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BICOMMUTATORS OF COFAITHFUL, 
FULLY DIVISIBLE MODULES 

JOHN A. BEACHY 

We define below a notion for modules which is dual to that of faithful, and 
a notion of "fully divisible" which generalizes that of injectivity. We showr 

that the bicommutator of a cofaithful, fully divisible left i^-module is iso­
morphic to a subring of QmaiX(R), the complete ring of left quotients of R. 

In recent papers, Goldman [2] and Lambek [3] investigated rings of left 
quotients of a ring R constructed with respect to torsion radicals. It is known 
that every ring of left quotients of R is isomorphic to the bicommutator of an 
appropriate injective left ^-module. We investigate below subrings of rings 
of quotients which are determined by radicals rather than torsion radicals, 
and show that any such ring can be constructed as the bicommutator of a 
fully divisible left i£-module. 

In particular, if c is a torsion radical (an idempotent kernel functor in the 
terminology of [2]) and K is the kernel of the homomorphism R—>Q<r(R)1 

then a radical p such that p ^ a and radp(i^) = K determines a subring 
QP(R) of Q*(R), the p-closure of R/K in E(R/K). (Here we use E(M) to 
denote the i?-injective envelope of an jR-module M.) Furthermore, if 5 is any 
such subring of a ring of left quotients of R, then 5 is isomorphic to the bi­
commutator of E(S) © E(S)/S. We give various conditions under which a 
subring of a ring of left quotients is of this form. 

1. Cofaithful modules; fully divisible modules. All rings under con­
sideration will be assumed to be associative rings with identity element, and 
all modules will be assumed to be unital. A direct sum of modules {RMa}a€A 

will be denoted MA if each module Ma is isomorphic to a fixed module RM. 
We introduce the following notation for convenience. (All homomorphisms 
are jR-homomorphisms unless stated otherwise.) 

1.1. Definition. If RM and RN are left i^-modules, and for some index set A 
there exists a homomorphism from MA onto N, we will write M > N. If 
M > N and N > M, we will write M ~ N. 

It can easily be seen that for modules RM and RN the following are 
equivalent: 

(i) M > TV; 
(ii) for each x € N there exist elements mt G M and ft G HornB(M, N)t 

i = 1, 2, . . . , k, such that x = Sf=i/i(w<); 
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BICOMMUTATORS OF MODULES 203 

(iii) for each non-zero homomorphism g: RN —> RX there exists a homo­
morphism / : RM —» RN such that gf ^ 0. 

From condition (iii) it is evident that RM > RN and RN > RP imply 
RM > RP, and so the relation ~ is transitive as well as reflexive and sym­
metric. We next investigate modules RM such that RM ~ RI, where RI is 
used to denote the injective envelope of the module RR. This notation will 
remain fixed throughout the paper. 

1.2. PROPOSITION. RM > RI if and only if for some positive integer n, Mn 

contains an R-submodule isomorphic to RR. 

Proof. First, suppose that M > I. Then for the identity 1 £ R Q 7 we 
must have 1 = L?=i/*(w«) f o r mi € M> U £ HomB(Af, 7). If r 6 R and 
rmt = 0 for all i, then 

/ n \ w 

r = r l = r( ]£/i(w<) ) = Hft(rmi) = 0. 

This shows that the homomorphism f:R-+ Mn defined by 
/ ( r ) = (rmh rm2, . . . , m„) 

is a monomorphism. 
Conversely, suppose that there exists a monomorphism f:R—> Mn for some 

positive integer n. To show that M > I, let g: RI -+ RX be any non-zero 
homomorphism. Since a homomorphism h: R —> I with gh 7e 0 can be found, 
and this can be extended to k: Mn —•> J by the injectivity of 7, we must have 
g^i 7^0 for some component kt: M —> I of &. Thus M > 7. 

The above proof shows that M > I if and only if there exist 

{wi, w2, . . . , m»} £ i f 

with Ann((wi, . . . , wn}) = 0, and so M is faithful if M > I. Since I > Q 
for all injective modules ^Ç, 17 > 7 if and only if M > Q for all injective 
modules Q. Thus M > 7 if and only if for each homomorphism 0 ^ g: RQ —» ^X, 
with Q injective, there exists a homomorphism / : Af —> Q with gf ^ 0. The 
dual of this statement characterizes faithful modules (see [1] for the par­
ticulars) and so this motivates the definition below. 

1.3. Definition. The module RM is called cofaithful if M > I. 

A module RM is called divisible if dM = M for all non-zero-divisors d £ R. 
It is well known that all injective modules are divisible, and that sums and 
quotients of divisible modules are divisible. In particular, ^7 is divisible, and 
hence if #7 > RM, then M is divisible. The converse is not necessarily true. 
Proposition 1.5 below can be used to show that if RM is an essential extension 
of RR and 7 > M, then M is isomorphic to 7. But if R has a classical ring of 
left quotients Qch then RQC\ is divisible and essential over RR, but not neces­
sarily isomorphic to RI. 
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1.4. Definition. The module RM will be called fully divisible if i" > M. 

1.5. PROPOSITION. RM is fully divisible if and only if for any monomorphism 
i: RP —> RN, with P finitely generated and projective, and any homomorphism 
f: P —> M, there exists an extension g: N —> M with f = gi. 

Proof, First assume that RM is fully divisible. For some index set A, there 
exists an epimorphism p: IA —> M, and if RP is finitely generated and pro­
jective, i: P —•> TV is a monomorphism, and / : P —» Af, then since P is pro­
jective,/can be lifted t o / ' : P —> P4, with £/ ' = / . Since P is finitely generated, 
f'(P) is contained in the direct sum of finitely many copies of / , which is then 
injective; t h u s / ' can be extended to gf: N—> IA, with g'i = / ' , since i is a 
monomorphism. Thus / = pf = pg'i, and g = pgf yields the required ex­
tension of/. 

Conversely, if M satisfies the given condition, then for each element m G M, 
there exists a homomorphism f:R—>M with / ( l ) = m, and this can be 
extended to g: I —» ilf with g(l) = ra. This shows that / > M. 

From Definition 1.4 and the fact that RM > BN, RN > RP imply RM > RP, 
it is immediate that if RM is fully divisible, then so is any homomorphic image 
of M. Furthermore, a direct sum of modules is fully divisible if and only if 
each summand is fully divisible. This implies that if submodules Ma Ç M, 
a £ A, are fully divisible, then ^2a^AMa is fully divisible. Proposition 1.5 
shows that the notion of fully divisible is a generalization of injectivity. 
Using a proof similar to the one for injective modules, it is easy to show 
that a direct product of modules is fully divisible if and only if each factor 
is fully divisible. 

A ring R is called left hereditary if each left ideal of R is projective, and 
this is true if and only if every homomorphic image of an injective left R-
module is injective. It is well known that R is left Noetherian if and only if 
every direct sum of injective left P-modules is injective. Combining these 
results shows that every fully divisible left P-module is injective if and only 
if R is left hereditary and left Noetherian. 

In the following proposition we let all endomorphisms of the module RM 
operate on the left. If 5 = Endfl(Jlf), then M is a left 5-module. 

1.6. PROPOSITION. Let RM be a left R-module and S = End f l(M). 
(i) / / RM is finitely generated, then SM is cofaithful. 

(ii) / / RM is faithful and fully divisible, then RM is cofaithful if and only if 
s M is finitely generated. 

Proof, (i) Assume that RM is finitely generated and that mi, . . . , mn are 
generators for RM. H s £ S and s(mt) = 0 for i — 1, . . . , n, then s(M) = 0 
and s = 0. As in the proof of Proposition 1.2, this shows that SM is cofaithful. 
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(ii) Assume first that SM is finitely generated, say with generators 
mi, . . . , mn. For each m £ M, 

n 

m = X Siinti) for si, . . . , sn 6 S. 

If r 6 i? and rw^ = 0 for all i, then 
/ n \ n 

rm = r( ^ ^(w,) 1 = 2 si(rmi) = 0, 

and Ann(Af) = Ann(jmi, . . . , mn}). This shows that if A = Ann (If), then 
M is a cofaithful (R/A)-module. In particular, if SM is finitely generated 
and RM is faithful, then RM is cofaithful. 

Conversely, if RM is cofaithful and fully divisible, let Mi, . . . , mn be the 
components o f / ( l ) in an embedding/: R —» Mn. Given m G M, there exists 
g: R —> M with g(l) = ra, and since M is fully divisible, this can be extended 
to 5: Mn —> Âf, with g = sf. If su i — 1, . . . , n, are the components of s, then 
we must have m — 5/(1) = ]£?=i Si(mi), and this shows that s i ¥ is finitely 
generated. 

1.7. PROPOSITION. For a module RM, the following are equivalent: 
(i) M contains a faithful, fully divisible submodule; 

(ii) RI can be embedded in a direct product of copies of M. 

Proof, (i) => (ii). If M contains a faithful, fully divisible submodule RN, 
let I l a € A Na be the direct product of A copies of N, where the index set A is 
N itself. Define an i^-homomorphism / : R —> I l a € A Na by fx(r) = rx, where 
x G N = A. Since iV is faithful, this is a monomorphism. By assumption, iV is 
fully divisible, and so Tla€A Na is also fully divisible, a n d / may be extended to 
g: I —> Tla<zA Na. Since / is an essential extension of R, g is also a monomor­
phism. Then g: I —> II a € A iVa C II a € A -M« is the required embedding. 

(ii) => (i). Suppose that for some index set A there is a monomorphism 
/ : I —» IIaçA M«, where ifa ~ ikf for all a £ ^4. For each component fa of / , 
/«(/) is fully divisible, and if TV = £ a a / « ( ^ ) j then iV is also fully divisible. 
If o j£ r £ R, then/(r) ^ 0, and therefore r / a( l) = / a(r) ^ 0 for some a £ A. 
This shows that N is faithful. 

2. Bicommutators of cofaithful, fully divisible modules as sublines 
of Qmnx(R)» We first review some definitions and results from [2; 3; 5]. Using 
the terminology of Maranda, a radical of the category of left J?-modules is a 
function p which assigns to each module RM a submodule radp(Af) such that 
radp(M/radp(M)) = 0 and for any module RN, /(radp(Af)) Ç radp(iV) for 
all homomorphisms / 6 HomR(M, N). If in addition 

radp(M0) = AfoHradptaf) 

for all submodules Mo of ilf, then p is called a torsion radical. In the ter-
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minology of Goldman [2], a torsion radical is called an idempotent kernel 
functor. If p and a are radicals and radp(M) C rad(r(M) for all modules RM, 
then we write p ^ a. 

With each module RM is associated a radical which we will denote by radM, 
defined by letting radM(A) be the intersection of all kernels of homomorphisms 
from A to M, for any module RN. It is known that a is a torsion radical if 
and only if there exists an injective module BM such that a = radM. We note 
that T3idM(R) = Ann(M), and that radM(A) = 0 <=> radM g rad^, for any 
modules RM and RN. 

If p is a radical and M0 is a submodule of RM, we define the p-closure Af0 

of Mo in M as the inverse image in M of radp(ikf/Af0). Since p is a radical, 
the p-closure of M0 is just M0- In particular, if p = rad^ for some module 
BN, then the TV-closure of M0 in M is 

[m £ M:f(m) = 0 for a l l / Ç Hom«(M, TV) such tha t / (M 0 ) = 0). 

The following properties of this closure operation will be used throughout the 
remainder of the paper. 

Let p be a radical and let RN and RM be modules with M0 a submodule of M. 
Then: 

(i) If / G HomB(M, A) and f(M0) C A0 for some submodule A0 of A7, 
then for the respective p-closures we must have/(ikf0) £ A0. 

(ii) If radp(A) = 0 and / G HomR(M, A) , then f(M0) = 0 ^f(Mo) = 0. 
(iii) If radp(A) = 0 and / , g G HomB(M, A) , then if / and g agree on M0 

they also agree on Mo. 
We give a proof of (i), and (ii) and (iii) follow immediately from (i). Let 

/ G Hom^CM", A) and f(Mo)QN0. Then / induces a homomorphism 
g: MI Mo —> A/Ao, and we must have g(radp(Àf/M0)) C radp(A/A0) since p 
is a radical. Now since M0 and A0 are the inverse images in M and A, respec­
tively, of radp(M/Mo) and radp(A/A0) , it follows that f(M0) C A0. 

If o- is a torsion radical and K = radff(i^), let Qa(R) be the or-closure of 
R/K in its .R-injective envelope E{R/K). Since a is a torsion radical and 
ra.d*(R/K) = 0, it can be shown that rada(E(R/K)) = 0 and that E{R/K) 
is an (R/K)-module. If 5 G R/K, then right multiplication by 5 defines a 
homomorphism fs: R/K —> R/K w i th / s ( l ) = s. This suggests a multiplication 
for (?,(£). I f ^ (M-R), let/*: -R/2Ê -> Q*(R) be the unique iWiomomorphism 
such that / f f ( l ) = q. This can be extended to hq: E(R/K) ->E(R/K) by the 
injectivity of E(R/K). From the properties of the closure operation associated 
with (7, hq(Qff(R)) Q Q*(R), and so we may let <j>q: Qff(R) -> Q,(R) be the 
restriction of hq. Furthermore, the extension of fq to Q<,(R) must be unique, 
and so for p, q G Q<r(R) define p • q = <t>q(p). This gives Qff(R) a ring structure 
which extends the action of R/K, and Q*(R) is called the ring of left quotients 
with respect to <r. In the particular case when <T = rad7, / = E(R), we obtain 
the complete ring of left quotients Qmax(R) of R. 
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This construction can be extended to certain radicals. We first prove a 
lemma describing subrings of QmaxCR)-

2.1. LEMMA. Let RS be an R-submodule of Qmax(R) such that R C S C QmSLX(R). 
Then S is a subring of Qmax(R) if and only if for each f £ E n d ^ / ) , f(R) Ç 5 
implies f(S) C 5. 

Proof. Suppose that RS is a submodule of Qmax(R) which satisfies the given 
conditions. To show that S is a subring of Qmax(R) it is only necessary to 
show that 5 is closed under the induced multiplication. Let p, q £ S. Then 
P * V. = <I>Q(P)> where <j)q(l) = q and cj)q: Qmax(R) -> QmaxW» and tf>5 can be 
extended to an endomorphism hq of I. Then hq(l) 6 5 implies by assumption 
that hq(S) C 5 and hence £ • g = /^(£>) G 5. 

Conversely, suppose that 5 is a subring of Qmax(R) which contains R. It is 
well known that I is a Qm&x(R)-module and that every i^-endomorphism of I 
is a Qm&x(R)-endomorphism. Thus if / Ç EndB(J) and /(i£) C S, it follows 
t h a t / 0 ) = 5/(1) Ç 5 for all 5 £ 5. 

2.2. PROPOSITION. Let a be a torsion radical. Then any radical p such that 
p ^ <r awd radp(J?) = rad<r(iv!) defines a subring QP(R) of Qa(R). 

Proof. Let K = radp(i£) = rad^i?), where p and a- satisfy the given con­
ditions, and let QP(R) be the p-closure of R/K in E(R/K). Since p ^ a-, we 
have 22/JS: C Qp(i?) C Q,(R). The i?-module EÇR/K) is an (i?/i£)-module 
and as such radE(R/K) determines Qmax(P/K). It then follows from the fact 
that rad,(£CR/iO) = 0 that Qff(R) C Qmax(R)\ thus actually we have 
•R/if £ G P W £ Qm&x(R/K). Every (jR/X)-endomorphism of E(R/K) is an 
i^-endomorphism, and the fact that QP(R) is a subring of (?*(#) follows from 
Lemma 2.1 and the properties of the p-closure of a submodule. 

2.3. THEOREM. If RM contains a faithful, fully divisible submodule, then 
radM defines a subring QM(R) of Qmax(R). 

Proof. If RM contains a faithful, fully divisible submodule, then by Pro­
position 1.7, BI can be embedded in a direct product of copies of M. Thus the 
intersection of kernels of i?-homomorphisms from I to M is zero, and 
radM0O = 0. This shows both that radM ^ radj and that radM(i?) = 
rad/(i£) = 0. By Proposition 2.2, the if-closure of R in E(R) is a subring of 
Qmax(R), which we denote by QM(R)-

2.4. PROPOSITION. Let RM be a module containing a faithful, fully divisible 
submodule, and let RN be fully divisible with rad^ (iV) = 0. 

(i) The Restructure of RN extends uniquely to give N the structure of a 
Q M (R) -module. 

(ii) Any R-submodule N0 of N such that radM(N/N0) = 0 is a QM(R)~ 
submodule of N. 

(iii) If RP is also fully divisible with radM(P) = 0, then any R-homomorphism 
from N to P is also a QM(R)-homomorphism. 
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Proof, (i) If N is fully divisible, then for each n £ N the P-homomorphism 
fniR—^N defined by fn(r) = rn, for all r £ R, can be extended to 
<t>n\ QM(R) —» N. The extension is unique because radM(^V) = 0 and QM(R) 
is the ikf-closure of R in I. For q G QM(R) define q • n = <£w(g). This can easily 
be shown to give N a QM(R)-modu\e structure. 

(ii) If iV0 is a submodule of N with radM(N/N0) = 0, then iV0 is its own 
If-closure, and so for n G N0, <t>n(R) Q N0 and therefore 0 „ ( ( ? M ( P ) ) Q N0. 
Thus for all q G QM(R), q-n G N0. 

(iii) Suppose that RP is fully divisible and that radM(P) = 0- If 
/ G HomR(N, P ) , we must show that / (g») = qfin) for all g G QM(R), n £ N. 
Using the homomorphisms which define multiplication by elements of QM(R), 
this reduces to showing that/(0n(g)) = 4>nn) (<z)> f° r all <Z and n. But/(0W(1)) = 
f(n) = 0/(W)(l); thus since these P-homomorphisms agree on P and 
radM(P) = 0, it follows that they must agree on QM(R). This completes the 
proof. 

For any module RM we let BicR(M) denote the bicommutator of the image 
of R in Rndz(M) under the representation of R defined by the action of 
R on M. The commutator of the image of R is just all P-endomorphisms of My 

and so BicR(M) consists of all Z-endomorphisms of M which commute with 
all P-endomorphisms of M. 

If Mi and M2 are left P-modules, we may describe additive functions from 
Mi © M2 into Mi © M2 by using matrices of the form 

C" ff") • 
V21 722/ 

where fu\ Mi —» Mit fi2: M2 —> Mu f2±: Mx —> M2y and f22: M2 —• M2 are all 
Z-homomorphisms and operate on the left. The commutator of the image of 
R in the Z-endomorphism ring of Mi © M2 consists of all matrices whose 
entries are P-homomorphisms. The bicommutator consists of matrices of the 
form 

Un 0 \ 
V 0 qj ' 

where qu G B i c ^ l f i ) , g22 G BicR(M2), and moreover #22/21 = f2iqn and 
511/12 = /i2^22 for all /21 G Homfi(ilfi, M2) and / i 2 G Hom#(Af2, Mi). 

2.5. LEMMA. / / ^ikfi > RM2, then the canonical ring homomorphism from 
Bic#(ikfi © M2) into B\cR(Mi) is a monomorphism. 

Proof. Let TT: B\CR(MI © M2) —> Bic^CMi) be defined by setting 

-fe :))-•• 
If £11 = 0, then for all/21 G Hom /2(M1, M2) it follows that #22/21 = /2i#n = 0. 
Thus a condition sufficient to guarantee that T is one-to-one is that for each 
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0 ^ g22 G BiCfl(Af2) there exists / 2 i G HomB(Mi, M2) such that g22/2i j£ 0. 
This condition is satisfied if Mi > M2. In fact, if 0 ^ g G End z(M2) , let 
w 6 Mwith g(m) 7̂  0. If Mi > M2, then there exist elements mi, . . . , mw G Mi 
and / i , . . . ,/re G HomB(Mi, M2) such that m = 2Z?-i ftO^i)- Since g is a 
Z-endomorphism, g(m) ^ 0 implies qfi(mt) ^ 0 for some index z. 

2.6. THEOREM. If RM is cofaithful and fully divisible, that is, if RM ~ RI, 
then Bicfî(M) is isomorphic to QM(R)-

Proof. Let RM be cofaithful and fully divisible. By Proposition 1.2, there 
is an integer n and a monomorphism / : R —» Mn. By Proposition 1.5,/ can be 
extended to g: I —•» Mw, since M, and therefore Mw, is fully divisible. Since 
/ is a monomorphism and I is an essential extension of R, g must also be a 
monomorphism, and so g(I) is injective and therefore a direct summand of 
Mn. Thus Mn ~ I © N, where N is also fully divisible. 

Let 0: Bic«(J) -»(?max(£) be defined by 0(g) = g(l) , for all q G Bic«(J). 
[4, p. 94, Proposition 1] shows that 0 is a ring isomorphism. We use this to 
define a ring homomorphism $: Bicfl(M) —> Qmax(R) as the composition of 
the obvious ring homomorphisms rj: BicR(M) —» BicR(Mn) —» BicB(7 © N), 
IT: B\CR(I © N) —»BicB(J), and 0. This leads to the following diagram: 

Bic^(M) • QmUR) 

A. 

0 

Bic*(Mw) • Bic*(/©iV) U > Bic*tf) 

Both 77 and 0 are isomorphisms. Since iV is fully divisible, I > N and 
Lemma 2.5 implies that ir is a monomorphism. We will now show that the 
image of <ï> in Qmax(R) is precisely QM{R)> 

If g G Bicfî(M), $(g) = 7n7g(l) = rçg(l). Given an i^-homomorphism 
f:I—>M with f(R) = 0, we can define an i?-endomorphism fn of I © iV by 
defining /«: 7 © iV -» Mn as follows: /w(x, y) = (/(*), . . . , / (* ) ) for 
(x, y) G I ® N. The endomorphism rçg must commute with fn, so that 
/"(i?g(l)) = riqfil) = O .andso / f a f t ) ) = 0. This shows that ^ ( 1 ) G (?*(!?). 
since QM(R) can be characterized as 

{g e l:f(q) = o for a l l / G Horn*(J, M) such that/(12) = 0}. 

On the other hand, for x G QM(R)> left multiplication by x defines a Z-
endomorphism of M, since, by Proposition 2.4, M is a left QM(R)-module. 
That is to say, if we define q(m) = xm for all m G M, then g G B i c ^ M ) . 
(This follows from Proposition 2.4 (iii).) Furthermore, 3>(g) = r?g(l) = 
x • 1 = x, since each of the modules M, Mw, I ® N, and / are QM(R)-modules, 
and the i?-homomorphisms M —» Mre —> 7 © N —> I which are used to define 
$ are all QM(R)-homomorphisms. 
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This shows that $(Bic*(M)) = QM(R) £ Qm*x(R), and BicB(M) is iso­
morphic to a subring of Qmax(R). This mapping extends the identity on R, 
and so by [4, p. 99, Proposition 8], $ is the only ring homomorphism with this 
property. 

3. Subrings of rings of quotients determined by radicals. Proposition 
2.2 shows that certain radicals determine subrings of rings of quotients. 
An example will be cited later which shows that not all such subrings are 
themselves rings of quotients of R. We begin by characterizing the subrings 
of QmaxCR) which are of this form. For any cofaithful and fully divisible 
module RM we identify HicB{M) and QM{R)> 

3.1. PROPOSITION. Let S be a subring of QmâX(R) such that R Ç 5 C Qmax(R). 
Then the following conditions are equivalent: 

(i) 5 = QP(R) for a radical p such that p ^ rad7; 
(ii) Hom f l (J , / /S) = Horn*(7,7/5); 

(iii) For all f e HomR(I,I/S),f(R) = 0=*/ (S) = 0; 
(iv) 5 = Bic*(J 0 7/5) ; 
(v) 5 — BicR(M) for a cofaithful, fully divisible module RM. 

Proof, (i) => (ii). If 5 = QP(R) for a radical p, then radp(7) = 0 and 
radp(7/5) = 0, by assumption. In a manner similar to that used in the proof 
of Proposition 2.4 (iii), it can be shown that every i^-homomorphism from 7 
to 7 /5 is in fact an 5-homomorphism. 

(ii)=» (iii). Let f e Homie(7, 7/5) with f(R) = 0. If / is an 5-homo­
morphism, then for all 5 £ 5, f(s) = sf(l) = 0. 

(iii) =» (iv). The i^-module 7 0 7/5 is cofaithful since it contains a sub-
module isomorphic to RR and fully divisible since RI is injective and 7/5 is a 
quotient of an injective i^-module. We have identified BicR(I © 7/5) with 
{a e I:f(q) = 0 for a l l / £ HomR(I, I © 7/5) such that/(2?) = 0}. We have 
assumed that 5 C Qm8iX(R), and so part of this condition is redundant. In fact, 
BicB(I © I/S) can be identified with {q G 7: f(q) = 0 for a l l / G Horn*(J, 7/5) 
such tha t / ( i? ) = 0}. If q £ 7 and q & S, the projection £: 7 —» 7/5 yields an 
i£-homomorphism such that p(R) = 0 but £(#) ^ 0. This shows that 
BiCfl(7 © 7/5) Ç 5 for all subrings 5 of Qmax(R) which contain R. The 
assumption that (iii) holds is precisely what is needed to guarantee equality. 

The implications (iv) => (v) and (v) => (i) are immediate. 

Using condition (i) of Proposition 3.1, it is not difficult to show that the 
intersection of the subrings which satisfy the conditions of Proposition 3.1 
satisfies the conditions of Proposition 3.1. If q £ 7 we let Rq~l denote 
{r £ R:rq £ R}. 

3.2. PROPOSITION. Let S be a subring of Qm&x(R) which contains R. If 
SiRs*1) = 5 for all s £ 5, then S satisfies the conditions of Proposition 3.1. 
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Proof. We will verify that condition (iii) of Proposition 3.1 is satisfied. If 
/ G Homi2(7, I/S) and f(R) = 0, let s £ S. By assumption, S(Rs~1) = 5, 
and so 

n 

1 = S Siri f° r Si £ «S a n d r i £ ^ _ 1 . 

Now 7/5 is a left 5-module, and so we must have 

v i=l / i= l 

because / is an i^-homomorphism, rts G -R for all i, and /(i?) = 0. Thus 
f(S) = 0, and condition (iii) of Proposition 3.1 is satisfied. 

3.3. COROLLARY. Let S be a subring of Qm&x(R) which contains R. If each 
element s G S can be expressed in the form s = b~1a, where a, b G R and b~l G S, 
then S satisfies the conditions of Proposition 3.1. 

Proof. Let s G S. Then s = b~xa, where a,b G R and b~l G S. Therefore 
bs = b(b~la) = a G R, and so b G ifa-1. Since b~l G 5, this shows that 
1 = b~lb G S(Rs~l), and the conclusion follows from Proposition 3.2. 

If X is an ideal of R such that K = radff(i?) for some torsion radical a, 
Lambek [3] calls K a torsion ideal. We have already observed that in this case 
Q<r{R) is a subring of QmaLX(R/K). We next generalize Proposition 3.1 to the 
case of subrings lying between R/K and Qm^x(R/K) for torsion ideals K of R. 
Let RWl be the category of left J?-modules. 

3.4. THEOREM. Let K be a torsion ideal and let S be a subring of Qmax(R/K) 
such that R/K Ç 5 Ç Qmax(R/K). The following conditions are equivalent: 

(i) 5 = QP(R) for a radical p of R$l such that ra,dp(R) = K and 
P ^ radE(R/K); 

(ii) Homs(E(R/K), E(R/K)/S) = HomR(E(R/K), E(R/K)/S); 
(iii) For allfe HomR(E(R/K), E(R/K)/S), f(R/K) = 0=*/ (S) = 0; 
(iv) 5 = Bica(E(S) 0 E(S)/S); 
(v) 5 = BicR(M) for a cofaithful and fully divisible (R/K)-module M. 

Proof, (i) =» (iii). This is immediate from the construction of QP(R). 
Conditions (ii) and (iii) can easily be checked to be equivalent. 
(iii) =* (iv). Both E(R/K) and E(R/K)/S are CR/X")-modules. As such, 

HomRfK(E(R/K), E(R/K)/S) = HomR(E(R/K), E(R/K)/S). 

Thus 5 satisfies the conditions of Proposition 3.1 as an extension of R/K. 
The result follows by observing that E(S), the i^-injective envelope of 5, is 
just E(R/K), and that BicR/K(E(S) ® E(S)/S) = BicR(E(S) © E(S)/S). 

(iv) => (v). E(S) is injective as an (R/K)-module, and so it follows that 
E(S) © E(S)/S is fully divisible as an (R/K)-module. It is immediate that 
E(S) ® E(S)/S is cofaithful as an (2Î/20-module. 
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(v) ==> (i). If 5 = BicR(M), where M is cofaithful and fully divisible as an 
(R/K)-module, then S = QM(R/K). If we consider the i^-module M, then 
radM(R) = Ann(M) = K and radM g radE(R/K) since radM(£(R/K)) = 0. 
Since Horn* ( £ ( 2 8 / 2 0 , ^ ) = Hom B / x (£(J? /20, ^)> it is clear that S = 
QM{R/K) = & , ( * ) . 

This shows that if K is a torsion ideal of R, then i^/X itself satisfies the 
conditions of Theorem 3.4. Lambek [3] gives an example due to Hans Storrer 
[3, Example 7, § 2] which shows that R/K may not be a ring of left quotients 
even if K is a torsion ideal. On the other hand, of course, any ring of left 
quotients satisfies the conditions of Theorem 3.4. 

If K is a torsion ideal, then E(R/K) is the (i?/i£)-injective envelope of 
R/K. Thus any (R/K)4u\\y divisible module is also fully divisible as an 
i^-module. Applying Theorem 3.4 (v) and Proposition 1.6 (ii), we see that a 
ring satisfying the conditions of Theorem 3.4 is isomorphic to the bicom-
mutator of a fully divisible i?-module M which is finitely generated over the 
ring KndR(M). This generalizes the known fact that any ring of left quotients 
of R is isomorphic to the bicommutator of an injective i^-module M which is 
finitely generated over its ring of endomorphisms KndR(M). (See 
[3, Proposition 2.8].) 

3.5. COROLLARY. If R is left hereditary, then every ring satisfying the conditions 
of Theorem 3.4 is a ring of left quotients of R. 

Proof. Let K be a torsion ideal of R and R/K C 5 C Qmax(R/K). If R is left 
hereditary, then E(S) © E(S)/S is i^-injective, since every homomorphic 
image of an j?-injective module is i^-injective. Thus if S satisfies the conditions 
of Theorem 3.4, 5 = QM(R) for the i?-injective module M = E(S) © E(S)/S. 
This shows that 5 is a ring of left quotients of R. 

3.6. COROLLARY. Let K be a torsion ideal of R and let S be a subring of 
Qmax(K/K) such that R/K Ç 5 Ç Qmax(R/K). Either of the following conditions 
is sufficient to guarantee that S satisfies the conditions of Theorem 3.4: 

(i) R —> S is an epimorphism in the category of rings; 
(ii) 5 is contained in an R-projective submodule of E{R/K). 

Proof, (i) It is well known that if R —» 5 is an epimorphism in the category 
of rings, then every i^-homomorphism between ^-modules is in fact an S-
homomorphism. By assumption, both E(R/K) and E{R/K)/S are 5-modules, 
and so S must satisfy condition (ii) of Theorem 3.4. 

(ii) Suppose that RS C RP Ç RE{R/K) for an .^-projective module RP. 
For convenience we let E(R/K) = E. We will show that S satisfies condition 
(iii) of Theorem 3.4. Let / Ç HomB(£, E/S) such that f{R/K) = 0. If 
p: E —> E/S is the projection, then since P is projective, the restriction of/ 
to P can be lifted to g: P —» E with pg = fi, where i: P —> E is the inclusion. 
Since E is injective, g can be extended to h: E —> E with g = hi. (All homo-
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morphisms are P-homomorphisms.) Now fi = phi, and so / and ph agree on 
P , and consequently ph(R/K) = f(R/K) = 0. This implies that h(R/K) C 5, 
and since Â is an (P/P)-endomorphism of £ , Lemma 2.1 implies that fe(5) C S. 
But then/(5) = ph{S) = 0, and this establishes condition (iii) of Theorem 3.4. 

We note that Corollaries 3.5 and 3.6 can be combined to show that if R is 
left hereditary and Q<x(R) is a ring of left quotients of R with Q<x(R) P-pro-
jective, then any subring S of Qa(R) such that P / r a d ^ P ) Ç 5 is a ring of 
left quotients of P . 

Added in proof. Hans Storrer has pointed out to me that a ring 5 which satisfies 
the conditions of Proposition 3.2 in fact satisfies condition (i) of Corollary 3.6, 
so that Proposition 3.2 follows from Corollary 3.6. 
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