
WEAKLY SEMI-SIMPLE FINITE-DIMENSIONAL 
ALGEBRAS 

W. EDWIN CLARK 

Let A be a finite-dimensional (associative) algebra over an arbitrary field 
F. We shall say that a semi-group 5 is a translate of A if there exist an algebra 
B over F and an epimorphism <j>: B —» F such that A = 0<£_1 and S = 1<£-1. 
I t is shown in (2) that any such semi-group 5 has a kernel (defined below) 
that is completely simple in the sense of Rees. Following Stefan Schwarz (4), 
we define the radical R(S) of S to be the union of all ideals I oi S such that 
some power In of / lies in the kernel K of S. First we prove that the radical of 
a translate of A is a translate of the radical of A. It follows that A is nilpotent 
if and only if it has a translate 5 such that R (S) = 5. We then investigate the 
opposite extreme, i.e., the case in which R(S) = K. If R(S) = K> we shall 
say that 5 is K-semi-simple. We declare that A is weakly semi-simple if some 
translate S of A is X-semi-simple. It is shown that A is weakly semi-simple if 
and only if fAf is semi-simple for some (hence every) principal idempotent 
/ in A ; equivalently, A — fAf ® R(A) (as vector spaces) where R(A) is the 
radical of A. This result enables us to give a characterization without the use 
of idempotents of the algebras of class Q studied by R. M. Thrall in (5). 

1. Preliminaries. 

1.1. A non-empty subset / of a semi-group 5 is said to be an ideal of 5 if 
SI VJ IS C I- The intersection K of all ideals of 5, if not empty, is a minimal 
ideal of S called the kernel of S. K is completely simple if it is a union of groups 
and has no proper ideals. For further information concerning completely 
simple semi-groups see (3). 

1.2. Let S be a semi-group with kernel K. An ideal / of S is said to be Em
potent if some power In lies in K. The radical R(S) of S is the union of all 
impotent ideals of S. 

1.3. We shall assume that the reader is familiar with the basic theory of 
finite-dimensional algebras as expounded for example in (1). However, we 
wish to emphasize that by ideal of A where A is an algebra we shall mean as 
usual a subspace of the underlying vector space which is at the same time an 
"ideal" (in the sense of 1.1) of the multiplicative semi-group of A. On the other 
hand, when we speak of an ideal of a translate of A (see 1.5) wre imply no 
more than the definition of 1.1. 
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It is easily shown that if 5 is the multiplicative semi-group of a finite-
dimensional algebra, then R(S) as defined in 1.2 coincides with the usual 
definition of the radical of an algebra. We shall accordingly denote the radical 
of an algebra A by R(A). 

1.4. An idempotent e (possibly zero) in an algebra A is said to be a principal 
idempotent if u2 = u and ue = eu = 0 together imply u = 0. 

1.5. A semi-group S will be said to be a translate of an algebra A over F 
if there exists an algebra B over F and an epimorphism cj>: B —» F such that 
5 = 1<£-1 and A = 0<£_1. Alternatively, one may see that a semi-group 5 is a 
translate of A if there exists an algebra B containing A as an ideal such that 
S = A + x for some x G B,x (? A ; the multiplication in 5 is, of course, assumed 
to coincide with that in B Note that iî S = A + x, then 5 = A + 5 for 
any s (z S. 

1.6. We shall need the following facts from (2) concerning a translate S of 
a, finite-dimensional algebra A over a field F: 

(i) 5 has a completely simple kernel K. 
(ii) Some power of every element of S lies in a subgroup of S. 

(iii) If ai, . . . , an G F are such that £ « * = 1, then £ « * ^ Ç 5 for any 
si, . . . , sn G S. 

(iv) The kernel K of 5 is not in general a linear variety (i.e., a translate of 
a subspace of A). However, if we let M{K) be the smallest linear variety con
taining K, then M(K) is a impotent ideal. 

(v) Let r be a faithful representation of the algebra B as an algebra of 
matrices. Then all elements of T(K) have the same rank k. Moreover, an 
element s of S lies in K if and only if the rank of Y(s) is k. 

(vi) Let e2 = e e K. Then (2, 1.7, 1.8, and 2.4) imply that eM(K)e - e 
and (1 — e)M(K)(l — e) are both nilpotent subalgebras of A = S — e, where 
by (1 — e)m(l — e) we mean m — em — me + erne. 

2. The radical of a translate of an algebra. 

2.0. LEMMA. Let S be a translate of a finite-dimensional algebra A, and let K 
be the kernel of S. Then, if e2 = e G K, 

M(K) - M(K) = M(K) - e 

is a nilpotent ideal of A. 

Proof. Since M(K) is a linear variety (see 1.6 (iv)), it is clear that 
M(K) - x = M(K) - y for any x, y G M(K). Thus 

M(K) - e = M(K) - 1 ( 1 ) 

fore = e2 e KQM(K). 
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To see that M(K) — e is a left ideal, note that 

A(M(K) - e) = (S - e)(M(K) - e) = SM{K) - eM(K) - M(K)e 

+ e Ç M(K) - M(K) - M(K) + e. 

Now since M(K) is a linear variety, M"(X") + M(K) - ikf(X) = lf(Z"), 
whence 

A (M(K) - e)Qe - M(K) = M(K) - e. 

Similarly, M{K) — e is a right ideal of ^4. 
Now let M = M(i£) — e. It is easily seen that 

(1) M = eMe + eilf (1 - e) + (1 - e)Me + (1 - c)M(1 - e) 

is a direct sum decomposition of M as a vector space. Since M(K) is an ideal 
of 5 as well as a linear variety, each summand of (1) is indeed contained in M. 
By 1.6 (vi), eMe = eM(K)e - e and 

(1 - e)M(l - e) = (1 - é!)M(20(l ~ e) 
are both nilpotent. Since (1 — e)M(l — e) is nilpotent, it follows that 
M (I — e) and (1 — e)M are both nilpotent ideals of M and therefore con
tained in the radical R(M) of M. Now clearly the last three summands of (1) 
are contained in M(l — e) + (1 — e)M and hence lie in the radical. This 
together with the fact that eMe is nilpotent implies that R(M) = M, i.e., 
M is nilpotent. 

2.1. LEMMA. Le/ 5, K, and A be as in 2.0. If I is a K-potent ideal of S, then 
I - x C R(A) for all x G I. 

Proof. Since X is the minimal ideal of S, we have K C / . We may assume 
without loss of generality that / = M (I), the smallest linear variety containing 
/ . For since 

M(I) = { E « z ^ : E « i = ! ands , € / } , 

it is clear that M(I)n C M"(K) if In Q K; then since M(X) is impotent (1.6 
(iv)), it follows that M (I) is also i^-potent. 

Since K C / , we have I f f l C M(l) = I. Let e = e2 £ K; then 

/ — e = I — x 

for any x £ / since I is a linear variety. Now 

A (J - e) = (S - e)(I - e) Q SI - el - le + e Q (I - I - I) + e 

= e-(I + I - I ) Q e - I = I - e . 

Hence A (I — e) Ç (/ — e) and / — e is a left ideal of ^4. Similarly, one may 
show that I — e is a right ideal. 

Now to complete the proof we need only show that I — e is nilpotent. We 
first claim that 

(/ - e)
n = P - Af (X) for w = 1, 2, . . . , 

https://doi.org/10.4153/CJM-1966-046-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-046-7


436 W. EDWIN CLARK 

This is obvious for n = 1 since e 6 M(K). Suppose our claim holds for n = k\ 
then 

(/ _ ey+i = (i - e)(j - ey 

C (7 - *)(/* ~ M(X)) 

C J*+i - */* + *M(K) - 7M(A) 

e /*+i - (A/(A) - M(K) + M(K)) 

Ç P+l - M{K). 

Now if In C A', then 

(/ - «)* Ç 7W - M (if) Ç A 7 - M(K) C M (A) - I f (A) = M (A) - g 

which by 2.0 is nilpotent. Consequently, I — e must also be nilpotent. 

2.2. COROLLARY. Let S, A, and A be as in 2.0. Then R(S) C A (.4) + e/or 
any e — e2 £ K. 

Proof. By definition, R(S) is the union of all A-potent ideals / of 5. By the 
preceding lemma, I Q R(A) + e for any e in I; and since A C / , we may 
choose e to be any idempotent in A. Hence R (S) Q R(A) -\- e. 

2.3. LEMMA. Let S, A, and A fe as w 2.0. Then R(A) + e is a K-potent ideal 
of S for any idempotent e in K. 

Proof. Since S = A + e> 

(R(A) +e)S = (R(A) + e)(A + e) 

C R(A)e + eA + R(A)A + e 

C .4e + ^ + A(.4) + e. 

Hence, to showr that R(A) + e is an ideal of 5, it suffices to show that 
Ae U ^1 Ç A (/I). This follows immediately from 2.0, since 

Ae + e = (A + e)e = Se C A, 

implying that 
AeQK - e Q M(K) - e Ç A(/l). 

Similarly, d Ç X - ^ Ç ^ i ) . 
It remains to show that R(A) + e is A-potent. To do this, first we establish 

that 

(2) M{K)A VJ /1M(A) Ç M (A) - e. 

If x G M (A), then x - e G M (A) - e, which by 2.0 is an ideal of A. Let 
a G A. Then xa — m = (x — e)a Ç M(K) — e, and since by the first para
graph of this proof eA Ç M (A) — e, we obtain that xa f M(K) — e. Thus 
xA C ilf(A) - e. Similarly .4x C M(K) - e, and (2) holds. 
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We now use (2) to obtain 

(3) (R(A) + e)n C R(A)n + M(K), for » = 1, 2, . . . . 

Suppose this holds for n, then 

(R(A) + e)**1 = (£ (4) + e)(R(A)n + M(K)) 

Ç R(A)n^ + eR(A)n + R(A)M(K) + eM(K) 

C ^(4)»+! + M(K)A + AM(K) + M(K) 

ç je(4)»+i + M(iT) - <? + M(X) 

ç i ? ^ ) ^ 1 + M(K). 

Thus (3) holds, and if n exceeds the index of nilpotency of R(A), we obtain 
(R(A) + e)n Q M(K). Now since M(K) is IE-potent, R(A) + e must be also. 

2.4. THEOREM. Let S be a translate of a finite-dimensional algebra A, and let 
e be an idempotent in the kernel of S. Then 

R(S) = R(A) + e. 

Proof, By 2.3, R(A) + e is a impotent ideal of S and is therefore contained 
in R(S). On the other hand, we know from 2.2 that R(S) C R(A) + e. 

2.5. COROLLARY. / / 5 is as above, then R(S) is a K-potent ideal of S and hence 
the unique maximal K-potent ideal of S. 

2.6. COROLLARY. ïf S and A are as above, and if R(S) = S, then A is nilpotent. 

3. Weakly semi-simple algebras. 

3.0. If a translate 5* of the algebra A has a multiplicative zero, i.e., if 
K = jzj, then s —> s — z is an isomorphism from S onto the multiplicative 
semi-group of A. Hence the only translates of S that are of interest are those 
for which K is non-trivial. Corollary 2.6 above deals with the case R(S) — S. 
In this section, we single out for consideration those algebras that have trans
lates S whose radical and kernel coincide. To this end, we shall say that a 
semi-group S with kernel K is K-semi-simple if R{S) = K\ and that an algebra 
A is weakly semi-simple if it possesses a i^-semi-simple translate. 

3.1. LEMMA. Let S be a K-semi-simple translate of a finite-dimensional algebra. 
A. Let K be the kernel of S and e an idempotent in K. Then 

(i) .1/(70 = K 
and 

(ii) x = ex + xe — exe for all x G K. 

Proof. Since by 1.6 (iv) M(K) is Z-potent, we have M(K) C R{S) = K\ 
whence K = M(K). 

Let r be a faithful matrix representation of a super-algebra of A which 
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contains S as a translate of A, and let e be an idempotent in K. Now by choosing 
a suitable basis for the representation space, we may assume that 

«•> - [o* !] 
identity matrix. Now let x G K. Since K = M(K), the 
- xe + exe + e lies in K. Thus 

T(y) = [£ ?] 6 r(*) 
where C is some (n — k) X (n — k) matrix; here n denotes the degree of the 
representation. By 1.6 (v), since y and e both lie in K, the rank of T(e) must 
equal the rank of T(y). This implies that C = 0. Hence T(y) = F(e). Since 
r is faithful, this shows that y = e. This clearly implies (ii). 

3.2. LEMMA. Let S, A, K, and e be as in 3.1. Then 

R(A) = eA + Ae + eAe = eA + Ae. 

Proof. We know from the first paragraph of the proof of 2.3 that eA and Ae 
are always contained in R(A). It follows that 

eAeQeR(A) C eA QR(A). 

Hence eAe + eA + Ae C i?G4). 
Now let r G i?(^4). Since 5 is X-semi-simple, K = R(S); hence 2.4 implies 

that R{A) = K — e for some idempotent e in i£. Thus r = x — e for x G K. 
By 3.1 (ii), x = ex + xe — exe, and so 

r = ex + xe — exe — e = e(x — e) + (x — e)e — e(x — e)e, 

which is an element of eA + Ae + eAe since x — e £ S — e = A. This shows 
that R(A) = ê 4 + Ae + eAe. Since e.4 is contained in ^4, eAe Q Ae and 
therefore Ae + eA = Ae + eA + eAe. 

3.3. LEMMA. Le/ A be a subalgebra of a finite-dimensional algebra B, and let 
e be an idempotent of B such that R{A) = eA + Ae. Then there exists a principal 
idempotent f in A such that fAf is semi-simple. 

Proof. First, since eA \J Ae C R(A), we have 

eAeQeR(A) C eA CR(A). 

Whence R(A) = eA + Ae + eAe. It follows that if we let 

A0 = (1 — e)̂ 4 (1 — e) = {a — ea — ae + eae:a G A } , 

we obtain that A = i£(^4) + ^40 is a direct sum as vector spaces, i.e., A0 is 
complementary to the radical of A. It follows that A0 must be semi-simple. 
Since A0 is semi-simple, it contains an identity, say / . Now 

fAf = / M + Ae + A0)f = W = 4o, 

where i* is the k X k 
element 3> = x — ex -
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since/ Ç (1 — e)A (1 — e) implies/e = ef = 0. To see t h a t / is principal in A, 
let g2 = g Ç A such that fg = gf = 0. Then g = r + a where a £ A0 and 
r G 7£(yl), whence 0 = /gf = /of = a. This implies that g = r, and therefore 
g = 0 since i?(-4) contains no non-zero idempotents. 

3.4. LEMMA. Let A be a finite-dimensional algebra such that A = fAf + R(A) 
is a direct sum as vector spaces for some idempotent f in A. Then every principal 
idempotent in A is of the form f + n where n £ R(A) and n = nf + fn + nfn. 

Proof. Let h be a principal idempotent in ^4. Then A = g + n where g £ fAf 
and n 6 ^(-4). The idempotency of h easily implies that g2 = g and 

gw + wg + n2 = n. 

Let & = / — g. Since g 6 / 4 / , we have k2 = k. Our aim is to show that k = 0. 
Since & is a principal idempotent, it suffices to show that kh = hk — 0. From 

** = (f-g)(g + n) = (/ - g)» = fn - gn 

and A* = (g + » ) ( / - g) = »(f - g) = nf - ng, 

it is clear that we need only show that /n = gn and wf = wg. To do this, we 
first note that 

fn = f{gn + ng + n2) = gn + /wg + /n2 = gn + /n 2 

since fng = /wgf 6 fAfC\ R(A) = (0). Similarly, nf = ng + n2/. We now 
show tha t /n 2 = n2f = 0. Since/ng and/n2g lie in fAf Hi R(A) = (0), we have 
/w2 = fn(gn + ng + n2) = /n 3 implying that /n2 = /n 3 = . . . = /w* = 0 if k 
exceeds the index of nilpotency of n. A similar argument shows that n2f = 0. 
We have therefore established that g = / . 

From the above paragraph we know that n = nf + fn + n2 and that 
w2/ = fn2 = 0. Now 

«(wf + fn + n2) = n2/ + n/n + n3 = n/n + nz 

since n2/ = 0. Thus 

(4) n2 = nfn + n3. 

This implies that 

n3 — n(n2) = n(nfn + n3) = n2fn + n4 = n4, 

since n2/ = 0. Now since n is nilpotent, n3 = n4 implies that n3 = 0. From 
(4) we now conclude that n2 = nfn; whence 

n — nf+ fn + n2 = n f + /n + n/n. 

3.5. LEMMA. 7/ A and f are as in 3.4, and h is a principal idempotent of A, 
then h Ah is semi-simple. 
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Proof. By 3.4, we know that h = f + n where n £ R{A). It is well known 
(1, p. 25) that R(hAh) = hR(A)h. Therefore to show that hAh is semi-simple, 
it suffices to show that hR(A)h = 0. Let hah G hR(A)h. Then 

hah = (/ + w)a(/ + w) = /aw + naf + naw, 

since / a / G fAfC\ R(A) = (0). It remains to show that fan = naf = nan = 0. 
From 3.4 we know that n = nf + fn + w/w, whence 

fan = fa (nf + fn + nfn) = fanf + fafn + fanfn = 0 

since fR(A)f = 0. Similarly, wa/ and naw = 0. 

3.6. LEMMA. Z,e£ 4̂ #£ a finite-dimensional algebra over F which contains a 
principal idempotent f such thatfAf is semi-simple. Then A is weakly semi-simple. 

Proof. Let B be the algebra obtained by adjoining an identity to A in the 
usual way. Then A is an ideal of B and B/A is isomorphic to F; so, clearly, 
5 = A + 1 is a translate of A. Let K denote the kernel of 5. We must show 
that R(S) = K. By 2.4 we have R(S) = R(A) + e for any idempotent e in 
K. Thus it suffices to show that R(A) + e = K. 

Now since/ is a principal idempotent, it follows from (1, Lemma 9, p. 26) 
that 

R(A) = (1 -f)Af + fA(l - / ) + (1 -f)A(l - / ) , 

and 4̂ = fAf + i?(^4) is a vector-space direct sum. Whence 

R(A)Q (1 -f)A +A(1 - / ) ; 

furthermore 

(1 -f)A = (1 -f)(fAf+R(A)) = (1 -f)R(A). 

Similarly, 4 (1 - / ) = #04) (1 - / ) ; consequently, 

R(A) = (1 - / ) # ( , 4 ) + l ? G 4 ) ( l - / ) . 

Now i?(,4) + (1 - / ) = (R(A) - / ) + 1 is a left ideal of 5 = ^ + 1, for 

(A +l)(R(A) + (1 - / ) ) C ^ ^ ( / 1 ) +R(A)+A(l - / ) + (1 - / ) 

Çi?( .4) + (1 - / ) 

since AR(A) Q R(A) and A (1 - / ) = R(A)(l - / ) Ç i^(^) as shown above. 
Similarly, i?(^4) + (1 —/) is a right ideal of 5 and therefore an ideal of S. 

Let g = 1 — / . We now show that R(A) + g has no proper ideals. First 
note that G = g(R(A) + g)g = gi?(^4)g + g is a group ; for if y = gng + g Ç G, 
then 3>3 = z;y = g where 

s = g( —» + n2 - . . . - »*)# + g, 

for any i exceeding the index of nilpotency of n. Now if / is an ideal of 
R(A) + g, gig Ci I C\ G. Since G is a group, G must be contained in / . In 
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particular, g Ç / . Now let y be any element of R(A) + g. Let gyg be the inverse 
of gyg in the group G, and set z = yggygy. We now have gz = gy, zg = yg, 
and gzg = gyg. By the above, we know that R(A)g + gR{A) = R(A); it 
follows that w = gw + wg — gwg for any w in R(A) + g. This implies that 
y — z. Now from z — yggygy and g (E / , we obtain 3/ = s 6 / . This shows that 
J = i ? C 4 ) + £ . 

Since R(A) + g is an ideal, it follows immediately from the preceding 
paragraph that K = R(A) + g. Clearly, then, R(A) + g = jR(4) + e for any 
idempotent e of K. 

3.8. THEOREM. //' .4 is a finite-dimensional algebra, the following are equivalent: 
(i) A is weakly semi-simple. 

(ii) There exists a principal idempotent f in A such that fAf is semi-simple. 
(iii) For all principal idempotents f in A, fAf is semi-simple. 
(iv) A = fAf + R(A) is a vector-space direct sum for some idempotent f in A. 
Moreover, if A is weakly semi-simple, then every subalgebra of A that comple

ments the radical is of the form fAf for some principal idempotent f in A. 

Proof. The equivalence of (i), (ii), (iii), and (iv) follow immediately from 
the foregoing lemmas together wTith the fact that (ii) is equivalent to (iv), 
which is a direct result of the Peirce decomposition of A with respect to the 
principal idempotent/; cf. (1, pp. 25 ff.). 

To establish the last sentence of the theorem, assume that A is weakly 
semi-simple and that A — D + R(A) is a vector-space direct sum for some 
subalgebra D. D must be semi-simple and therefore has an identity, say / . 
Then D C fAf trivially. To show the converse we need only show / to be 
principal, for then by (1, §9, p. 25) we have dim(/^4/) = dim D. Let g = g2 £ A 
such that gf = fg = 0. Now g = d + r when d Ç D and r G R(A). Hence 

0=fg=f(d + r) =d+fr, 

implying d — 0. Therefore g — r G ^(^4); since g is idempotent and r is 
nilpotent, g = 0. 

3.9. COROLLARY. / / a finite-dimensional algebra A is a direct sum of a semi-
simple algebra and a nilpotent algebra, then A is weakly semi-simple. 

After R. M. Thrall (5), we shall say that an algebra A is of class Q if it 
possesses an idempotent e satisfying 

(i) eAe is semi-simple, 
(ii) AeA = A, 

and (iii) A = eAe © R(A) (as vector spaces). 
We observe that (iii) always implies (i) and that they are equivalent if e 

is a principal idempotent in (i). In any case, it is clear from the above theorem 
that (i) and (iii) are equivalent to weak semi-simplicity. This fact enables us 
to characterize without idempotents the algebras of class Q: 
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3.9. THEOREM. A weakly semi-simple finite-dimensional algebra A is of class 
Q if and only if A2 = A and R(A)3 = 0. 

Proof. The necessity of these conditions follows immediately from (5, 
Corollary 1) and Condition (ii). To show their sufficiency, let e be a principal 
idempotent such that A = eAe + R(A). Then 

A = A2 = Az = (eAe + R(A))* C AeA + R(A)Z = AeA; 

whence A = AeA. 
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