Can. . Math., Vol. XXIII, No. 2, 1971, pp. 202-213

BICOMMUTATORS OF COFAITHFUL,
FULLY DIVISIBLE MODULES

JOHN A. BEACHY

We define below a notion for modules which is dual to that of faithful, and
a notion of “fully divisible’” which generalizes that of injectivity. We show
that the bicommutator of a cofaithful, fully divisible left R-module is iso-
morphic to a subring of Quax(R), the complete ring of left quotients of R.

In recent papers, Goldman [2] and Lambek [3] investigated rings of left
quotients of a ring R constructed with respect to torsion radicals. It is known
that every ring of left quotients of R is isomorphic to the bicommutator of an
appropriate injective left R-module. We investigate below subrings of rings
of quotients which are determined by radicals rather than torsion radicals,
and show that any such ring can be constructed as the bicommutator of a
fully divisible left R-module.

In particular, if o is a torsion radical (an idempotent kernel functor in the
terminology of [2]) and K is the kernel of the homomorphism R — Q,(R),
then a radical p such that p < ¢ and rad,(R) = K determines a subring
Q,(R) of Qs(R), the p-closure of R/K in E(R/K). (Here we use E(M) to
denote the R-injective envelope of an R-module M.) Furthermore, if S is any
such subring of a ring of left quotients of R, then S is isomorphic to the bi-
commutator of E(S) ® E(S)/S. We give various conditions under which a
subring of a ring of left quotients is of this form.

1. Cofaithful modules; fully divisible modules. All rings under con-
sideration will be assumed to be associative rings with identity element, and
all modules will be assumed to be unital. A direct sum of modules { gMa}acs
will be denoted M# if each module M, is isomorphic to a fixed module pAM.
We introduce the following notation for convenience. (All homomorphisms
are R-homomorphisms unless stated otherwise.)

1.1. Definition. If g M and gN are left R-modules, and for some index set A
there exists a homomorphism from M“ onto N, we will write M > N. If
M > N and N > M, we will write M ~ N.

It can easily be seen that for modules zM and N the following are

equivalent:
i) M > N;
(i1) for each x € N there exist elements m; € M and f; € Homg(M, N),
i=1,2,...,k such that x = > f.(m,);
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(iii) for each non-zero homomorphism g: N — X there exists a homo-
morphism f: g M — gN such that gf # 0.

From condition (iii) it is evident that zM > zN and zN > gP imply
M > gP, and so the relation ~ is transitive as well as reflexive and sym-
metric. We next investigate modules M such that zM ~ I, where I is
used to denote the injective envelope of the module gR. This notation will
remain fixed throughout the paper.

1.2. PrROPOSITION. gM > il if and only if for some positive integer n, M™
contains an R-submodule isomorphic to pR.

Proof. First, suppose that M > I. Then for the identity 1 € R C I we
must have 1 = Y1, f;(m;) for m; € M, f; € Homg(M, I). If » € R and
rm,; = 0 for all 7, then

r=r1l= r< Zlfi(mi)> = ;fi(rmi) = 0.
This shows that the homomorphism f: R — M" defined by
fr) = (rmq, rmy, ..., rm,)

is a monomorphism.

Conversely, suppose that there exists a monomorphism f: R — M" for some
positive integer #. To show that M > I, let g: xpI — zX be any non-zero
homomorphism. Since a homomorphism %: R — I with gh # 0 can be found,
and this can be extended to k: M" — I by the injectivity of I, we must have
gk; # 0 for some component k;: M — I of k. Thus M > 1.

The above proof shows that M > I if and only if there exist
{my,me,...,m} C M

with Ann({my,...,m,}) = 0, and so M is faithful if M > I. Since I > Q
for all injective modules zQ, M > I if and only if M > Q for all injective
modules Q. Thus M > I if and only if for each homomorphism 0 5 g: Q0 — X,
with Q injective, there exists a homomorphism f: M/ — Q with gf # 0. The
dual of this statement characterizes faithful modules (see [1] for the par-
ticulars) and so this motivates the definition below.

1.3. Definition. The module g3/ is called cofaithful if M > I.

A module M is called divisible if dM = M for all non-zero-divisors d € R.
It is well known that all injective modules are divisible, and that sums and
quotients of divisible modules are divisible. In particular, g/ is divisible, and
hence if gl > gM, then M is divisible. The converse is not necessarily true.
Proposition 1.5 below can be used to show that if zpM is an essential extension
of xR and I > M, then M is isomorphic to I. But if R has a classical ring of
left quotients Qq, then zQ, is divisible and essential over zR, but not neces-
sarily isomorphic to gl.

https://doi.org/10.4153/CJM-1971-020-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-020-8

204 JOHN A. BEACHY
1.4. Definition. The module zM will be called fully divisible if I > M.

1.5. PrROPOSITION. g M is fully divisible if and only if for any monomorphism
i: gP — gN, with P finitely generated and projective, and any homomorphism
f: P — M, there exists an extension g: N — M with f = gi.

Proof. First assume that gM is fully divisible. For some index set 4, there
exists an epimorphism p: I* — M, and if P is finitely generated and pro-
jective, 1: P — N is a monomorphism, and f: P — M, then since P is pro-
jective, f can be lifted to f": P — I4, with pf’ = f. Since P is finitely generated,
f’(P) is contained in the direct sum of finitely many copies of I, which is then
injective; thus f’ can be extended to g’: N — I4, with g’z = f’, since 7 is a
monomorphism. Thus f = pf’ = pg’i, and g = pg’ yields the required ex-
tension of f.

Conversely, if M satisfies the given condition, then for each elementm € M,
there exists a homomorphism f: R — M with f(1) = m, and this can be
extended to g: I — M with g(1) = m. This shows that I > M.

From Definition 1.4 and the fact that gM > gN, gkN > P imply g M > gP,
it is immediate that if M is fully divisible, then so is any homomorphic image
of M. Furthermore, a direct sum of modules is fully divisible if and only if
each summand is fully divisible. This implies that if submodules M, C M,
a € A, are fully divisible, then 3 .. M, is fully divisible. Proposition 1.5
shows that the notion of fully divisible is a generalization of injectivity.
Using a proof similar to the one for injective modules, it is easy to show
that a direct product of modules is fully divisible if and only if each factor
is fully divisible.

A ring R is called left hereditary if each left ideal of R is projective, and
this is true if and only if every homomorphic image of an injective left R-
module is injective. It is well known that R is left Noetherian if and only if
every direct sum of injective left R-modules is injective. Combining these
results shows that every fully divisible left R-module is injective if and only
if R is left hereditary and left Noetherian.

In the following proposition we let all endomorphisms of the module M
operate on the left. If S = Endz (M), then M is a left S-module.

1.6. PROPOSITION. Let gM be a left R-module and S = Endp(M).

(i) If M 1is finitely gemerated, then M 1is cofaithful.

(i1) If gM is faithful and fully divisible, then pM 1s cofaithful if and only if
sM 1is finitely generated.

Proof. (1) Assume that pM is finitely generated and that m,, ..., m, are

generators for pM. If s € Sand s(m;) =0forz=1,...,n, then s(M) =0
and s = 0. As in the proof of Proposition 1.2, this shows that M is cofaithful.
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(ii) Assume first that M is finitely generated, say with generators
my, ..., m, For each m € M,

n

m=Zsi(mi) for sy, ...,s, € S.

i=1

If » € R and rm; = 0 for all 7, then

rm = T(Z Si(’”i)) = Z si(rm;) = 0,
i=1 i=

and Ann(M) = Ann({my, ..., m,}). This shows that if 4 = Ann(M), then
M is a cofaithful (R/A4)-module. In particular, if ¢M is finitely generated
and zM is faithful, then M is cofaithful.

Conversely, if gM is cofaithful and fully divisible, let my, ..., m, be the
components of f(1) in an embedding f: R — M". Given m € M, there exists
g: R — M with g(1) = m, and since M is fully divisible, this can be extended

tos: M"— M, withg = sf. If s;,,2 = 1,...,n, are the components of s, then
we must have m = sf(1) = Y1 s:(m,), and this shows that ¢M is finitely
generated.

1.7. PROPOSITION. For a module gM, the following are equivalent:
(1) M contains a faithful, fully divisible submodule;
(i1) I can be embedded in a direct product of copies of M.

Proof. (1) = (ii). If M contains a faithful, fully divisible submodule zN,
let 11 ¢, N, be the direct product of 4 copies of N, where the index set A4 is
N itself. Define an R-homomorphism f: R — Il.cs N, by f.(r) = rx, where
x € N = A. Since N is faithful, this is a monomorphism. By assumption, NV is
fully divisible, and so I1,c. N, is also fully divisible, and f may be extended to
g l— HaEA N,. Since I is an essential extension of R, g is also a monomor-
phism. Then g: I — I, N, € Il M, is the required embedding.

(ii) = (i). Suppose that for some index set A there is a monomorphism
f: I — 1laeq M., where M, = M for all @ € A. For each component f, of f,
fo(I) is fully divisible, and if N = 3 4c4 fu(I), then N is also fully divisible.
If 0 ## 7 € R, then f(r) 5 0, and therefore 7f,(1) = f,(r) # 0 for somea € 4.
This shows that N is faithful.

2. Bicommutators of cofaithful, fully divisible modules as subrings
of Qmax(R). We first review some definitions and results from [2; 3; 5]. Using
the terminology of Maranda, a radical of the category of left R-modules is a
function p which assigns to each module zM a submodule rad, () such that
rad,(M/rad,(M)) = 0 and for any module RN, f(rad,(M)) C rad,(N) for
all homomorphisms f € Hompg(M, N). If in addition

I‘adp(Mo) = MiN radp(M)

for all submodules M, of M, then p is called a torsion radical. In the ter-

https://doi.org/10.4153/CJM-1971-020-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-020-8

206 JOHN A. BEACHY

minology of Goldman [2], a torsion radical is called an idempotent kernel
functor. If p and ¢ are radicals and rad,(M) C rad, (M) for all modules g},
then we write p < o.

- With each module zM is associated a radical which we will denote by rad,,,
defined by letting rad,, (V) be the intersection of all kernels of homomorphisms
from N to M, for any module zN. It is known that ¢ is a torsion radical if
and only if there exists an injective module zM such that ¢ = rad,,. We note
that rady, (R) = Ann(M), and that rad, (N) = 0 & rad,; < rady, for any
modules M and gN.

If p is a radical and M, is a submodule of z}M, we define the p-closure M,
of Mo in M as the inverse image in M of rad,(M/M,). Since p is a radical,
the p-closure of M, is just M,. In particular, if p = rady for some module
gV, then the N-closure of M, in M is

{m € M: f(m) = 0 for all f € Homg(M, N) such that f(M,) = 0}.

The following properties of this closure operation will be used throughout the
remainder of the paper.

Let p be a radical and let zV and zM be modules with M a submodule of 7.
Then:

(1) If f € Homgz(M, N) and f(M,) € N, for some submodule Ny of N,
then for the respective p-closures we must have f(M,) C N,.
(i) If rad,(N) = 0 and f € Homg(M, N), then f(M,) = 0 = f(M,) = 0.

(iii) If rad,(V) = 0 and f, g € Homg(M, N), then if f and g agree on M,

they also agree on M.

We give a proof of (i), and (ii) and (iii) follow immediately from (i). Let
f € Homz(M, N) and f(M,) € No. Then f induces a homomorphism
g: M/My,— N/N,, and we must have g(rad,(M/M,)) C rad,(N/N,) since p
is a radical. Now since M, and N, are the inverse images in 3/ and N, respec-
tively, of rad,(M/M,) and rad,(N/N,), it follows that f(M,) & N..

If ¢ is a torsion radical and K = rad,(R), let Q,(R) be the o-closure of
R/K in its R-injective envelope E(R/K). Since ¢ is a torsion radical and
rad,(R/K) = 0, it can be shown that rad,(E(R/K)) = 0 and that E(R/K)
is an (R/K)-module. If s € R/K, then right multiplication by s defines a
homomorphism f;: R/K — R/K with f,(1) = s. This suggests a multiplication
for Q,(R). If ¢ € Q-(R), let f;: R/K — Q,(R) be the unique R-homomorphism
such that f,(1) = ¢. This can be extended to #,; E(R/K) — E(R/K) by the
injectivity of E(R/K). From the properties of the closure operation associated
with o, %,(Q,(R)) € Qs(R), and so we may let ¢,: Q,(R) — Q,(R) be the
restriction of %, Furthermore, the extension of f, to Q,(R) must be unique,
and so for p, ¢ € Q,(R) define p - ¢ = ¢,(p). This gives Q,(R) a ring structure
which extends the action of R/K, and Q,(R) is called the ring of left quotients
with respect to . In the particular case when ¢ = rad;, I = E(R), we obtain
the complete ring of left quotients Quax(R) of R.
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This construction can be extended to certain radicals. We first prove a
lemma describing subrings of Quay(R).

2.1. LEMMA. Let zS be an R-submodule of Qmax (R) such that R C S C Quax(R).
Then S is a subring of Quax(R) if and only if for each f € Endg(Z), f(R) C S
smplies f(S) & S.

Proof. Suppose that zS is a submodule of Qugx(R) which satisfies the given
conditions. To show that S is a subring of Qua:(R) it is only necessary to
show that S is closed under the induced multiplication. Let p, ¢ € S. Then
prg= ¢G(P)7 where ¢q(1) =4q and @ Qmax(R) - Qmax(R)y and ¢, can be
extended to an endomorphism %, of I. Then %,(1) € .S implies by assumption
that %,(S) € .S and hence p - ¢ = h,(p) € S.

Conversely, suppose that S is a subring of Qp.x(R) which contains R. It is
well known that I is a Qgax(R)-module and that every R-endomorphism of I
is a Quax(R)-endomorphism. Thus if f € Endz(I) and f(R) C S, it follows
that f(s) = sf(1) € S for all s € S.

2.2. PROPOSITION. Let o be a torsion radical. Then any radical p such that
p = o and rad,(R) = rad,(R) defines a subring Q,(R) of Q.,(R).

Proof. Let K = rad,(R) = rad,(R), where p and o satisfy the given con-
ditions, and let Q,(R) be the p-closure of R/K in E(R/K). Since p < ¢, we
have R/K C Q,(R) € Q,(R). The R-module E(R/K) is an (R/K)-module
and as such radgg/x) determines Quax(R/K). It then follows from the fact
that rad,(E(R/K)) = 0 that Q,(R) C Quma.x(R); thus actually we have
R/K C Q,(R) € Quax(R/K). Every (R/K)-endomorphism of E(R/K) is an
R-endomorphism, and the fact that Q,(R) is a subring of Q,(R) follows from
Lemma 2.1 and the properties of the p-closure of a submodule.

2.3. THEOREM. If gM contains a fatthful, fully divisible submodule, then
rad,, defines a subring Qi (R) of Qmax(R).

Proof. If gM contains a faithful, fully divisible submodule, then by Pro-
position 1.7, rI can be embedded in a direct product of copies of M. Thus the
intersection of kernels of R-homomorphisms from I to M is zero, and
rady,(I) = 0. This shows both that rad, = rad; and that rad,(R) =

rad;(R) = 0. By Proposition 2.2, the M-closure of R in E(R) is a subring of
Quax (R), which we denote by Q (R).

2.4. PROPOSITION. Let g M be a module containing a faithful, fully divisible
submodule, and let N be fully divisible with rad, (N) = 0.
(i) The R-structure of grN extends uniquely to give N the structure of a
Qu (R)-module.
(ii) Any R-submodule Ny of N such that rady(N/No) = 0 is a Quyn(R)-
submodule of N.
(iii) If &P s also fully divisible with rady (P) = 0, then any R-homomorphism
from N to P s also a Qu (R)-homomorphism.
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Proof. (i) If N is fully divisible, then for each » € N the R-homomorphism
fu: R— N defined by f,(r) = rn, for all » € R, can be extended to
¢, O (R) — N. The extension is unique because rad, (N) = 0 and Q, (R)
is the M-closure of R in I. For ¢ € Q4 (R) define g - n = ¢,(¢). This can easily
be shown to give NV a Q,(R)-module structure.

(i1) If Ny is a submodule of N with rad, (N/No) = 0, then N, is its own
M-closure, and so for n € Ny, ¢,(R) © Ny and therefore ¢,(Q,(R)) C N,.
Thus for all ¢ € Qx(R), ¢-n € N,.

(iii) Suppose that grP is fully divisible and that rad,(P) = 0. If
f € Homg(N, P), we must show that f(gn) = ¢f(r) for all ¢ € Q) (R),n € N.
Using the homomorphisms which define multiplication by elements of Q,(R),
this reduces to showing that f(¢,(¢)) = ésm (¢), for all g and n. Butf(¢,(1)) =
f(n) = ¢;m(1); thus since these R-homomorphisms agree on R and
rad, (P) = 0, it follows that they must agree on Q, (R). This completes the
proof.

For any module zM we let Bicg(M) denote the bicommutator of the image
of R in End;(M) under the representation of R defined by the action of
R on M. The commutator of the image of R is just all R-endomorphisms of M,
and so Bicg (M) consists of all Z-endomorphisms of M which commute with
all R-endomorphisms of M.

If M, and M, are left R-modules, we may describe additive functions from
M, ® M, into M, ® M, by using matrices of the form

(fu f12>

S far/ '’

where fii: M1 — My, fie: My — M, for: My — M,, and foo: My — M, are all
Z-homomorphisms and operate on the left. The commutator of the image of

R in the Z-endomorphism ring of M; @ M, consists of all matrices whose
entries are R-homomorphisms. The bicommutator consists of matrices of the

form
G o
0 g22 ’
where ¢i1 € Bicg(M1), gs2 € Bicg(Ms), and moreover g¢ssfsr = fargun and

;Qufu = f12g22 fO[' all f21 E HomR(Ml, Mg) and f12 6 HomR(.Mz, Ml)

2.5. LEMMA. If gM, > grM,, then the canonical ring homomorphism from
Bicg(My @ M,) into Bicg(M:) is a monomorphism.

Proof. Let m: Bicg(M, @ M,) — Bicy(M;) be defined by setting

: 9)-
W(( 0 qo u.

If dn = 0) then fOl' all f21 E HomR(Ml, M2) it fOHOVVS that Q22f21 = f21Q11 = 0_
Thus a condition sufficient to guarantee that = is one-to-one is that for each
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0 # g2 € Bicg(M>) there exists fo € Homg (M1, Ms) such that gaafs; 5 0.
This condition is satisfied if M; > M,. In fact, if 0 % g € Endz(M,), let
m € M withg(m) = 0.If M; > M,, then there exist elements m,, . .., m, € M,
and f1,...,f, € Homg(My, M,) such that m = 3 iy fi(m;). Since q is a
Z-endomorphism, g(m) £ 0 implies ¢f;(m;) # 0 for some index 1.

2.6. THEOREM. If gM is cofaithful and fully divisible, that is, if gRM ~ gI,
then Bicg(M) is isomorphic to Qu(R).

Proof. Let gk M be cofaithful and fully divisible. By Proposition 1.2, there
is an integer # and a monomorphism f: R — M". By Proposition 1.5, f can be
extended to g: I — M", since M, and therefore M?", is fully divisible. Since
f is a monomorphism and [ is an essential extension of R, g must also be a
monomorphism, and so g(I) is injective and therefore a direct summand of
M". Thus M* = I ® N, where N is also fully divisible.

Let 6: Bicg(I) = Quax(R) be defined by 8(¢g) = ¢(1), for all ¢ € Bicg(I).
{4, p. 94, Proposition 1] shows that 6 is a ring isomorphism. We use this to
define a ring homomorphism ®: Bicg(M) — Qumax(R) as the composition of
the obvious ring homomorphisms #: Bicg(M) — Bicg(M") — Bicg(I @ N),
7: Bicg(I ® N) — Bicg(I), and 6. This leads to the following diagram:

Bicx(M) 2 > Onax(R)

Y ;

Bicg(M") —> Bicg(I®N) ——> Bicg(l)

Both 5 and 6 are isomorphisms. Since N is fully divisible, I > N and
Lemma 2.5 implies that = is a monomorphism. We will now show that the
image of ® in Quax(R) is precisely Qu (R).

If g € Bicg(M), ®(g) = mpg(1) = ng(1). Given an R-homomorphism
f: I — M with f(R) = 0, we can define an R-endomorphism f* of I @ N by
defining f= I @ N —> M" as follows: f*(x,y) = (f(x),...,f(x)) for
(x,v) € I ® N. The endomorphism 5g must commute with f”, so that
f*(ng(1)) = ngf"(1) = 0, and so f(ng(1)) = 0. This shows that1g(1) € Qu(R),
since Qu(R) can be characterized as

{qg € I: f(g) = 0 for all f € Homg(I, M) such that f(R) = 0}.

On the other hand, for x € Q) (R), left multiplication by x defines a Z-
endomorphism of M, since, by Proposition 2.4, M is a left Q) (R)-module.
That is to say, if we define g(m) = xm for all m € M, then g € Bicg(M).
(This follows from Proposition 2.4 (iii).) Furthermore, ®(q) = nq(1) =
x -1 = x, since each of the modules M, M*, I @ N, and [ are Q,(R)-modules,
and the R-homomorphisms M — M™ — I @ N — I which are used to define
® are all Qy (R)-homomorphisms.
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This shows that ®(Biczg(M)) = Qu(R) C Quax(R), and Bicg(M) is iso-
morphic to a subring of Qu.:(R). This mapping extends the identity on R,
and so by [4, p. 99, Proposition 8], ® is the only ring homomorphism with this
property.

3. Subrings of rings of quotients determined by radicals. Proposition
2.2 shows that certain radicals determine subrings of rings of quotients.
An example will be cited later which shows that not all such subrings are
themselves rings of quotients of R. We begin by characterizing the subrings
of Quax(R) which are of this form. For any cofaithful and fully divisible
module M we identify Bicg(}) and Q, (R).

3.1. PROPOSITION. Let S be a subring of Quax(R) such that R TS C Qua(R).
Then the following conditions are equivalent:
i) S = Q,(R) for a radical p such that p =< rady;
(ii) Homg(Z, I/S) = Homz(I, I/S);
(iii) For all f € Homg(I, I/S), f(R) = 0= f(S) = 0;
(iv) S = Bicg(I @ I/S);
(v) S = Bicg(M) for a cofasthful, fully divisible module r M.

Proof. (i) = (ii). If S = Q,(R) for a radical p, then rad,(J) = 0 and
rad,(I/S) = 0, by assumption. In a manner similar to that used in the proof
of Proposition 2.4 (iii), it can be shown that every R-homomorphism from I
to I/S is in fact an S-homomorphism.

(ii) = (iii). Let f € Homg(Z, I/S) with f(R) = 0. If f is an S-homo-
morphism, then for all s € S, f(s) = sf(1) = 0.

(iii) = (iv). The R-module I ® I/S is cofaithful since it contains a sub-
module isomorphic to zR and fully divisible since I is injective and I/S is a
quotient of an injective R-module. We have identified Bicgz(I @ I/S) with
{g € I: f(g) = Oforall f € Homg(I, I @ I/S) such that f(R) = 0}. We have
assumed that.S € Qu,(R), and so part of this condition is redundant. In fact,
Bicg(I @ I/S) can be identified with {¢ € I: f(g) = Oforallf € Homz(Z, I/S)
such that f(R) = 0}. If ¢ € [ and ¢ € S, the projection p: I — I/S yields an
R-homomorphism such that p(R) = 0 but p(g) # 0. This shows that
Bicg(I @ I/S) € S for all subrings S of Qua<(R) which contain R. The
assumption that (iii) holds is precisely what is needed to guarantee equality.

The implications (iv) = (v) and (v) = (i) are immediate.

Using condition (i) of Proposition 3.1, it is not difficult to show that the
intersection of the subrings which satisfy the conditions of Proposition 3.1
satisfies the conditions of Proposition 3.1. If g € I we let Rg~! denote
{r € R:rq € R}.

3.2. ProprosITION. Let S be a subring of Qmax(R) which contains R. If
S(Rs~1) = S for all s € S, then S salisfies the conditions of Proposition 3.1.
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Proof. We will verify that condition (iii) of Proposition 3.1 is satisfied. If
f € Homg(Z, I/S) and f(R) =0, let s € .S. By assumption, S(Rs7!) = S,
and so

1= Z sir; for s; € S and r, € Rs ..
=1

Now I/S is a left S-module, and so we must have

1-16) = (3550) 1) = 3 ) =0,

i=1
because f is an R-homomorphism, 7;s € R for all ¢, and f(R) = 0. Thus
f(S) = 0, and condition (iii) of Proposition 3.1 is satisfied.

3.3. COrROLLARY. Let S be a subring of Quax(R) which contains R. If each
element s € S can be expressed in the form s = b~'a, wherea,b € Rand b= € S,
then S satisfies the conditions of Proposition 3.1.

Proof. Let s € S. Then s = b~'a, where ¢,b € R and b~! € S. Therefore
bs = b(b~a) =a € R, and so b € Rs~'. Since 6~! € .S, this shows that
1 =51 ¢ S(Rs™'), and the conclusion follows from Proposition 3.2.

If K is an ideal of R such that K = rad,(R) for some torsion radical o,
Lambek [3] calls K a torsion ideal. We have already observed that in this case
Q. (R) is a subring of Qmaz(R/K). We next generalize Proposition 3.1 to the
case of subrings lying between R/K and Qu.,(R/K) for torsion ideals K of R.
Let zI be the category of left R-modules.

3.4. TueorREM. Let K be a torsion ideal and let S be a subring of Quax(R/K)

such that R/K C S € Quex(R/K). The following conditions are equivalent:
i) S = Q,(R) for a radical p of g such that rad,(R) = K and
p = radgw/x);

(ii) Homs(E(R/K), E(R/K)/S) = Homg(E(R/K), E(R/K)/S);

(iii) For all f € Homg(E(R/K), E(R/K)/S), f(R/K) = 0= f(S) = 0;

(iv) S = Bicz(E(S) @ E(S)/S);

(v) S = Bicg(M) for a cofaithful and fully divisible (R/K)-module M.

Proof. (i) = (iii). This is immediate from the construction of Q,(R).
Conditions (ii) and (iii) can easily be checked to be equivalent.
(iii) = (iv). Both E(R/K) and E(R/K)/S are (R/K)-modules. As such,

Hompg/x (E(R/K), E(R/K)/S) = Homg(E(R/K), E(R/K)/S).

Thus S satisfies the conditions of Proposition 3.1 as an extension of R/K.
The result follows by observing that E(S), the R-injective envelope of S, is
just E(R/K), and that Bicgx(E(S) @ E(S)/S) = Bicz(E(S) @ E(S)/S).

(iv) = (v). E(S) is injective as an (R/K)-module, and so it follows that
E(S) @ E(S)/S is fully divisible as an (R/K)-module. It is immediate that
E(S) ® E(S)/S is cofaithful as an (R/K)-module.
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v) = (). If S = Bicg(M), where M is cofaithful and fully divisible as an
(R/K)-module, then S = Q) (R/K). If we consider the R-module 37, then
rady,(R) = Ann(M) = K and rad, = radggx since rad, (E(R/K)) = 0.
Since Homg(E(R/K), M) = Hompg,(E(R/K), M), it is clear that S =
QM(R/K) = QM(R)~

This shows that if K is a torsion ideal of R, then R/K itself satisfies the
conditions of Theorem 3.4. Lambek [3] gives an example due to Hans Storrer
[3, Example 7, § 2] which shows that R/K may not be a ring of left quotients
even if K is a torsion ideal. On the other hand, of course, any ring of left
quotients satisfies the conditions of Theorem 3.4.

If K is a torsion ideal, then E(R/K) is the (R/K)-injective envelope of
R/K. Thus any (R/K)-fully divisible module is also fully divisible as an
R-module. Applying Theorem 3.4 (v) and Proposition 1.6 (ii), we see that a
ring satisfying the conditions of Theorem 3.4 is isomorphic to the bicom-
mutator of a fully divisible R-module M which is finitely generated over the
ring End(M). This generalizes the known fact that any ring of left quotients
of R is isomorphic to the bicommutator of an injective R-module M which is
finitely generated over its ring of endomorphisms Endp(3/). (See
[3, Proposition 2.8].)

3.5. COROLLARY. If R is left hereditary, then every ring satisfying the conditions
of Theorem 3.4 is a ring of left quotients of R.

Proof. Let K be a torsion ideal of R and R/K T S C Qnay (R/K). If R is left
hereditary, then E(S) @ E(S)/S is R-injective, since every homomorphic
image of an R-injective module is R-injective. Thus if S satisfies the conditions
of Theorem 3.4, S = Qi (R) for the R-injective module M = E(S) @ E(S)/S.
This shows that S is a ring of left quotients of R.

3.6. CorROLLARY. Let K be a torsion ideal of R and let S be « subring of
QOuax (R/K) such that R/K C .S © Quax(R/K). Either of the following conditions
is suffictent to guarantee that S satisfies the conditions of Theorem 3.4:

(1) R — S is an epimorphism in the category of rings;
(i1) S is contained in an R-projective submodule of E(R/K).

Proof. (i) 1t is well known that if R — S is an epimorphism in the category
of rings, then every R-homomorphism between S-modules is in fact an S-
homomorphism. By assumption, both E(R/K) and E(R/K)/S are S-modules,
and so S must satisfy condition (ii) of Theorem 3.4.

(if) Suppose that S C zP & zE(R/K) for an R-projective module RP.
For convenience we let E(R/K) = E. We will show that .S satisfies condition
(iii) of Theorem 3.4. Let f € Homg(E, E/S) such that f(R/K) = 0. If
p: E— E/S is the projection, then since P is projective, the restriction of f
to P can be lifted to g: P — E with pg = fi, where ¢: P — E is the inclusion.
Since E is injective, g can be extended to h: E — E with g = hi. (All homo-
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morphisms are R-homomorphisms.) Now fz = pht, and so f and ph agree on
P, and consequently ph(R/K) = f(R/K) = 0. This implies that 2 (R/K) C S,
and since % is an (R/K)-endomorphism of E, Lemma 2.1 implies that #(S) C S.
But then f(S) = ph(S) = 0, and this establishes condition (iii) of Theorem 3.4.

We note that Corollaries 3.5 and 3.6 can be combined to show that if R is
left hereditary and Q,(R) is a ring of left quotients of R with Q,(R) R-pro-
jective, then any subring S of Q,(R) such that R/rad,(R) C .S is a ring of
left quotients of R.

Added in proof. Hans Storrer has pointed out to me thataring S which satisfies
the conditions of Proposition 3.2 in fact satisfies condition (i) of Corollary 3.6,
so that Proposition 3.2 follows from Corollary 3.6.
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