ) 17)
We can extend this to a coordinate system (¢, a, b) for U, given by

t+a b—lz)

Gty (5007, (18)
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In these coordinates, the local defining equation for tr(7#) becomes
te(T%) = a* + 4d°t + 4a>b + 2d°1* + 4abt + 207,
or, after rearranging,
t(TY) = —a* + 2(at + b + a*)*.

After replacing b with b’ = b 4 at + a°, we get that the local defining equation for
tr(T%) is

tr(T4 = —a* + 2572,

and so we have a P! of 43 singularities along S;. If we blow up S3, we replace this
with an exceptional divisor (the projectivization of the normal bundle of S3), on which
there is another P! of singularities, this time of type D4. Blowing up this new P! gives
our embedded resolution

Y
|
=3

Let J be the set of divisors in (tr(7T*) o /')~'(0). We wish to calculate the absolute
equivariant motive

N — _ |11]—1 ~ .
/Matsut,uz(c)[wtrg )] Z (1 [L) / [DI] (19)

W£ICT 7'~ (Matgy 2x2(C))

We abuse notation a little, and leave out the maps D; — X, since we are only interested
in the absolute motive anyway. Consider the decomposition

Matgu,2x2(C) = {0} L A,

where {0} is the zero matrix, and H = C* is the complement. This decomposition
induces a decomposition of the sum (19): if we define

Mm = (TH] = 1-L -1 DN 20
/[Iﬁt ] QJEI J( ) /hm( )[ 1] (20)
M[ == tr(TH)] — E 1 - ﬂ_ 1-1 D~ N 21
f{O}WI @] Q,#:J( ) /I;l({O})[ . @b

then

/ [Vrre] = Muc + M.
Matgy 2x2(C)

Since H is just the complement to the zero section in the fibre 7 ~'(({ 4 )), and V (tr(T*))

has an A3 singularity at this matrix, i.e. the singularity defined by the singular curve
x* + 32, the following proposition follows from equation (14).
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PROPOSITION 5.3. There are equalities of absolute motives

My = (L = DMF(x* + %) (22)
= (L - D([G]-2D) (23)

where C, is a torus with the representation a + o on its middle cohomology.

Proof. Only the second equality needs proving. This is implied by
Proposition B.1. O

PROPOSITION 5.4. There is an equality of absolute motives

M, = (1 — L))MF(x* 4 3?) + LMF(x* + »%).

Proof. One of the terms in the sum (21) comes from setting I = {Y,}, the proper
transform of the copy of P> X we obtained by blowing up at the zero matrix. Now /'
vanishes to order 4 on Y, and so D; is a four-sheeted étale cover over the complement
of V(tr(T*)) in P3. It follows from Proposition B.2 that

/ [Diy,] = [Diy,] = LMF(x* + y*) + (L — DLMF(x* + %) + 21.(1%2 — 1).
h=1({0})

The subvariety of Mat,,»(C) cut out by tr(7*) has two components, the cones over
the divisors S; U S5 and S> U S3, and we denote the strict transform of these divisors
in the embedded resolution X; by F| and F5, respectively. These divisors occur with
multiplicity 1. Since we only blow up along S3, there is an isomorphism Dy, v, = S;
for i =1, 2. So these two subsets of J each contribute

(1-0D [Dyy, ry] = (1 = DIP' x C]
)

to M,;, by Proposition 5.1. All the other contributions to (21) come from the
modifications made to the singular locus of V(tr(T%)), i.e. from subsets I C J that
contain Y and at least one divisor occurring as the cone over an exceptional divisor of

Y
J{hp
P3.

At the first blowup, along the P! of A43-singularities S3, we introduce a P!-bundle,
along with a P! of new singularities. Since we are working in the motivic ring, we can
assume that the bundle in question is trivial. The same is true for the second blowup.
The result is the equation

Y a-u [ B =0 - PR )

0#JCDIJL{ Y, F1,Fa)

Putting all this together gives the result. ]

It turns out, then, that we have exactly what we want:
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PROPOSITION 5.5. There is an equality of [i-equivariant motives
L [ ] = 1 MG ), (24)
Matgy 2x2(C)

and so there is an equality in Mstﬂ(Spec Ox1
DT[Rep;(B) * Rep; (B)] x* = DT[Rep, (B)] - DT[Rep, (B)] x*, (25)

where these ‘DT counts’ are as defined in (10) and (13).

REMARK 5.1. We have shown this equality directly, but also it turns out to be a
comparatively simple application of the Kontsevich—Soibelman integral identity (see
Section 4.4 of [23] for a discussion of this identity, and see [31] for a proof). This
motivic identity implies that this motivic refinement of the Donaldson-Thomas count
preserves ring structure for more general moduli spaces of objects in the Abelian
category of B-modules, and more general Jacobi algebras.

6. Towards motivic Donaldson-Thomas counts. The above calculations show that
a ‘naive’ motivic refinement of the Donaldson—Thomas count preserves ring structure,
at least in our basic example. It will turn out that the key ingredient for achieving this
was the extra data provided by a realisation of our algebra as a superpotential algebra,
which in turn enables us to realise the representation spaces of finite dimensional
modules for our Jacobi algebra B as critical loci in such a way that the integration
map defined via the associated motivic weight — e () preserves the ring structure. The
question is: can we do without this extra data?

QUESTION 6.1. If we are handed a ‘Calabi-Yau three-dimensional category’,
whatever that may turn out to be, can we construct a motivic integration map from the
Hall algebra of stack functions, preserving the product?

There is a notion of quasi-equivalence of Calabi—Yau categories (see, for example,
[19]), that in particular induces quasi-isomorphisms of homomorphism spaces and
quasi-isomorphisms of endomorphism spaces as cyclic 4-algebras. Again, we need
not worry at the moment about what that means precisely, but already an implication
for a satisfactory theory of motivic Donaldson-Thomas counts follows from the fact
that quasi-equivalences of Calabi-Yau categories induce isomorphisms of derived
categories:

REQUIREMENT 6.2. The motivic Donaldson-Thomas count associated to a stack
function should be invariant under pullback along quasi-equivalences of Calabi—Yau
three-dimensional categories.

Consider again our archetypal Donaldson-Thomas setup in Section 2: producing
numbers ‘counting’ sheaves F in fine moduli spaces M. Recall that if F is a coherent
sheaf on our Calabi—Yau three-fold X, the constructible function vy (F) depends
solely on the scheme structure of the moduli space M, where we use the common
abuse of notation whereby F also denotes the point of M representing it. The fact that
the scheme structure of M tells us what kind of contribution F should make to the
Donaldson-Thomas count is explained by the fact that we assumed that M is a fine
moduli space, and so carries information about infinitesimal deformations of F.
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The idea is that the contribution of an object F need not be calculated from the
local structure around F in some moduli scheme M. In the example above, we used a
particular way of realising our moduli spaces as critical loci in order to give a motivic
refinement of the Donaldson-Thomas count, but of course this application of extra
data means that we have not provided an affirmative answer to Question 6.1.

The contribution of an object F, sitting inside a fine moduli space M, to the
ordinary Donaldson-Thomas count is a function of the Euler characteristic of the
Milnor fibre of a function

f:C > C,

for some 1, satisfying the condition that crit(f) looks (locally) like a formal
neighbourhood of the point x representing F in M. The crucial observation is that
some version of a critical locus description around F can be read off straight from the
formal deformation theory of that object, which can be expressed purely in terms of
category theory. So we try to refine the Donaldson-Thomas contribution to a motive
by building such an f directly from the category, and as a preliminary step we should
find somewhere for f to /ive, e.g. as a function on a vector bundle on a stack of objects.
It turns out that a reasonable candidate for £, at x, is a function defined on Ext!(F, F).
Now our aim was to write down motivic Donaldson-Thomas counts for arbitrary
families, at which point we are confronted by the fact that the dimension of Ext!'(F, F)
is liable to jump as we vary F, so we cannot hope that our f will be a function on a
vector bundle. The appropriate sheaf (which we will call EX7" here) will, rather, be a
constructible vector bundle.

7. Some remarks on constructible vector bundles. Let X be a locally Noectherian
scheme. By a constructible decomposition of X, we will hereafter mean a
decomposition of X into locally closed subschemes such that there is a cover of X
by open affine schemes U; for which the restriction of the decomposition of X to each
U; is a finite constructible decomposition. A constructible vector bundle V" on X is
given by a constructible decomposition of X, and a vector bundle on each component
of the decomposition. There is, in principle, no reason why one must impose any
kind of finite-dimensionality of V" in the definition, but we will see shortly that doing
so makes the category of such constructible vector bundles much better behaved.
We identify a constructible vector bundle with the one obtained, by restrictions, on
a subordinate constructible decomposition. A morphism between two constructible
vector bundles V| and V is given by taking a constructible decomposition subordinate
to the two decompositions defining ¥} and V>, and giving a morphism, for each X; in
the decomposition, from V|y, to Va|x,. We identify a morphism f with the morphism
obtained by restricting f* to a constructible decomposition subordinate to the one
defined by /. Every constructible vector bundle V on a scheme X defines a constructible
function dimy, : x > dim(V,). We will only work with locally finite constructible vector
bundles V, meaning that X can be covered by affine open subschemes on which this
function is bounded. Constructible vector bundles are to a large extent all trivial:

PROPOSITION 7.1. Let V be a locally finite dimensional constructible vector bundle.
Then,

~ n
V= ]_[ Odim;‘(n)‘
neN
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PROPOSITION 7.2. Let X be a locally Noetherian scheme, and let Vg, be the full
subcategory of the category of constructible vector bundles on X consisting of locally
finite-dimensional vector bundles. Then, Vg, is a semisimple Abelian category.

We define the (ordinary) category of constructible differential graded vector
bundles on X as the category with objects given by pairs of a constructible
decomposition of X, and on each subscheme of the decomposition a differential graded
vector bundle. Morphisms are given by morphisms of such objects that preserve degree
and commute with the differential, and we make the obvious identifications of objects
and morphisms under subordinate decompositions.

CoOROLLARY 7.3 (Formality). Let V* be a constructible differential graded vector
bundle on a locally Noetherian scheme X such that each fibre of V'* is finite-dimensional
in each degree, and on each of the subschemes X; of X defined by the constructible
decomposition associated to V*, the homology H'(V*®), considered as a constructible
vector bundle on X, is nonzero for only finitely many i. Then, there is a quasi-isomorphism
from a constructible differential graded vector bundle with zero differential to V*°.

Proof. We can define the ith homology of V*, in the category of constructible
vector bundles, since the category Vg, of Proposition 7.2 is Abelian. Then, the formality
follows from the fact that Vg, is semisimple, and our local finiteness assumption on the
homology. U

REMARK 7.1. Kernels in the category Vg, above are maybe a little surprising. For
instance, the homomorphism of C[x]-modules

C[x] —— C[x]

is of course an injection of coherent sheaves on the scheme C. Considered as a morphism
of constructible vector bundles, however, one readily verifies that the kernel consists of
a rank 1 vector bundle over the origin. The same example shows that the homology of
a differential graded vector bundle, considered as a constructible differential graded
vector bundle, can be very different from the homology of the vector bundle considered
as a complex of coherent sheaves.

8. Formal deformation theory. Since we are working in the ring of motives, we
may treat the constructible vector bundle EX7 " (once it is properly defined) as though
it were a vector bundle. In the original setup, in which we were working out Donaldson-—
Thomas counts associated to fine moduli spaces, this constructible vector bundle played
an important role: it is naturally identified with the Zariski tangent space of our scheme
M (see [15] for example).

Given an object F in a Calabi—Yau three-dimensional category C, we obtain an
Aoo-algebra A = Hom*(F, F). Such an algebra is like a differential graded algebra,
in that it has two operations m; : 4 — A[l] and m, : A ® A — A, but it also has
countably many higher operations

my : A®" — A[2 —n]

which are required to satisfy some compatibility conditions (see Keller’s introduction
[20] or Lefevre-Hasegawa’s thesis [24] for a longer exposition). Given such a set of m,
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we define a set of b, making the following diagram commute

A% — " A[2 — 1]

\L S®n i N

AP — s A[2),

where S is the degree —1 map sending @ € 4 to a in A[1]. Clearly, these b, contain
the same information as the m1,, so we may just as well describe an A-algebra using
them. Here begins the constant tension in this subject between the m,,, which naturally
extend our notions of ordinary algebras and differential graded algebras, but have
increasingly awkward sign rules, and the b,, which do not.

We can describe the formal deformation theory of F, using the functor

Defr : Artinian nonunital algebras — Sets

m —{y € m® Hom'(F, F)|MC(y) = 0},

where M C : Hom!(F, F) — Hom?(F, F) is given by the formal sum of the degree n
functions

MC,,(CI) = bn()/, ey J/)v

and b, are the higher multiplications of Hom!(F, ). We have shifted from the usual
maps m, : A®" — A[2 — n] to maps b, : A[1]1®" — A[2] just to make the signs trivial
here.

The fact that C is supposed to be a Calabi—Yau three-dimensional category over
some ground field & enables us to make some extra assumptions on our A.-Yoneda
algebra End®*(F), namely we assume that it has a cyclic structure. What exactly this
means is spelt out in detail elsewhere, for example in Kajiura’s paper [19], but for the
present purposes it is sufficient to note that this extra structure implies that we have a
nondegenerate antisymmetric pairing

(e, ) : Hom! ® Hom®> — k

and that if we define

W,(x) = %(bn_l(x, cees X), X)
and let W be the formal sum of these degree n functions, we have that d W = M C. This
makes sense once one views End*(F) as the vector dual of End'(F) via the pairing
(e, ) and identifies each fibre of the cotangent space of End'(F) with the vector dual
of End!(F) in the natural way.

It follows, then, that we are given a formal critical locus description for F without
any reference to a moduli space, directly from the structure of a three-dimensional
Calabi—Yau category.

The W we have here, though, is in some sense not yet intrinsic to the category
— it changes as we vary the representative we take of the quasi-equivalence class of
the category C, varying by quasi-isomorphisms the representative we take of the A-
algebra End*(F). Help is at hand though: it turns out (see Theorem 5 and Corollary 2 of
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[23], as well as [22, 19]) that we can always find a (noncanonical!) minimal cyclic model
for our category, at least around a neighbourhood of our object F, after constructible
decomposition of the space of objects in the category. So there is a quasi-isomorphism
(at least after we replace C by the full subcategory whose objects are a constructible
neighbourhood of F):

Cc——= (26)

to a Calabi—Yau A4..-category C’ where the morphism spaces have zero differential, and
so we have the identification End},(F) = Ext}(F). Thisis good, since the graded vector
space of Exts between two objects, as opposed to the differential graded vector space
of Homs, is a true invariant under quasi-isomorphisms of A4..-categories. In addition,
since we have taken this minimal model in the category of cyclic A-categories, this
new End(lj/ (F) comes also with its potential function, denoted W,,;,. Finally, the really
good news is that this W, does not depend on the choice of minimal model (up to
some changes that have no effect on motivic Milnor fibres). So W, considered as
a formal function on the constructible vector bundle EX7T", presents itself as a likely
candidate for our intrinsic critical locus description of the category.

9. An example in the general framework. Let us see how some of this theory
works in our specific example. First, we fix some data. We will start by defining 4, an
Aso-algebra. Such an algebra has an underlying graded vector space, which in our case
is just going to be

A=CoC[-1]e C[-2] & C[-3].
Such an algebra comes also with a countable collection of operations
my : A®" — A[2 —n],

forn > 1, satisfying some compatibilities (see e.g. Keller’s [20, Section 3]). For example,
in the case where n1,, = 0 for all n > 3 the algebra can be thought of (and indeed really
is) just a differential graded algebra, with n; equal to the multiplication and m; giving
the differential; in this case, the compatibility conditions say exactly that our algebra
satisfies the conditions required of a differential graded algebra. The 4 we are going
to consider is slightly different. We first set m; = 0, i.e. the differential is zero — this
puts us in the ‘minimal’ situation of (26). Next, we set the thing to be unital. So there
is some 1 € A° = C which functions just like the identity under m,, and such that
mi(...,1,...)=0foralli > 3. Let us extend this unit to a basis

{led’ aeAd' a"eA we A’}
so that we have a graded basis for the whole of 4. Next, set

mo(a, a*) = my(a*, a) = w

my(a, a) = 0.

For degree reasons, this and the unital property determine m, entirely. We define m; = 0
unless i € {2, 3}. We let ms(a, a, a, ) = a*, and set m3 to be zero on all other 3-tuples of
basis elements.
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This algebra was not plucked from nowhere: it is the 4, Koszul dual (as in
[26]) of the Ginzburg differential graded algebra I'(Q, W) associated to the quiver
with potential we considered in Section 4. This is a differential graded algebra with
cohomology concentrated in negative degrees, with zeroth cohomology isomorphic
to our algebra B as defined in Section 4 — one should consult Ginzburg’s paper [14,
Section 5] for a full definition of this algebra. So the Abelian category of B-modules
sits inside the derived category of I'(Q, W)-modules as the heart of the natural t-
structure, and 4 is the Yoneda algebra EXt} , ) moq. (M, M) of the one-dimensional
simple module M of Section 4. Note that this algebra is very different from the Yoneda
algebra Exty g (M, M), which is concentrated in infinitely many degrees.

Under Koszul duality, the B-module M gets sent to the free (right) A-module. But
it is maybe worth forgetting that for now, and just taking some category of modules
over A to be our Calabi—Yau category, and seeing what the programme sketched above,
involving Wi, does in this case.

As in Section 4, we will be interested in some very simple spaces of modules over
A (indeed the same spaces, under Koszul duality). First, we need to write down our
version of the superpotential coming from the structure of our category. To this end,
we introduce the symmetric pairing

(0,0) : A® A — C[-3]

given by letting (a, @*) = (1, w) = 1. This gives us our W: if we let x be a coordinate
on Ext'(M, M) = A', then

W= x*.

(Recall that W is actually defined in terms of the b,, maps from A[1]®" to A[2], but up
to sign this makes no difference to our W.) The only modules we will be interested in
are A and extensions of A by itself. Denote by N the free left A-module. We denote by
N, the cone of a morphism « : N[—1] — N. Such a module is really just the extension
determined by a € Ext!(V, N), but souped up to an object in an A,,-category. Such
an extension has, as underlying 4-module, N & N,, where we have labelled the two
copies of N merely for convenience. N, has a differential determined by «:

(@)= (G 5) (@)= ("5") e

By a slight abuse of notation, we denote the 2 by 2 matrix appearing in (27) simply by
a. By a slightly larger abuse of notation, we have used the same m; as appear in the
definition of A to denote the natural extension to matrix calculus. What we are really
interested in is End®*(N,,).

PROPOSITION 9.1. The Ay-algebra End®*(N,) has a model whose underlying graded
vector space is

H :=End*(N;, N)) & End'(N1, Ny) & End'(Nz, N)® End* (N, N>)
=A11 A1 D Ay B Ax
:M2><2(A) (28)

where the subscripts do not change the mathematical object denoted by the terms they are
subscripts to, and are just added for notational convenience. This algebra carries natural
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higher products coming from A, which we denote by myx»., or the shifted version by
bawa.n, and twist by setting

boi(ai, ... a;) = szxz,n(a,...,a,al,a...a, A, Oy oo O, Ay O L, Q). (29)

n>i

See [20, Section 7] for an explanation of where this model is coming from, or
Kontsevich’s original paper [21]. Note that the sum in (29) is actually finite: any term
in which o« appears in consecutive places is automatically zero, from the definition of
bax2.n. So, for example

ba1(a) = baxoa(a, @) + baxa (o, a) + bryo 3(e, a, o). (30)

Let 8y be the scheme consisting of a single closed point, which we make into a
parameter space of 4-modules by decreeing that the module over the point is just
N. In the language of stack functions, this is just the map Spec C — Ob(C) sending
the point to N. The stack function/parameter space Sy x dx is, as in Section 4, just
Ext!(N,, N1)/Al, where the point « € Ext!(N,, Nj) parameterises the module N,.

DEFINITION 9.2. We define a graded vector bundle END over the vector space
Ext!(N,, Ny), given by the trivial bundle with fibre H as defined in (28). This differential
graded vector bundle has operations

MgND,i - 5ND®i — END

as defined fibrewise in (29).

While END is a useful object, it is not quite right for our purposes, since it is not
minimal. In particular, if we build the function W using it, as it is, it has quadratic
terms, since mg 1 | # 0 (as in (30)). Consider the decomposition

EXtI(Nz, N1) =FE UEy,

where E; = 0 and E,; = C* is the complement of E,. Consider first the part E;. Here,
o =0, and so EN'D*|g, is minimal, and there is nothing for us to do.
Now take the part Ey. The vector bundle END| £, 18 spanned by sections

1; € Ext’(N;, N)) = 4,

whereas before the subscripts are being used to distinguish the two copies of NV, not to
pick out degrees, and our differential acts on these as follows:

d(1y) =an«,

d(lp) = — ana + ana,
d(121) =0,

d(1p) = — aya,

where o denotes a coordinate on Ext!'(N,, N;) and the vector bundle END!|z, is
spanned by sections

aj € Eth(N,', ]V]),
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which in turn are acted on as follows:

d(ay1) =0, (31)
d(a) =a’a3,, (32)
d(ax) =0, (33)
d(a») =0. (34)

So the section a;; gives us an embedding of EXT I £, iInto EN D' E,- In fact, we can
almost realise EX7T° |, as a sub Ay-vector bundle of END|g,,, by writing

EXT|g, = {111 + 1n, la1, an + axn, aj, + a5y, w1 + wa, wia}. (35)

The identity (35) is not quite right though, since this sub-bundle is not closed under the
operations mgyp+ ;. The fix involves tweaking the inclusion i : EXT*|g, — END*|g,
— we are working with 4-morphisms — with ‘higher’ parts that can be modified to
counteract the failure of our sub-bundle to be closed under the A.-operations mgeap ;;
this is the process of taking a minimal model. None of this technicality matters to us
at the moment, since the thing we really care about, mgy7- ;, is unchanged by these
modifications, and so we can read off our function Wg, min — it is just the function x*
(after rescaling) on the one-dimensional vector bundle EX7T| Eni -

We are working with the idea that our motivic refinement, which we will denote
“DT" for now, looks something like

“DT” : stack functions for 4 -mod — Mot”(Spec C) (36)

S+ /(1 — MF(Wpin))-
N

There will in general be some twists by powers of L'/, a formal square root of the
motive of the affine line, but we have conveniently picked our example so that these
powers are all trivial, in the end. Let us work out what this map does in our example.
It turns out we have already done most of the work. First, one can easily check that

“DT”((EJL™") = (1 — MF(tr(TH))L™!
and so
“DT”(E]-L™H=L"—1=DL'MFx* + %) — MF(x* + %)
by Proposition 5.4. Secondly, we have that
“DT7([ExL™H =L -DL ' =L - )H)MFGHL".
In order for the map “ DT ” to preserve the ring structure, then, we need
(MF(x*) — MF(x* + 7)) = 0. (37)

While equalities in the ring of motives can perhaps be a little elusive, there are certain
realisations from the ring of motives to more manageable rings that make inequalities
easier to identify. For example, from the functoriality of the weight filtration of the
mixed Hodge structure of a scheme X, it follows that if a finite group G acts on
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X we may form an equivariant version x.,, of the Serre polynomial for X. Using
Propositions 4.1 and B.1, one can show

Xeq.q MF(xY) — MF(x* +3?)) = (@ + o + o = 2(a + o +&*) /7 — q)

from which we deduce that our map “DT ” does not preserve the ring structure, as
it stands. At a first approximation, this is because we have left out powers of L2,
a formal square root of the element L € Mot“(Spec C). The correct integration map
looks more like

DT, : stack functions for 4 -mod — Mot”(Spec C)[L""/?] (38)
SH/O—MHmm»ﬁ@H”mM“W?
S

Over E, this makes no difference, but over E,, an extra 1'/? factor appears, as the
nontrivial self-extension of N has two-dimensional endomorphism ring, but only one
nontrivial self-extension. Then, in order to demonstrate that DT, 12 preserves the ring
structure, we end up instead having to prove

MF(x*H) LY = MF(x* + 7),

where the right-hand side contains this formal square root of L, while the left-hand
side does not. At least without making some kind of identification of L'? with
something truly belonging to Mot*(Spec C), this does not improve the situation much
(see Appendix A for more on why such a move does not work).

Let us compare the case where things looked better, Section 4, with what has
happened here. The following basic observation makes this easier.

PROPOSITION 9.3. Let o € Ext!(M, M}). Define

Wrx(a) = Z %Wa,n(a),

n>2
a function on 2 x 2 matrices with entries in Ext'(M, M), by
Wa,n(a) = (ba,n—l(av ey a)9 a)'

Write W .= W,. Then, Wy(a) = W(a + a).

There is a smooth function + : Matg 2x2(C) x Maty,.2(C) — Maty,»2(C) given
by matrix addition, and the proposition states that +*(W) = W_, the function
on Matg 2x2(C) x M7y»(C) that restricts to W, over o € Matg, 2x2. It follows by
the properties of the transformation of the motivic vanishing cycle under pullback
that fMatsm.zXz(C)x o[ —Per)] = fMatsuszz(C)[_d’"(W)]' So as well as integrating motivic
weights across the same one-dimensional subspace of Mat,,»(C) both times, we have
actually been integrating against the same motivic weight [—¢g(7+)] both times as well,
almost. The almost here comes from the fact that along E,; we have modified the
function W, breaking it into a quadratic part and a part with cubic and higher terms
— this is what we do when we restrict to the minimal superpotential Wy,;,. What is this
quadratic part? As noted in [23, Section 6.3], to a first approximation it is just W, » on
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the constructible vector space
V = HOM!/Ker(byoe.1). (39)

On E, this is trivial, so we concentrate on E,,. Here, V is spanned by a;, (see (31)),
and the quadratic function induced by W_ equals a?)?, where y is the coordinate on
the vector space (aj2) C H, as defined in (28). After rescaling, this is just the function
y?. If we had modified “ DT ” so that instead of integrating (1 — MF(x*)) along E, we
integrated (1 — MF(x*)) - (1 — MF(3%)) = (1 — MF(x* 4 »?)) we would have arrived at
the right answer, by the motivic Thom—Sebastiani Theorem 3.1.

10. The role of orientation data in fixing preservation of ring structure. So let
us recall the situation we have arrived at. First, our goal was to associate motivic
Donaldson-Thomas counts to arbitrary stack functions of a Calabi-Yau three-
dimensional category C. In the example of the Abelian category of modules over a
superpotential algebra (in our case, C[x]/(x?)), we have a good idea of how to do
this, that seems to work, with the product preserved on account of an application of
the Kontsevich—Soibelman integral identity, followed by the motivic Thom-Sebastiani
Theorem. If we just start from the data of a 3-Calabi—Yau category C, we have some
proxy for the critical locus description, the minimal superpotential Wy, considered
as a function on the constructible vector bundle EX7, the problem is that we do
not know how to apply the integral identity. More precisely, in the case of two stack
functions from single points both parameterising the object N, we do have something
to apply the integral identity to — the induced potential on the differential graded
vector bundle EN'D* over Ext' (N, N), defined as in Definition 9.2 — but away from the
origin, quadratic terms show up, that are removed when we only consider the minimal
superpotential Wi,.

The same story occurs if we replace the two stack functions we were multiplying
before, which were both vy, with arbitrary vg,, for E}, E> € C. Let us denote the version
of the vector bundle V' from (39) that we get after making these replacements by Vi, g,,
so Vg, g, 1s a vector bundle on Ext!(E,, E}). The key, then, is to get some control over
the constructible vector bundle Vg, g,, and its associated quadratic form, which we
will denote Qp, g,, so that we know how to correct our map “DT” in order to get
something that preserves products. It turns out that (up to a notion of equivalence that
induces isomorphisms of motivic Milnor fibres in the ring Mot” (Ext' (E,, E)))) the pair
of the vector bundle (Vg, k,, Ok, &) 18 intrinsic to the category C, i.e. if we had picked
a different minimal model for the category consisting just of the two objects E}, E»,
and so obtained a new pair of a vector bundle with nondegenerate quadratic form,
(V& > OF,.5,)» the modification to the motivic Milnor fibre obtained by replacing the
motivic weight

(1= ME (W) L= miErcieanrz
by
(1 = MF(Wiyig)) L2t CD SmEC2 () ME(Q ) L )2
would be the equal to

(1 _ MF(Wmm)) H_Z[SI(—l)fdim(EXti(O-O))/z(l _ MF(QE],EZ)) L~ dim(Ve, k,)/2 )
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This should not come as a great shock: the failure of our naive “ DT ” map to preserve
the product is again intrinsic to C, by construction. So the dream is not dead at this
point: if we can come up with a way to coherently counteract the error term introduced
by ignoring the contribution from (Vg, g,, Ok, k), we will have come up with a fix that
is invariant under quasi-equivalences of Calabi—Yau categories.

This then, defines the role of orientation data in the theory of motivic Donaldson—
Thomas theory:

CoNDITION 10.1. Orientation data provides a way of replacing (EX7T ", Wpin)
with a pair (EX T'®V, Wiy ® Q) in such a way that the map & defined by
integrating with respect to the weight which, over an element M € Cis (1 — MF(Wyin @
Q))L— im0/ 242, (=1 dim(ExX(M, M))/2 hrovides an integration map preserving associative
products.

Coming back to, and generalising, our main example, the following theorem is
proved in [10].

THEOREM 10.1. Let B’ be a Jacobi algebra defined by a quiver with potential (Q, W).
Then, there are 219! nonisomorphic choices of orientation data on the Abelian category
B’ -modyi, of nilpotent finite dimensional B'-modules, where | Qo is the number of vertices

of 0.

A. Why setting '/> = (1 — MF(x?)) is not enough to make DT,i» an algebra
homomorphism. Let us continue to assume that k = C. There is a final move
one could make, in order to try to tweak the map DT;1» of (38) to produce a
map preserving the product, without considering the extra structure of orientation
data. Recall that, when we modify with the appropriate L'/? powers in DTz, we
should be integrating across Ey with weight L'/2(1 — MF(x*)), rather than the weight
(1 — MF(x*)). Furthermore, as long as the ground field & contains a square root for
—1, we already have a square root for L in the ring Mot”(Spec(k)) given by 1 — MF(x?)
(this is a neat exercise in the use of the motivic Thom-Sebastiani theorem, using
the fact that x> 4+ »* can be rewritten as x’)’ for new variables X’ and y’, and the
explicit formula for the motivic nearby cycle). So we may view the target ring of (38)
as a rather unnatural place to work, and instead push forward along the natural

1/2
ring homomorphism 7 : Mot’l(Spec(C))[[L_l/ o w Mot‘l(Spec O)JL™']. In
this case, after we remember to include the L'/ factor in the motivic weight for the
nontrivial self-extension of N (as defined in Section 9), we have (in the image of )
that its motivic weight was chosen to be (1 — MF(x* + »?)), where we use the motivic
Thom Sebastiani theorem here, and the map w o DT 12 does preserve the Hall algebra
product in the special example being considered, i.e.

moDTpn(dy*xéy)=mo DT[Ll/z(SN)Z.

This is a crucial point for this paper. We are supposed to be motivating the introduction
of orientation data, with our example showing how the integration map DT fails to
preserve the product if we ignore it, but on the other hand, it seems it should be easier,
and perhaps more natural, to take the lesson from the example to be simply that we
should instead direct our efforts towards proving the claim that 7 o DT}~ is a ring
homomorphism. There are two reasons to reject this approach. The first, presented in
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the following theorem, is that the claim is false. The second, discussed in Remark A.1,
is that working with the integration map obtained by composing with 7, even once
one uses orientation data modifications in order to be able to prove that this map an
algebra homomorphism, yields a substantially weaker theorem — see Remark A.1.

THEOREM A.1. There exists a cyclic three dimensional Calabi-Yau category C, such
that the map

7 o DTy 1 S{Ob(C)) — Mot (Spec C)[[x]]

obtained b integrating  with  respect to  the motivic weight (1 —
MFE(Wpyin)) L2zt (1) dim(Exte.e)/2 g composing with  is not an algebra homomorphism.

The idea is as follows. Instead of letting C be the category B-mod of finitely
generated B-modules, we let C be a family, over the base C*, of copies of B-mod,
except that over the point z € C* we scale the Calabi-Yau pairing (e, e) by z.
To be more precise, the objects of C are injective morphisms of sets 7:S —
C*, where S is a finite set of finite-dimensional B-modules, and Hom¢(71, 12) :=
Garl(m):rz(nz),me& Hommog. 3(171, n2). Equivalently, we may define C in the same way,
but instead of considering S to be a finite set of finite-dimensional B-modules, we
take it to be a finite set of perfect differential graded modules over the 4,,-algebra A
used above. What this word ‘perfect’ means here need not concern us, it is sufficient
to mention that N and self-extensions of NV are perfect. Let N, be the nontrivial self-
extension of N. Then, there is a family of objects Xy, of C lying over C*, with the object
over z defined by the map of sets = : {N,} — {z} C C*. There is a natural construction
of orientation data for the category C, and for the family X}, it is given in terms
of motivic vanishing cycles by considering a trivial one-dimensional vector bundle V/
on C*, with coordinate x, and multiplying the motivic weight by L~'/*(1 — MF(zx?)),
where z is the coordinate on the base C*. Now the unmodified integration map DT
has a L'/? factor in the motivic weight above a point of Xy, , whereas the modified
integration map, taking account of orientation data, replaces this with (minus) the
motivic vanishing cycle of zx2.

Let ¢, : Spec(C) — C* be the inclusion of a point. Projecting the integration map
along 7, and then considering the restriction to the fibre ¢,, there is no change in
the motivic weight contribution of the orientation data, i.e. after fixing z we have
(1 — MF(Qup)) = (1 — MF(zx?)) = 7(L'/?), and so there is a fibrewise equality ¢5((1 —
MF(Wmin)( (L2))) = (1 = MF(Wiin))(1 — MF(Qqp))). But integrating across the
entire family, varying z, the motive does change — this should come as no surprise,
since the motivic vanishing cycle of zx? on C* x C is zero, and not (L —1)(1 — MF(x?)).
This is easy enough to see: the nearby fibre over a point of C* x {0}, the critical locus
of zx?, is just two points, and going around the torus swaps these two points, so that
the integrated nearby fibre is just a copy of C*, which is the same as the zero fibre
(we use here the extra relation on Mot*(Spec C), which specifies that any w,-action on
an affine space can be taken to be trivial). This is enough to suggest that there is at
least a difference between the putative integration map DT, 12 and the more advanced
version, incorporating orientation data. It then becomes reasonable to suspect that in
this case the map DT 1 may prove to be defective, and the following (sketch) proof
demonstrates this in a case containing the family X, .
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Sketch proof of Theorem A.1 Let C be as above. Let Xy be the family of objects
of C over C*, with the object over z the map of sets {N} — {z} ¢ C*. The minimal
potential for the object lying over the point z is just zx*, where x is the coordinate
on Ext,lnod_ 4(N, N). It follows that DT;12(Xy) is the motivic vanishing cycle of the
function zx* on C* x C. The nearby fibre is just a torus, since above any point of
C* it is 4 points, and the monodromy action cyclically permutes these points. So
DT[Luz()(N)2 = (0-x)> = 0. The theorem will then follow from the observation that
T o DTﬂ_l/z(XN * XN) 75 0.

The family Xy x Xy, as a family of 4 modules, can be broken up, constructibly,
into three components

XN*XNszXE,LIXEm. (40)

The family ) is parameterised by the scheme (C*)? > the space of pairs of disjoint
ordered points (z, w) of C*. Each point represents a module N @ N, and the
minimal potential is a function on the two-dimensional vector bundle Ext}, 4 ,(N) &
Ext! .4 «(N) with coordinates x and y, with Wiyin = zx* + wy*. We denote by Wi
the natural extension of this function on the trivial rank 2 vector bundle over (C*)>.
Then, by the motivic Thom Sebastiani theorem, and the fact that fC*xC ¢y =0, we
deduce that L/;Oﬂ)_g#w OWin = /;C*)z ¢Wmm - f(q:*)g:m d’Wmm = - f@*xcz ¢z(x4+y4). 4

The second factor in (40) should be thought of as a copy of E; over each point of
C*. That is, up to division by L, it is a family parameterised by the scheme C*, with the
fibre over z equal to the map of sets sending N & N to z. Precisely,

DT, (Xg) =1"" 0 0\ P X
C*X(O 0)

An embedded resolution for the function z tr(7#) is obtained by taking the fibre product
of our old embedded resolution for tr(7*) with the extra factor C*. We deduce from
formula (6)

DT[Ll/z(XEr) = ﬂ_il((l — ﬂ.)/ _¢z(x4+y2) + U_/ —¢Z(AA+},4)) X2,
Finally,
DT a(Xg,) = — L7 L2 — 1) - x> =0

nt

since Wiy = zx* on E,,, and fc*xc ¢.+ = 0. So to prove the theorem, it is enough to
show that fC*XCg ¢-(x1y2) # 0. Now we leave it to the reader to verify that this is given
by the naive motivic vanishing cycle

/ by = (17, 2) € € x (e + 17) = 0] — [(x, 3. 2) € C
C*xC?

xC*z(x* +yH) = 1]

“4In general, one has to be a bit careful with equalities of the form of the first equality here, since in general
one should not expect [y ¢y = [, b1y + [} b11,-
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and that this final quantity is equal to

2
/@ o _¢z(x4+y2) =[0L"— ﬂ_,
*X

so we may deduce that
7o DTpn(Xy * &y) = —(L—1)> - x>,
O

REMARK A.1. In fact, there are separate reasons for not composing the integration
map with rr, anyway. There are substantive statements that can be deduced from the fact
that DTgp, the version of DT} 12 modified by a suitable contribution from orientation
data, is a ring homomorphism, which cannot be proved from the same claim regarding
7 o DTgp. For an example, we consider a result from the interface between cluster theory
and Donaldson-Thomas theory. In Efimov’s work on quantum cluster algebras and
positivity [13], which also contains relevant background to what follows, it is proved
that the quantum cluster coefficients arising in quantum cluster mutation of a skew-
symmetrizable quantum cluster algebra are given by applying a weight polynomial, in
a variable ¢'/2, to an element in Z[L'*] N Mot‘l(Spec C). This intersection is just Z[L],
since we do not make the identification L'/> = 1 — MF(x2). From this, one immediately
deduces the vanishing of odd powers of ¢'/2, as x,(L) = ¢q. However, note that applying
the weight polynomial to elements in 7 (Z[L"?]) N 7 (Mot*(Spec C)) = 7 (Z[L"?]), we
can no longer deduce this, and we are handed the problem (see, for instance, [8])
of having to prove a difficult-looking theorem regarding vanishing of odd (critical)
cohomology. For a more precise reference for how keeping the formal square root of
L'/2 distinct from 1 — MF(x2) buys us this vanishing result, see [13, Theorem 5.3].

B. Deferred motivic calculations. Recall Proposition 4.1, which stated the
equality of fi-equivariant motives
MF(x* + y%) = [C1] - 4L, (41)

where C) is a genus 3 complex curve, with the action 2(« + o®> + ) on its middle
cohomology.

Proof. One can show this as follows: first, note that if X = C?, the blowup at the
origin

b'e
lh
X
provides an embedded resolution of f = x* + y*. As ever, let J denote the set of divisors

in (fh)~1(0), as in the formula (6). There are then five elements in J, which we denote
E, Dy, Dy, D3, Dy, where E is the exceptional P'. The preimage 4#~!(0) is E, which
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intersects all of the divisors of J nontrivially. So there are five terms in the sum

3 (1 -y /0 [15)] “2)

gAICT {0}

coming from the four sets {E£, D;} as well as from the singleton set {£}. All divisors
of (fh)~1(0) apart from the exceptional P! have multiplicity 1, so it follows that the
¢tale cover corresponding to each of the points £ N D; is just the one-sheeted cover.
So each of these points contributes (1 — L) to (42) . There remains the étale cover over
the complement to the projective variety V(x* 4+ y*) in E, which is denoted, as in the
formula (6) by Dyzy. This cover is four-sheeted, since f/ vanishes to order 4 along
E. One can complete in the obvious way the resulting four-sheeted étale cover to a
branched cover

C

|

[Fpl

of P'. Since this branched cover is simply ramified at each branch point of P!, i.e. there
is only one point in the fibre of each branch point, it follows that the cover is connected,
and C is a genus 3 curve. One can work out the equivariant Euler characteristic of C|
by taking a good cover, in the analytic topology, of P!, such that any open set in the
cover contains at most one of the branchpoints. This calculation yields

Xeg(C1) =(1 +a + o’ + oz3))(([FDl — {4 points}) + 4
=2 —2a +a* +ad).

Since we know that Z, acts trivially on the top and bottom cohomology, we deduce
that C; has the cohomology stated in the proposition. Putting everything together, we
have

MF(x* + % =([Ci]1 - 4) + 4(1 = L)

—[C,] — 4L.
g
In similar fashion, we can explicitly describe MF(x* 4 ?):
PROPOSITION B.1. There is an equality of ji-equivariant motives
MF(x* + %) = [C2] - 2L, 43)

where C, is a genus 1 curve with the action o + o on its middle cohomology.

Proof. The motivic Milnor fibre of x* + y? is obtained by performing a couple
of blowups as in our resolution of S3, the P! of A3 singularities in the projective
variety V(tr(T*)). After the first blowup, we introduce an exceptional P!, which the
two components of the strict transform of the divisor given by the original vanishing
locus of x* + y? meet in a single point, as in the leftmost part of Figure 1.. Blowing
up this point gives us the rightmost arrangement of divisors of Figure 1.. The new
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2t +42=0

En

En

2
Figure 1. Resolved x* + 7.

exceptional P! we label E,, and the strict transform of the first exceptional P! we label

E. Let
zZ
([:2

be the map of schemes obtained by performing these two blowups. Then, the numbers
next to the exceptional divisors in Figure 1. indicate the order of vanishing of the
function (x* 4 »?)s on those divisors.

The preimage s~!(0) is equal to the union E; U E,. The complement to E, in E;
is a copy of C, from which it follows that our two-sheeted étale cover of it, D{Ez},
must be the trivial Z,-torsor. The (resolved) completion of the four-sheeted étale cover
of E}, which we denote C», is again connected, since two of its branching points are
simply ramified. So we can use the same trick as for Proposition 4.1 to work out its
cohomology using equivariant Euler characteristics. This gives that

x(C) =1 +a+a?+ad)x(P' = {3 points}) + 2+ (1 + &?) =2 — (o + ),

implying that C; is a torus with the action of Z4 on its middle cohomology given by
the sum « + o. Putting all the pieces together,

MF(x* +1%) =[C] — R+ (1 +a®) + (1 + D)L+ (1 —=L)2 + (1 + a?))
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Next, we tidy up the unfinished business of calculating [Dy,] from Proposition
5.4.

PROPOSITION B.2. There is an equality of absolute equivariant motives

[Diy)] =L[C1] + L(L = D[C] = 2L(L + 1) (44)
=LMF(* +y*) + (L — DLMF(x* + %) + 2L(1L% — 1). (45)

Proof. We stratify the cover Dy, by stratifying the base D(tr(7*)), the complement
in P? to V(tr(T*)). Denote matrices of D(tr(T*)) by

(< a)

Note that there is a C*-action on D(tr(T*)) given by
(@ b = a th
c d t7le d )

(1) First, consider the subscheme P; C D(tr(T*#)) of matrices with nonzero trace, and
¢ # 0. Py is acted on freely by C* with the above action. So we may take the
quotient, and multiply the motive we get by (L. — 1). So we fix the trace to be equal
to 1, thereby fixing an element in the line of matrices determined by an arbitrary
matrix with nonzero trace, and set ¢ = 1, thereby passing to the quotient by the
C*-action. Once we have fixed the trace, the complement D(tr(7*#)) is determined
entirely by the determinant, it is given by those matrices with determinant not
equaltof; =1+ \/1/7 oré,=1-— \/1/7 There is an isomorphism

C x (C — {6, 6:}) > P, /C*
o (55070,

1 —x
Now

P +dt =0+ 9" — g + 9) + 2(pg)

from which it follows that the local defining function for tr(7%) on Py /C*is 1 — 4y +
2)?. The function 2)?> — 4y + 1 defines a four-sheeted étale cover in the usual way,
and this is just the étale cover occurring in the calculation of the motivic Milnor
fibre of MF(x* 4 1?), since we form a homogeneous quartic from 2y*> — 4y + 1 by
introducing the variable z and taking 2y°z> — 4yz® + z*, which vanishes to order 2
at infinity. This is just the cover obtained by removing the branchpoints from the
equivariant curve C, of Proposition B.1. We conclude that there is an equality of
absolute equivariant motives

/P [Diy] = LI = DAC] = B +a?). (46)
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(2) Next, let P, C D(tr(T*)) be the subscheme of matrices with nonzero trace, ¢ = 0,
and b # 0. Again, we take representatives with trace equal to 1, and again we use
the free C*-action to assume that » = 1. Then, there is an isomorphism

C — {roots of p(z) = z* + (1 — z)*} - P,/C*
o[ 1
T o 1-x)
The local defining function for tr(7*) becomes x* 4 (1 — x)*. This polynomial has

four separate roots, so the four-sheeted étale cover it defines over C is the curve Cy,
minus the branchpoints, and also minus the four points lying over infinity. So,

[Diy]=L-DICT—4—(1+a+a’+a)). 47

Py

(3) Let P;  P? be the subscheme consisting of matrices with trace equal to zero,
a # 0, and ¢ # 0. Then, we can assume a = 1, after taking an appropriate scalar
multiple. Furthermore, we again have a free C*-action, and so we take the quotient
again, and assume ¢ = 1. There is an isomorphism

C* - P;/C*
1 x-—1
x>y Ty )

The local defining equation for tr(7*) becomes 2x2. The resulting four-sheeted
cover of C* has two components, each a torus, and we conclude that

/P [Diy)] = (L= DA + )L~ D). (48)

(4) Let P4 C P? be the subscheme consisting of matrices with zero trace, a # 0, ¢ = 0,
b # 0. We again may assume a = 1. Py is just a single free C*-orbit, and so we
conclude that

[l = -+ as e+ e 9
Py

(5) Let Ps c P3 be the subscheme of diagonal matrices. Then, Ps= P!, and
V(tr(T*)) N Ps consists of four points. It follows that the étale cover, restricted
to Ps is just the étale cover occurring in the calculation of the motivic Milnor fibre
of x* + %, and so

[P (D] = [C1] - 4. (50)

(6) Let Ps C P? be the subscheme consisting of off-diagonal matrices. Both entries
b and ¢ must be nonzero for the matrix to be in D(tr(T*)). So we may assume
¢ = 1. On this orbit, C* again does not act freely, so we will ignore it. There is an
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isomorphism

(C* —>P6

‘i 0 x
1 0)°
The local defining equation for tr(7*#) is 2x2. So the resulting four-sheeted étale
cover of C* is given by a cover by two tori, and we have the equality

/P [Din] = (L — 1)(1 + &), (51)

Putting all this together gives equation (44). In light of Propositions 4.1 and B.1, we
also deduce equation (45).
O
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