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Sequence-based association studies are at a critical inflexion point with the increasing availability of exome-
sequencing data. A popular test of association is the sequence kernel association test (SKAT). Weights are
embeddedwithin SKAT to reflect the hypothesized contribution of the variants to the trait variance. Because
the true weights are generally unknown, and so are subject to misspecification, we examined the efficiency
of a data-driven weighting scheme. We propose the use of a set of theoretically defensible weighting
schemes, of which, we assume, the one that gives the largest test statistic is likely to capture best the allele
frequency–functional effect relationship. We show that the use of alternative weights obviates the need to
impose arbitrary frequency thresholds. As both the score test and the likelihood ratio test (LRT) may be
used in this context, and may differ in power, we characterize the behavior of both tests. The two tests
have equal power, if the weights in the set included weights resembling the correct ones. However, if the
weights are badly specified, the LRT shows superior power (due to its robustness to misspecification). With
this data-driven weighting procedure the LRT detected significant signal in genes located in regions already
confirmed as associated with schizophrenia — the PRRC2A (p = 1.020e-06) and the VARS2 (p = 2.383e-06)
— in the Swedish schizophrenia case-control cohort of 11,040 individuals with exome-sequencing data.
The score test is currently preferred for its computational efficiency and power. Indeed, assuming correct
specification, in some circumstances, the score test is the most powerful test. However, LRT has the ad-
vantageous properties of being generally more robust and more powerful under weight misspecification.
This is an important result given that, arguably, misspecified models are likely to be the rule rather than the
exception in weighting-based approaches.
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With the increasing availability of exome/genome sequenc-
ing data, rare variant (RV) association studies are gain-
ing importance in human genetic research. One impor-
tant test of association between a target set of RVs and a
given phenotype is the sequence kernel-based association
test (SKAT) (Chen et al., 2013; Ionita-Laza et al., 2013; Lee
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et al., 2012; Lippert et al., 2014; Listgarten et al., 2013;
Svishcheva et al., 2014; Wu et al., 2011). SKAT is based on
a random effects model, in which the effect sizes of the RVs
are assumed to be drawn from a distribution with a zero
mean and a variance. That the effect sizes are character-
ized by a single variance is a strong assumption that is made
plausible by weighting of effect sizes. The required weights
are typically assigned based onmeta-information about the
tested variants, such as allele frequency and functional pre-
dictions (Kryukov et al., 2007; Madsen & Browning, 2009;
Price et al., 2010;Wu et al., 2011), with rarer and functional
variants expected to have larger effects. Allele frequency, in
particular, is an important weighting factor, as the rarer the
variant is, the stronger the average purifying selection co-
efficient (Pritchard, 2001; Schork et al., 2009). Accordingly,
the effect sizes for RVs will tend to be larger than for more
common variants.

The relationship between effect size, frequency, and se-
lection, however, rests on directional assumptions about
the extent of selection on the phenotype in question and
the demographic history of the population (Eyre-Walker &
Keightley, 2007; Price et al., 2010; Zuk et al., 2014). Specif-
ically, there are several conditions that have to hold for the
frequency to be genuinely informative about the functional
effect that a genetic variant has on a trait, namely: (a) the
population under study has not experienced recent severe
bottlenecks; (b) the selection on the trait of interest is di-
rect; (c) strong (i.e., selection coefficient s ≥ 10-2.5); and (d)
it acts uniformly across the associated genes. Yet, for the rea-
sons detailed below, the circumstances in which these con-
ditions are expected to hold are rather special. First, pop-
ulation genetics theory predicts that the frequency of dele-
terious variants will vary with the size of the effect the as-
sociated trait has on fitness. For instance, risk variants im-
plicated in early-onset diseases (e.g., autism) will be mostly
rare, that is, kept at low frequencies by selection pressures
because of the high impact these diseases have on repro-
ductive fitness (Manolio et al., 2009). In contrast, variants
associated with a trait having a negligible effect on fitness
(e.g., Alzheimer’s disease) will likely escape selection and so
may occur at relatively high frequencies in the population
(Zuk et al., 2014). Second, it should be noted that even if the
trait of interest is under strong selection pressure, variants
across thewhole frequency spectrummay jointly contribute
to disease risk, as simulation studies (Price et al., 2010) and
empirical results (e.g., Cohen et al., 2006; Teslovich et al.,
2010) have demonstrated. Third, allele frequency distribu-
tion is expected to vary as a function of the demographic
history of the population. Using population genetics simu-
lations, Zuk et al. (2014) showed that given the same selec-
tion coefficient s, the frequency of deleterious alleles influ-
encing a trait will depend on mutation rate and on whether
the population under study has encountered recent severe
bottlenecks. For example, given strong selection pressures
(i.e., s > 10-2.5) acting directly on the phenotype, the me-

dian frequency of the associated alleles may vary from as
high as 0.0377 in recently bottlenecked populations (e.g.,
Finland), to as low as 9.36E-005 in a large population with
simple exponential expansion. Finally, the strength of se-
lection is expected to vary across genes, and so will the al-
lele frequency–functional effect relationship (Price et al.,
2010; Zuk et al., 2014). Genes underweak selectionwill har-
bor both common and RVs, both with functional effects,
whereas functional variants within genes under strong se-
lective constraints will mainly be rare. The examples above
indicate that testing genomic regions by relying on aweight-
ing schemewhich up-weights rarer variants and puts low or
zero weights on the more common ones is optimal only in
specific circumstances.

Because the true weights are generally unknown and,
therefore, subject to misspecification, we examined the effi-
ciency of a data-driven weighting scheme. We propose the
use of a set of theoretically defensible weighting schemes of
which, we assume, the one that gives the largest test statis-
tic is likely to capture best the allele frequency–functional
effect relationship. The set of alternative weighting schemes
will accommodate genomic regions where only very RVs
are likely to be functional, as well as regions under weak
selection pressures, harboring both rare and common vari-
ants, both (possibly) related to the risk of the disease of in-
terest. As such, this adaptive weighting procedure renders
the (arbitrary)MAF thresholding unnecessary. Family-wise
error rate can be protected by using a multiple testing cor-
rection method (e.g., the Bonferroni method) or by using
permutation. Using simulations, we demonstrate that the
use of alternative (incorrect) weights does not inflate the
type I error rate. We show the power benefits conferred by
the use of such a data-driven weighting procedure in both
simulated and empirical data. As both the score test (Wu
et al., 2011) and the likelihood ratio test (LRT) (Listgarten
et al., 2013) may be used in this context, and may differ in
power (Zeng et al., 2014), we characterize the behavior of
both tests.

Below, we first formulate the model and briefly describe
the LRT and the score test. We then present and evaluate
the use of a data-driven weighting scheme in simulated and
empirical data. Specifically, we evaluate the efficiency of the
two tests under (a) the data-driven weighting scheme, rel-
ative to their efficiency under (b) incorrect, and (c) correct
weighting. Finally, we discuss the robustness of the two tests
to misspecification, and the power advantages conferred by
our proposed weighting procedure in SKAT.

Methods
Model Formulation

Let y be the n-dimensional vector of continuous phenotypic
scores obtained in a sample of n individuals. Let X be the
n×p designmatrix containing covariates. LetG be the n×m
matrix of genotype values, with the gij element denoting
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the genotype value of the individual i (i = 1…n) at locus j
(j = 1…m). Genotypes are coded as additive-codominant,
that is, gij = (0,1,2). The association between the phenotype
and the set ofm variants is modeled within the linearmixed
model framework as follows:

y = Xβ + Gb+ e, (1)

with βt = (β1, . . . , βp) being the p-dimensional vector of
fixed effects of covariates, bt = (b1, . . . , bm) being them×1
vector of regression coefficients in the regression of the phe-
notype on the m genetic variants within the target set, and
e being the n-dimensional vector of random residuals. The
random vectors b and e are assumed to be normally dis-
tributed: b ∼ N(0, Iσ2

b) and e ∼ N(0, Iσ2
e ), with I being

the identity matrix of appropriate dimension.
Let W be the m×m diagonal matrix containing the

weights used to weigh the contribution to the test statistic of
the variants in the set. The normally distributed phenotype
y has expected mean E[y] = Xβ and variance–covariance
matrix:

∑
y
= E[(y − E(y))(y − E(y))t ] = GWGt σ

2
b

m
+ Iσ2

e ,

(2)
with GWGt being the weighted kernel or genetic relation-
ship matrix. As implemented in the SKAT (Wu et al., 2011),
the diagonal elements of the W matrix, diag(w1 . . .wm)
are related to the minor allele frequency of the jth variant
by means of the beta density distribution function (dbeta),
which is characterized by two shape parameters. The speci-
fication of the two shape parameters is informed by the hy-
pothesized relationship between the jth variant effect and its
minor allele frequency (MAF; see the section onWeighting
below).

Tests of Variance Components

To test whether the parameter of interest σ2
b deviates signifi-

cantly from zero, one can employ a LRT or a score test. The
LRT is computed as two times the difference between the
log-likelihoods of the null model (σ2

b constrained to equal
0) and the alternative model (σ2

b estimated freely). Parame-
ter estimation can be performed by restricted/residualmax-
imum likelihood:

LogL
(
σ2
b, σ

2
e
) = 1/2log|�y| − 1/2 log

∣∣Xt�−1
y X

∣∣

− 1/2rt�−1
y r − 1/2(n − p)log(2π), (3)

where r = y − X (Xt ∑−1
y X )−Xt ∑−1

y y with superscript
‘−’ denoting a generalized inverse (Basilevsky, 1983).

In evaluating the statistical significance of the restricted
LRT, we note the null distribution of the test statistic is a
πχ2

0 : (1 − π)aχ2
d mixture of distributions, with the mix-

ture parameter π, the scale parameter a, and the degrees of
freedom d on the second component estimated using the

computationally efficient permutation-based approach de-
veloped by Listgarten et al. (2013).

The score test is computed as follows:

QSKAT = (y − X β̂)tGWGt (y − X β̂). (4)

With its expected null distribution following a mixture of
chi-square distribution and statistical significance assessed
by means of the Davies exact method (Davies, 1980).

Data Simulation

Phenotypes and genotypes inHardy–Weinberg equilibrium
were generated in samples of n = 10,000 unrelated indi-
viduals. Specifically, we simulated twom-dimensional ran-
dom vectors of continuous variables representing alleles at
m equidistant loci for each individual i from the sample.
The vectors were drawn from a multivariate distribution
with zero mean and �LD correlation matrix. We set �LD
to equal an identity matrix, as we considered sets of RVs
expected to be in linkage equilibrium (see e.g., Daye et al.,
2012); but see the Supplementary material for results based
on rare, and rare and common variants in linkage dise-
quilibrium simulated using a coalescent model (Shlyakhter
et al., 2014). The multivariate normally distributed vari-
ables were then discretized given chosen thresholds based
on the MAF at each locus. We considered, MAFs varying
randomly between 0.005 and 0.05, sampled from a uni-
form distribution. Given the vectors of alleles, we then cre-
ated the m vectors of genotypes, gij. Based on the geno-
types, the n×1 vector of phenotypes, y, was generated as
follows:

yi =
m∑
j=1

gi jb j∗
√

σ2
b + ei ∗

√
σ2
e , (5)

bj, the regression weight of the variant at the jth locus was
computed as a function of MAFj and of its contribution to
the standardized variance of the polygenic scores (Mather
& Jinks, 1977). Namely, the regression weights varied with
MAF, while their contribution to the genetic variance was
equal. Simulating data in this fashion is equivalent to simu-
lation according to dbeta (MAF, 0.5, 0.5) weights (Wu et al.,
2011), with weights increasing with decreasing MAF. The
variance σ2

b equaled 0.01 across all scenarios we consid-
ered, and σ2

e = 1 − σ2
b. The n-dimensional vector of envi-

ronmental scores e was drawn from a standard normal dis-
tribution N(0, 1).

Data-Driven Search for Optimal Weights: Exploring the
Misspecification Space

Because the strength and effectiveness of selection pressures
vary across the genome, committing to a single weighting
scheme when testing thousands of genes may only capture
signal from genes under selection pressures matching the
chosen weighting scheme. An optimal weighting scheme
should be allowed to vary across the tested genes, to match

110 TWIN RESEARCH AND HUMAN GENETICS

https://doi.org/10.1017/thg.2017.7 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2017.7


The Weighting is the Hardest Part

variable selection pressures. To this end, we evaluated the
efficiency of a data-driven search for optimal weights. We
carried out simulations to evaluate the efficiency of the LRT
and the score test under (a) the variable data-drivenweight-
ing scheme, relative to their efficiency under (b) incorrect,
and (c) correct weighting.

The m-dimensional vector of weights w was computed
using the beta density function, with the jth element calcu-
lated asw j = dbeta(MAF j; a1, a2) given theMAF of the jth
variant and the shape parameters a1 and a2. As described
in the previous section, data were simulated according to
dbeta (0.5, 0.5) weights (i.e., the true weights increase with
decreasing MAF). Next, in computing the tests statistic we
(mis)specified the weights as: (a) dbeta (1,1); (b) dbeta (0.5,
0.5); (c) dbeta (1,25), and (d) dbeta(1,50). The first weight-
ing scheme pertains to the hypothesis that there is no rela-
tionship between the regression weight and the frequency
of the variant (hence, themore common variants contribute
on average more to variation in the phenotype). In this sce-
nario, the association test is carried out with raw additive-
codominant coding of the genotypes. The use of the sec-
ond weighting scheme is equivalent to standardization of
the genotypic values prior to the analysis. We considered
the effect of this weighting scheme as this treatment of the
genotypes is default in GCTA (Yang et al., 2011) and in
FaST-LMM-set (Listgarten et al., 2013). Standardization
and assignment of weights dbeta (0.5, 0.5) are equivalent
weighting schemes (Wu et al., 2011), in which the contribu-
tion to the test of rarer variants is up-weighed relative to that
of the more common ones (Speed et al., 2012), and hence
the variants contribute on average equally to the variance
in the phenotype (regardless of frequency).We also consid-
ered the effects of the third weighting scheme dbeta (1,25),
as these are the default weights in SKAT (Wu et al., 2011).
Finally, we considered the effect of a more extreme weight-
ing scheme, dbeta (1,50), including weights that overlook
common variants and favor the contribution to the test
statistic of rarer ones. This weighting scheme pertains to the
hypothesis that only ultra-RVs contribute to the phenotypic
variance.

We performed association tests by using the set of three
incorrect weighting schemes, that is, (a) dbeta (1,1), (b)
dbeta (1,25), and (c) dbeta (1,50). The p value for the
gene equaled the minimum Bonferroni corrected p value
minPLRT (minPscore) out of the three p values obtained,
given the genotypes transformed according to each of
the weighting schemes enumerated above. We also report
the power of the tests under each of these misspecified
weighting schemes, as it is of interest to assess whether
our procedure confers power gains relative to a test that
uses a single (misspecified) weighting scheme (i.e., three
tests vs. one test). We assessed the behavior of the two
tests under the above weighting schemes by considering
target regions harboring both deleterious and beneficial
variants.

Evaluating the Type I Error Rates and Power

We evaluated the type I error rate by generating 1,000
datasets under the null hypothesis of no phenotypic vari-
ance explained by the variants within the target set. The
type I error rate was computed as the proportion of datasets
in which the tests incorrectly rejected the null hypothesis
and it was evaluated given α = 0.01. We refer to Listgarten
et al. (2013) for an exhaustive evaluation of the type I error
at more stringent alpha levels.

Power was assessed based on 1,000 simulated datasets,
an effect size of 1% explained phenotypic variance and
7 alpha thresholds. Given the 7 alpha thresholds, power
was computed using the permutation-based procedure
implemented in FaST-LMM-Set (Listgarten et al., 2013).
Estimation of the free parameters π, a, and d of the null
distributionπχ2

0 : (1 − π)aχ2
d used 1,000 permutations. As

a validity check of our simulation program, we also report
the power and the type I error rates of the true (i.e., correct)
model.

Software

The R-package MASS (Venables & Ripley, 2002) was used
for data generation. Model fitting was performed in FaST-
LMM-set (Listgarten et al., 2013). The software is readily
available for use on Github. For the sake of comparison,
we analyzed one simulated sample of 5,000 individuals
by using four independent programs implementing ge-
netic similarity/kernel-based variance component tests:
the nlme R-package, the software Genome-wide Com-
plex Trait Analysis (GCTA; Yang et al., 2011), the soft-
ware FaST-LMM-set (Listgarten et al., 2013), and the R-
package OpenMx (Neale et al., 2016). The values for the
LRT and the estimates for the variance component obtained
by the four programs were almost identical (see Table S1
for details), indicating that these implement equivalent ap-
proaches. Having established the equivalence, the empiri-
cal analyseswere conducted using the software FaST-LMM-
set. Analyses were carried out on the Broad Institute Gold
Compute cluster and on the Lisa cluster (https://www.surf.
nl/en).

Empirical Analysis: Evaluating the Importance of
Thresholding and Variable Weighting

We compared the performance of the LRT and of the score
test under our proposed data-driven weighting scheme in
a real dataset. For this illustration, we used the Swedish
schizophrenia case-control cohort of 11,040 individuals
with exome-sequencing data from blood DNA. Cases had a
clinical diagnosis of schizophrenia and at least two hospital-
izations as determined by expert review based on the Hos-
pital Discharge Register (Dalman et al., 2002; Kristjansson
et al., 1987). Controls, without a diagnosis of schizophre-
nia or bipolar disorder, were randomly selected from popu-
lation registries. Both cases and controls are of Scandina-
vian ancestry, aged 18 or older (see Purcell et al. (2014),
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and Ripke et al. (2013), for a detailed description of the
sample). There were 175 individuals with unreliable sam-
ples (i.e., duplicates, ethnic outliers, or having a genotype
missing rate higher than 10%) whom we removed from the
analysis. This left for the analysis 4,867 cases and 6,173 con-
trols; 6052 of these were males. Written informed consent
was obtained from all participants (or legal guardian con-
sent and subject assent). All procedures were approved by
the ethical committees in Sweden and in the United States.
Data are available through dbGAP.

Exome-sequencing was performed in 12 waves at the
Broad Institute of MIT and Harvard. For samples in the
first wave, hybrid capture was performed using the Agi-
lent SureSelect Human All Exon Kit method. In this ver-
sion, themethod targets∼28million base-pairs partitioned
in ∼160,000 regions. Sequencing was done using Illumina
GAII instruments. For samples in the waves 2– 12, hybrid
capture was done by using the newer version of the Agilent
SureSelect Human All Exon v.2 Kit method, which targets
∼32 million base-pairs partitioned in ∼190,000 regions.
Sequencing was performed using the Illumina HiSeq 2000
and HiSeq 2500 instruments. We used BWA ALN version
0.5.9 (Li & Durbin, 2009) to align the reads to the GRCh37
human genome reference, and we applied Picard/GATK
to process the sequence data and to call variants (http://
broadinstitute.github.io/picard/; McKenna et al., 2010). Se-
lected singletons were validated using Sanger sequencing
(see Purcell et al. (2014), for details). Variants out of Hardy–
Weinberg equilibrium (p value < 5E-8) and showing ex-
cess heterozygosity, or variants showing excessive correla-
tion (p value < 5E-8) with the covariates that could not
be explained by principal components were excluded from
the analysis. In addition, we excluded variants that did not
pass the GATK default filters (DePristo et al., 2011; Van der
Auwera et al., 2013). There were 1,584,195 variants meeting
all our quality control criteria.

For this empirical illustration, we focused on two par-
tially overlapping sets of genes (1,435 genes) likely relevant
to schizophrenia. The first set consisted of 941 genes that are
part of the list identified by Samocha et al. (2014) as highly
constrained. These constrained genes were proposed as
candidates in autism spectrum disorder (ASD) given their
enrichment for de novo loss of function case mutations.
Given evidence favoring the hypothesis that schizophre-
nia and ASD share genetic etiology (Fromer et al., 2014;
SchizophreniaWorkingGroup of the Psychiatric Genomics
Consortium, 2014), this set of genes is likely to be rele-
vant also to schizophrenia. The second set consisted of 768
genes targeted by the fragile-X mental retardation protein
(FMRP). This set is part of the list of genes derived by
Darnell et al. (2011) from mouse brain as likely implicated
in regulating synaptic plasticity. Genes targeted by FMRP
were found to be enriched for de novo non-synonymous
case mutations in both ASD (Iossifov et al., 2012) and
schizophrenia (Fromer et al., 2014). Purcell et al. (2014) also

tested the FMRP set for enrichment of RVs in half of the
current sample, and their analysis yielded nominally signif-
icant results.

We performed sequence-based kernel association analy-
ses using the LRT and score tests with variable weights. The
analyses were carried out using the FaST-LMM-Set soft-
ware (Listgarten et al., 2013). To adjust for ancestry, we in-
cluded into analysis the first two principal components ex-
plaining the largest amount of variance in the sample and
reflecting the Finish and Northern/Southern Swedish an-
cestry (see Extended Data Figure 1 in Purcell et al. (2014);
see also Genovese et al. (2016)). Principal components were
computed from genotypes at variants shared with the 1,000
Genomes Project phase 1 dataset. To accommodate the sce-
nario inwhich only RVs are likely to be functional, as well as
the scenario in which the targeted region is under weak se-
lection pressures, harboring both rare and more common
variants, both (possibly) related to the risk of disease (re-
gardless of frequency), we used three alternative weight-
ing schemes: dbeta (1,25), dbeta (0.5, 0.5), and dbeta (1,1).
The use of alternative weights obviates the need for choos-
ing arbitrary frequency thresholds to select the target set.
However, for the sake of illustration, we also report the
results obtained in the analyses stratified based on allele
counts thresholds (i.e., we selected variants with a minor
allele count (MAC) up to 10 and aMAC up to 50). For each
of the tested genes, we selected the Bonferroni corrected p
value corresponding to theweighting scheme that yields the
largest test statistic (i.e., the p value was adjusted for mul-
tiple hypothesis testing of 1,435 genes and three weight-
ing schemes). An alpha of 0.05 was used as the significance
threshold. For computational ease, we used a linear model
(Listgarten et al., 2013). The linear LRT (and the linear score
test) shows good control of the type I error rate and has per-
formed as well as a generalized linear model in case-control
samples (see Lippert et al., 2014).

Results
Type I Error

Table 1 contains the results pertaining to the type I error
rates of the two tests, given correct and incorrect model
specification.

Both the restricted LRT and the score test yield correct
type I error rates, regardless of whether the weights used
are correctly specified or misspecified. The two tests show
good control of the type I error rate also under our pro-
posed Bonferroni data-driven weighting procedure. Note
that these conclusions generalize to scenarios in which the
target set includes common and RVs in linkage equilib-
rium/disequilibrium (see Table S2).

Power

Figure 1 displays the results relating to power to detect a
target set of 50 functional variants (but see Figure S1 for
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FIGURE 1
(Colour online) The power of the likelihood ratio test (LRT) and the score test to detect a gene harboring 50 functional variants, jointly
explaining 1% of the phenotypic variance (minor allele frequency 0.5–5%). Data were simulated according to weights dbeta (0.5, 0.5).
Power was evaluated in 1,000 datasets consisting of 10,000 individuals each.

simulation results involving a region harboring a mixture
of functional and phenotypically neutral variants).

Four important conclusions follow from our simulation
results. First, the restricted LRT and the score test have
equal power when the weights are correctly specified. This
is expected, as the two tests are asymptotically equivalent
when the model is true, that is, correctly specified (e.g.,
Greene, 2003). The powers of the two tests are similar when
the assigned weights correspond to the true weights, that is,
dbeta (0.5, 0.5).

Second, misspecification of weights always reduces
power. This is shown in Figure 1 as the departure of the
power under model misspecification from the power of
the true model, that is, dbeta (0.5, 0.5). The exact loss
in power depends on the degree of weight misspecifica-
tion and on the statistical test employed. We note that the
power loss is relatively small given mild misspecification
of weights; for example, when the assigned weights dbeta
(1,25) resemble the true weights dbeta (0.5, 0.5), as illus-
trated in Figure 1. However, the power may suffer dramati-
cally with increasing misspecification. For instance, using a
dbeta (1,50) weighting scheme—which acts as a frequency
threshold, removing from the test the more common vari-
ants — results in a loss in power of up to ∼10% and ∼34%
(given an alpha of 10-7), for the restricted LRT and for the
score test, respectively.

Third, relative to the score test, we note that the restricted
LRT is consistently more robust to weight misspecification.
These results are consistent with those reported by Zeng
et al. (2014) and by Lippert et al. (2014), who found the
LRT to be generallymore powerful than the score test across
their simulated settings. Although Lippert et al. did not
consider the behavior of the two tests under misspecified
weights, they reported the same pattern of results in real
data analysis, where the LRT yielded consistently more as-
sociations than the score test. As the real weights are in all

TABLE 1
The Empirical 95% Confidence Intervals around the Type I Error
for the Restricted Likelihood Ratio Test (LRT) and the Score Test,
given data simulated under the null model of no association
between the target region and the phenotype

Weights dbeta LRT Score test

(0.5, 0.5) [0.0043, 0.0176] [0.0030, 0.0150]
(1,1) [0.0054, 0.0183] [0.0037, 0.0163]
(1,25) [0.0043, 0.0176] [0.0030, 0.0150]
(1,50) [0.0054, 0.0183] [0.0037, 0.0163]
Bonferroni [0.0018, 0.0123] [0.0024, 0.0137]

Note: Type I error was evaluated at alpha = 0.01. The tests were computed
for five weighting schemes in each of the 1,000 simulated samples
of 10,000 individuals with genotypes at 50 variants in linkage equilib-
rium (minor allele frequency 0.5–5%).

likelihood not known, the superior power of the restricted
LRT in real datamight be explained as well by its robustness
to weight misspecification and to the inclusion of weighed
neutral variation in the computation of the test statistic.

Fourth, we note that both tests benefit from the use
of variable weights. The data-driven search for optimal
weights confers power advantages over a model that uses
misspecified weights, and maintains the power close to that
afforded by a correctly specified model. It should be noted,
however, that there is a price to pay in terms of power by us-
ing this data-drivenweighting scheme in contrast to correct
weighting (i.e., using alternative weights increases the bur-
den of multiple testing). The two tests have equal powers
with the Bonferroni corrected data-driven weighting pro-
cedure; this is due to the fact that the weights resembling
the correct ones were included in the procedure (the more
weights one tries, the largest the price in terms of power one
has to pay). Had the procedure included weights misspec-
ified to a greater extent, the power of the score test would
have decreased relative to that of the LRT (which appears to
be more robust to misspecification). As the true weights are
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TABLE 2
Results of the gene based analysis run in the Swedish sample (N = 11,040)

Chromosome (position range) Gene (autosome variants) Weights dbeta LRT Score test

9 (135762714–135804294) TSC1 (142) (1,1) 0.0001 (0.5596) 0.0027 (1)
(0.5,0.5) 0.0064 (1) 0.0256 (1)
(1,25) 0.0014 (1) 0.0026 (1)

15 (52058632–52100672) TMOD2 (52) (1,1) 0.0004 (1) 0.0039 (1)
(0.5,0.5) 0.0069 (1) 0.015 (1)
(1,25) 0.0034 (1) 0.0038 (1)

4 (62363001–62935992) LPHN3 (131) (1,1) 0.0006 (1) 0.0029 (1)
(0.5, 0.5) 0.0146 (1) 0.0563 (1)
(1,25) 0.0041 (1) 0.0029 (1)

Note: The gene-based analysis was restricted to variants with minor allele count below 10. Bonferroni corrected p
values are given in italics. For each gene, the lowest p value is given in bold type.

typically unknown, conjecturing the correct ones by em-
ploying the proposed Bonferroni scheme with alternative
weights and using the LRT appears to be the strategy most
likely to maintain the power close to that of the true model.

Empirical Analysis: Evaluating the Importance of
Thresholding and Variable Weighting

We next looked at the behavior of the score test and of the
LRT (Listgarten et al., 2013) under variable weights in the
empirical dataset. Tables 2 and 3 display results pertaining
to the association tests in the analyses stratified based on
arbitrary MAC thresholds.

From Table 2, we note that the LRT appears to be more
powerful than the score test. The two tests seem to agree
in selecting the top association signals, as both ranked in
the top three the same genes. All three weighting schemes
tend to pick up nominally significant association signals. Of
these, the dbeta (1,1) weighting scheme yields the lowest p
value for all three genes. Similar trends in the results were
observed when we restricted the analyses to variants with a
MAC below 50 (see Table 3).

The use of alternative weights obviates the need of
thresholding to prioritize the contribution of the variants to
the test statistic (the thresholds are, however, arbitrary: vari-
ants defined as rare in one samplemight feature as common
in another sample). We conducted the analysis using our
proposed data-driven weighting scheme, without imposing
any frequency threshold. Table 4 contains the results.

For the top three genes, Table 4 shows that the dbeta
(1,1) weighting scheme appears to best capture the al-
lele frequency–functional effect relationship. This weight-
ing scheme yields the largest test statistic and singles out
the PRRC2A and theVARS2 as significantly associated with
schizophrenia disease status given our chosen alpha thresh-
old (i.e., p value = 1.020e-06 and p value = 2.383e-06, re-
spectively). The third top gene is the AKT3 gene (p value
= 2.825e-05). All three genes belong to the Samocha et al.
(2014) list of genes under selection constraints. Had one re-
lied on a weighting scheme that up-weights rarer variants
and down-weights the more common ones, these associ-
ation signals would have been missed. As these genes did

not pass the significance threshold in the analyses strati-
fied byMAC, the results suggest that arbitrary thresholding
might remove from the target causal variants and in doing
so might weaken the association signal. We observed simi-
lar trends in power when we simulated sets of common and
rare functional variants, where — similar to a frequency
threshold — the dbeta (1,25) weighting scheme discarded
from the target set causal variants (see Figure S2).

Importantly, association signals in all three genes have
been previously reported (e.g., Ripke et al., 2013) and repli-
cated (e.g., Aberg et al., 2013), suggesting that these re-
sults are unlikely to be false positives. Without threshold-
ing, common variants might also be included in the anal-
ysis. In our sample, of the 43 (AKT3), 238 (PRRC2A), and
408 (VARS2) tested variants, 1, 29, and 15 variants, respec-
tively, had a MAC greater than 50. The question remains
whether the test was dominated by these common variants.
We checked in our sample whether the common variants, if
tested with a univariate test, do yield genome-wide signifi-
cant association signals. Results showed that none of them
would be detected in an ordinary genome-wide association
study (GWAS) (see Tables S3–S5). Hence, either threshold-
ing or relying on a default weighting scheme would result
in missing true association signals. We elaborate on these
results in the Discussion.

Discussion
We considered the issue of optimizing weighting in associ-
ation studies based on the sequence kernel test. Consistent
with empirical (Lippert et al., 2014) and simulation (Zeng
et al., 2014) results, we found that the LRT is generally more
robust to weight misspecification, and more powerful than
the score test in such a circumstance. The principal find-
ing of this study is that using a weighting scheme that in-
cludes alternative weights is likely to boost statistical power.
Our results are of interest because weight assignment is
embedded within any set-based test and the true weights
of the variants within the target are generally unknown.

In the literature, weighting is mostly informed by allele
frequency; frequency is taken as indicative of the strength
of the purifying selection coefficient (Kryukov et al., 2007).
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TABLE 3
Results of the gene-based analysis run in the Swedish sample (N = 11,040)

Chromosome (position range) Gene (autosome variants) Weights dbeta LRT Score test

9 (109685651–109773313) ZNF462 (224) (1,1) 0.0001 (0.4735) 0.0032 (1)
(0.5,0.5) 0.0078 (1) (0.0547) (1)
(1,25) 0.0001 (0.4735) 0.003 (1)

15 (52058615–52100672) TMOD2 (54) (1,1) 0.0002 (1) 0.0091 (1)
(0.5,0.5) 0.0054 (1) 0.0063 (1)
(1,25) 0.0002 (1) 0.0083 (1)

8 (141669548–141900779) PTK2 (139) (1,1) 0.0008 (1) 0.0034 (1)
(0.5,0.5) 0.0136 (1) 0.0429 (1)
(1,25) 0.0008 (1) 0.0033 (1)

Note: The gene-based analysis was restricted to variants with minor allele count below 50. Bonferroni corrected p
values are given in italics. For each gene, the lowest p value is given in bold type.

TABLE 4
Results of the gene-based analysis run in the Swedish schizophrenia case-control sample (N = 11,040)

Chromosome (position range) Gene (autosome variants) Weights dbeta LRT Score test

6 (31584304–31607461) PRRC2A (408) (1,1) 1.020e-06 (0.0043) 2.556e-06 (0.011)
(0.5, 0.5) 5.8e-04 (1) 9.886e-05 (0.4255)
(1,25) 0.055 (1) 0.057 (1)

6 (30877202–30894026) VARS2 (238) (1,1) 2.383e-06 (0.0102) 0.0043 (1)
(0.5, 0.5) 0.0031 (1) 0.0048 (1)
(1,25) 1 (1) 0.534 (1)

1 (243668558–244006487) AKT3 (43) (1,1) 2.825e-05 (0.1216) 7e-04 (0.7533)
(0.5, 0.5) 0.0036 (1) 0.0063 (1)
(1,25) 1.6e-04 (0.6888) 7.586e-05 (0.3265)

Note: The gene-based analysis was conducted by relying on the data-driven weighting procedure, without imposing a-priori a
frequency threshold. Bonferroni corrected p values are given in italics. For each gene, the lowest p value is given in bold
type.

Accordingly, rarer variants are typically being assigned
larger weights/contribution to the test statistic (e.g., Wu
et al., 2011). This relationship between effect size, fre-
quency, and selection is not always straightforward, how-
ever, because it relies on assumptions about the extent of di-
rect selection on the phenotype in question and the demo-
graphic history of the population (Eyre-Walker&Keightley,
2007; Price et al., 2010; Zuk et al., 2014). Genes under weak
selection may harbor rare as well as more common variants
with disruptive effects (Zuk et al., 2014).

Such variants with deleterious effects, escaping selection
and occurring at relatively high frequencies in the popula-
tion, are plausible also under strong purifying selection, as
simulation studies have demonstrated (Price et al., 2010).

Achieving maximal power when testing such regions re-
quires adapting the weighting scheme tomatch the hypoth-
esized selection types. To this end, we proposed the use of
a data-driven weighting approach. Our simulation results
showed, that such an approachmaintains the power close to
that of the true (i.e., correctly specified) model. When ap-
plied to real data, this approach allowed us to locate previ-
ously reported genes conferring risk to schizophrenia (e.g.,
Aberg et al., 2013; Ripke et al., 2013), lending support to
the conclusion that such a variable weighting approach is
likely to boost statistical power. Such adaptive approaches
were also recommended by Zuk et al. (2014) and Price

et al. (2010) as being optimal for gene-based tests. Deriving
weights based on allele frequency is but one of the possi-
ble ways of prioritizing the contribution to the test statis-
tic of the variants within the target set (Wu et al., 2011).
Alternative weighting schemes that incorporate probabil-
ities of a variant being damaging, as estimated by anno-
tation tools such as, for example, Polyphen-2 (Adzhubei
et al., 2010) or SIFT (Ng & Henikoff, 2003), may also be
considered.

We emphasize that our data-driven weighting approach
renders thresholding unnecessary. Thresholding (either
based on counts or on allele frequency) has been initially
used in burden tests (e.g., Li & Leal, 2008; Madsen &
Browning, 2009; Price et al., 2010; see also Franić et al.,
2015, for an overview on burden tests), but it has been em-
ployed also in sequence-based variance component tests
(Lohmueller et al., 2013; Xu et al., 2014) for the purpose of
removing neutral variation (see, e.g., Kryukov et al., 2007).
Yet, in our empirical analysis this practice was counterpro-
ductive: imposing the (arbitrarily chosen) MAC thresholds
muted the signal in genes located in regions already con-
firmed as associated with schizophrenia (i.e., the PRRC2A
and theVARS2 genes; e.g., Aberg et al., 2013; and the AKT3
gene; e.g., Ripke et al., 2013). Considering common vari-
ants along with the rare ones in sequence-based kernel as-
sociation tests appears to be justified for threemain reasons.
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First, the use of variable weighting schemes is equivalent to
applying variable frequency thresholds: the weights are re-
moving from the test or favoring the contribution to the test
statistic of the variants within the target set based on their
frequency. Second, only the joint signal — coming from
rare and more common variants — enabled us to detect
significant enrichment. That is, we note that none of these
common variants would be detected in an ordinary GWAS
(see Tables S3–S5). And third, importantly, with the current
samples, our tests are mostly powered to locate regions un-
der relatively weak selection pressures, and such regions are
expected to harbor rare as well as common variants, both
with functional effects. To locate genes under stronger se-
lection pressures, larger samples (see Zuk et al., 2014) and
the inclusion of more extreme weights (i.e., weights that
overlook common variants and favor rare ones) will proba-
bly be required.

The LRT and the score test had equal power under
the data-driven weighting approach. Note, however, that
this equivalence hinged upon the inclusion of weights that
closely resemble the true ones among the alternatives. The
powers of the two tests will likely diverge when the weights
in the set are all badly specified; in such a circumstance, the
LRT is expected to show superior power (due to its robust-
ness to assumption violation). This is likely illustrated in the
empirical analysis where the LRT has always yielded lower
p values. Yet, despite these differences in power, currently
the score test is the dominant association test with RVs, in-
volving single studies and also in meta-analyses (see, e.g.,
Tang&Lin, 2015). Integrating LRT intometa-analytic tech-
niques for rare-variant association testing is desirable — to
ensure maximal power of detection — and will likely boost
its application.

Both in the simulations and in the empirical analysis,
we chose to correct alpha by using the Bonferroni method.
We chose this method for the sake of simplicity. Although
one may argue that the method is slightly conservative as
the tests are correlated, it is important to note that the Bon-
ferroni corrected weighing procedure confers more power
than a badly specified weighting scheme would do; p value
correction for larger number of tests can be easily obtained
using the p.adjust function implemented in the stats R-
package. Permutation may also be used to compute the p
value. However, the data-driven weighting approach based
on permutations is prohibitively slow, when the number
of tested variants within the target set (or the number of
genes) and the sample are large. The Bonferroni correction
— though easier computationally — comes at a price in
terms of power: the more weighting schemes one ‘tries’, the
more stringent the significance threshold correction. An al-
gorithm for optimal search for the ‘true’ weights (e.g., Neale
& Cardon, 1992) or limiting the choice of weights based on
knowledge on theorized selection on each gene (Zuk et al.,
2014) would decrease the burden of multiple testing, and
further increase power.

Conclusion
The score test is currently widely used in sequence-based
association studies (e.g., Cruchaga et al., 2014; Huyghe
et al., 2013; Peloso et al., 2014; Zhan et al., 2013) for both
its computational efficiency and power (Wu et al., 2011).
Indeed, assuming correct specification, in some circum-
stances the score test is themost powerful test (Lippert et al.,
2014;Wu et al., 2011). However, the results provided herein
showed that the LRT has the compelling qualities of be-
ing generally more robust andmore powerful under weight
misspecification. This is an important result given that, ar-
guably, misspecified models are likely to be the rule rather
than the exception in the weighting-based approaches.
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