WEAKLY SEMI-SIMPLE FINITE-DIMENSIONAL ALGEBRAS

W. EDWIN CLARK

Let A be a finite-dimensional (associative) algebra over an arbitrary field F. We shall say that a semi-group S is a translate of A if there exist an algebra B over F and an epimorphism $\phi: B \rightarrow F$ such that $A=0 \phi^{-1}$ and $S=1 \phi^{-1}$. It is shown in (2) that any such semi-group S has a kernel (defined below) that is completely simple in the sense of Rees. Following Stefan Schwarz (4), we define the radical $R(S)$ of S to be the union of all ideals I of S such that some power I^{n} of I lies in the kernel K of S. First we prove that the radical of a translate of A is a translate of the radical of A. It follows that A is nilpotent if and only if it has a translate S such that $R(S)=S$. We then investigate the opposite extreme, i.e., the case in which $R(S)=K$. If $R(S)=K$, we shall say that S is K-semi-simple. We declare that A is weakly semi-simple if some translate S of A is K-semi-simple. It is shown that A is weakly semi-simple if and only if $f A f$ is semi-simple for some (hence every) principal idempotent f in A; equivalently, $A=f A f \oplus R(A)$ (as vector spaces) where $R(A)$ is the radical of A. This result enables us to give a characterization without the use of idempotents of the algebras of class Q studied by R. M. Thrall in (5).

1. Preliminaries.

1.1. A non-empty subset I of a semi-group S is said to be an ideal of S if $S I \cup I S \subset I$. The intersection K of all ideals of S, if not empty, is a minimal ideal of S called the kernel of $S . K$ is completely simple if it is a union of groups and has no proper ideals. For further information concerning completely simple semi-groups see (3).
1.2. Let S be a semi-group with kernel K. An ideal I of S is said to be K potent if some power I^{n} lies in K. The radical $R(S)$ of S is the union of all K-potent ideals of S.
1.3. We shall assume that the reader is familiar with the basic theory of finite-dimensional algebras as expounded for example in (1). However, we wish to emphasize that by ideal of A where A is an algebra we shall mean as usual a subspace of the underlying vector space which is at the same time an "ideal" (in the sense of 1.1) of the multiplicative semi-group of A. On the other hand, when we speak of an ideal of a translate of A (see 1.5) we imply no more than the definition of 1.1.

[^0]It is easily shown that if S is the multiplicative semi-group of a finitedimensional algebra, then $R(S)$ as defined in 1.2 coincides with the usual definition of the radical of an algebra. We shall accordingly denote the radical of an algebra A by $R(A)$.
1.4. An idempotent e (possibly zero) in an algebra A is said to be a principal idempotent if $u^{2}=u$ and $u e=e u=0$ together imply $u=0$.
1.5. A semi-group S will be said to be a translate of an algebra A over F if there exists an algebra B over F and an epimorphism $\phi: B \rightarrow F$ such that $S=1 \phi^{-1}$ and $A=0 \phi^{-1}$. Alternatively, one may see that a semi-group S is a translate of A if there exists an algebra B containing A as an ideal such that $S=A+x$ for some $x \in B, x \notin A$; the multiplication in S is, of course, assumed to coincide with that in B Note that if $S=A+x$, then $S=A+s$ for any $s \in S$.
1.6. We shall need the following facts from (2) concerning a translate S of a finite-dimensional algebra A over a field F :
(i) S has a completely simple kernel K.
(ii) Some power of every element of S lies in a subgroup of S.
(iii) If $\alpha_{1}, \ldots, \alpha_{n} \in F$ are such that $\sum \alpha_{i}=1$, then $\sum \alpha_{i} s_{i} \in S$ for any $s_{1}, \ldots, s_{n} \in S$.
(iv) The kernel K of S is not in general a linear variety (i.e., a translate of a subspace of A). However, if we let $M(K)$ be the smallest linear variety containing K, then $M(K)$ is a K-potent ideal.
(v) Let Γ be a faithful representation of the algebra B as an algebra of matrices. Then all elements of $\Gamma(K)$ have the same rank k. Moreover, an element s of S lies in K if and only if the rank of $\Gamma(s)$ is k.
(vi) Let $e^{2}=e \in K$. Then (2, 1.7, 1.8, and 2.4) imply that $e M(K) e-e$ and $(1-e) M(K)(1-e)$ are both nilpotent subalgebras of $A=S-e$, where by $(1-e) m(1-e)$ we mean $m-e m-m e+e m e$.

2. The radical of a translate of an algebra.

2.0. Lemma. Let S be a translate of a finite-dimensional algebra A, and let K be the kernel of S. Then, if $e^{2}=e \in K$,

$$
M(K)-M(K)=M(K)-e
$$

is a nilpotent ideal of A.
Proof. Since $M(K)$ is a linear variety (see 1.6 (iv)), it is clear that $M(K)-x=M(K)-y$ for any $x, y \in M(K)$. Thus

$$
M(K)-e=M(K)-M(K)
$$

for $e=e^{2} \in K \subseteq M(K)$.

To see that $M(K)-e$ is a left ideal, note that

$$
\begin{aligned}
A(M(K)-e)=(S-e)(M(K)-e)= & S M(K)-e M(K)-M(K) e \\
& +e \subseteq M(K)-M(K)-M(K)+e
\end{aligned}
$$

Now since $M(K)$ is a linear variety, $M(K)+M(K)-M(K)=M(K)$, whence

$$
A(M(K)-e) \subseteq e-M(K)=M(K)-e
$$

Similarly, $M(K)-e$ is a right ideal of A.
Now let $M=M(K)-e$. It is easily seen that

$$
\begin{equation*}
M=e M e+e M(1-e)+(1-e) M e+(1-e) M(1-e) \tag{1}
\end{equation*}
$$

is a direct sum decomposition of M as a vector space. Since $M(K)$ is an ideal of S as well as a linear variety, each summand of (1) is indeed contained in M. By 1.6 (vi), $e M e=e M(K) e-e$ and

$$
(1-e) M(1-e)=(1-e) M(K)(1-e)
$$

are both nilpotent. Since $(1-e) M(1-e)$ is nilpotent, it follows that $M(1-e)$ and $(1-e) M$ are both nilpotent ideals of M and therefore contained in the radical $R(M)$ of M. Now clearly the last three summands of (1) are contained in $M(1-e)+(1-e) M$ and hence lie in the radical. This together with the fact that $e M e$ is nilpotent implies that $R(M)=M$, i.e., M is nilpotent.
2.1. Lemma. Let S, K, and A be as in 2.0. If I is a K-potent ideal of S, then $I-x \subseteq R(A)$ for all $x \in I$.

Proof. Since K is the minimal ideal of S, we have $K \subseteq I$. We may assume without loss of generality that $I=M(I)$, the smallest linear variety containing I. For since

$$
M(I)=\left\{\sum \alpha_{i} s_{i}: \sum \alpha_{i}=1 \text { and } s_{i} \in I\right\}
$$

it is clear that $M(I)^{n} \subseteq M(K)$ if $I^{n} \subseteq K$; then since $M(K)$ is K-potent (1.6 (iv)), it follows that $M(I)$ is also K-potent.

Since $K \subseteq I$, we have $M(K) \subseteq M(\hat{I})=I$. Let $e=e^{2} \in K$; then

$$
I-e=I-x
$$

for any $x \in I$ since I is a linear variety. Now

$$
\begin{aligned}
A(I-e)=(S-e)(I-e) \subseteq S I-e I & -I e+e \subseteq(I-I-I)+e \\
& =e-(I+I-I) \subseteq e-I=I-e
\end{aligned}
$$

Hence $A(I-e) \subseteq(I-e)$ and $I-e$ is a left ideal of A. Similarly, one may show that $I-e$ is a right ideal.

Now to complete the proof we need only show that $I-e$ is nilpotent. We first claim that

$$
(I-e)^{n}=I^{n}-M(K) \quad \text { for } n=1,2, \ldots,
$$

This is obvious for $n=1$ since $e \in M(K)$. Suppose our claim holds for $n=k$; then

$$
\begin{aligned}
(I-e)^{k+1} & =(I-e)(I-e)^{k} \\
& \subseteq(I-e)\left(I^{k}-M(K)\right) \\
& \subseteq I^{k+1}-e I^{k}+e M(K)-I M(K) \\
& \subseteq I^{k+1}-(M(K)-M(K)+M(K)) \\
& \subseteq I^{k+1}-M(K)
\end{aligned}
$$

Now if $I^{n} \subseteq K$, then

$$
(I-e)^{n} \subseteq I^{n}-M(K) \subseteq K-M(K) \subseteq M(K)-M(K)=M(K)-e
$$

which by 2.0 is nilpotent. Consequently, $I-e$ must also be nilpotent.
2.2. Corollary. Let S, A, and K be as in 2.0. Then $R(S) \subseteq R(A)+e$ for any $e=e^{2} \in K$.

Proof. By definition, $R(S)$ is the union of all K-potent ideals I of S. By the preceding lemma, $I \subseteq R(A)+e$ for any e in I; and since $K \subset I$, we may choose e to be any idempotent in K. Hence $R(S) \subseteq R(A)+e$.
2.3. Lemma. Let S, A, and K be as in 2.0. Then $R(A)+e$ is a K-potent ideal of S for any idempotent e in K.

Proof. Since $S=A+e$,

$$
\begin{aligned}
(R(A)+e) S & =(R(A)+e)(A+e) \\
& \subseteq R(A) e+e A+R(A) A+e \\
& \subseteq A e+e A+R(A)+e
\end{aligned}
$$

Hence, to show that $R(A)+e$ is an ideal of S, it suffices to show that $A e \cup e A \subseteq R(A)$. This follows immediately from 2.0, since

$$
A e+e=(A+e) e=S e \subset K
$$

implying that

$$
A e \subseteq K-e \subseteq M(K)-e \subseteq R(A)
$$

Similarly, $e A \subseteq K-e \subseteq R(A)$.
It remains to show that $R(A)+e$ is K-potent. To do this, first we establish that

$$
\begin{equation*}
M(K) A \cup A M(K) \subseteq M(K)-e \tag{2}
\end{equation*}
$$

If $x \in M(K)$, then $x-e \in M(K)-e$, which by 2.0 is an ideal of 1 . Let $a \in A$. Then $x a-e a=(x-e) a \in M(K)-e$, and since by the first paragraph of this proof $e A \subseteq M(K)-e$, we obtain that $x a \in M\left(K^{*}\right)-e$. Thus $x A \subseteq M(K)-e$ Similarly $A x \subseteq M(K)-e$, and (2) holds.

We now use (2) to obtain

$$
\begin{equation*}
(R(A)+e)^{n} \subseteq R(A)^{n}+M(K), \quad \text { for } n=1,2, \ldots \tag{3}
\end{equation*}
$$

Suppose this holds for n, then

$$
\begin{aligned}
(R(A)+e)^{n+1} & =(R(A)+e)\left(R(A)^{n}+M(K)\right) \\
& \subseteq R(A)^{n+1}+e R(A)^{n}+R(A) M(K)+e M(K) \\
& \subseteq R(A)^{n+1}+M(K) A+A M(K)+M(K) \\
& \subseteq R(A)^{n+1}+M(K)-e+M(K) \\
& \subseteq R(A)^{n+1}+M(K)
\end{aligned}
$$

Thus (3) holds, and if n exceeds the index of nilpotency of $R(A)$, we obtain $(R(A)+e)^{n} \subseteq M(K)$. Now since $M(K)$ is K-potent, $R(A)+e$ must be also.
2.4. Theorem. Let S be a translate of a finite-dimensional algebra A, and let e be an idempotent in the kernel of S. Then

$$
R(S)=R(A)+e
$$

Proof. By 2.3, $R(A)+e$ is a K-potent ideal of S and is therefore contained in $R(S)$. On the other hand, we know from 2.2 that $R(S) \subseteq R(A)+e$.
2.5. Corollary. If S is as above, then $R(S)$ is a K-potent ideal of S and hence the unique maximal K-potent ideal of S.
2.6. Corollary. If S and A are as above, and if $R(S)=S$, then A is nilpotent.

3. Weakly semi-simple algebras.

3.0. If a translate S of the algebra A has a multiplicative zero, i.e., if $K=\{z\}$, then $s \rightarrow s-z$ is an isomorphism from S onto the multiplicative semi-group of A. Hence the only translates of S that are of interest are those for which K is non-trivial. Corollary 2.6 above deals with the case $R(S)=S$. In this section, we single out for consideration those algebras that have translates S whose radical and kernel coincide. To this end, we shall say that a semi-group S with kernel K is K-semi-simple if $R(S)=K$; and that an algebra A is weakly semi-simple if it possesses a K-semi-simple translate.
3.1. Lemma. Let S be a K-semi-simple translate of a finite-dimensional algebra. A. Let K be the kernel of S and e an idempotent in K. Then
(i) $M(K)=K$
and
(ii) $x=e x+x e-$ exe for all $x \in K$.

Proof. Since by 1.6 (iv) $M(K)$ is K-potent, we have $M(K) \subset R(S)=K$; whence $K=M(K)$.

Let Γ be a faithful matrix representation of a super-algebra of A which
contains S as a translate of A, and let e be an idempotent in K. Now by choosing a suitable basis for the representation space, we may assume that

$$
\Gamma(e)=\left[\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right]
$$

where I_{k} is the $k \times k$ identity matrix. Now let $x \in K$. Since $K=M(K)$, the element $y=x-e x-x e+e x e+e$ lies in K. Thus

$$
\Gamma(y)=\left[\begin{array}{ll}
I_{k} & 0 \\
0 & C
\end{array}\right] \in \Gamma(K)
$$

where C is some $(n-k) \times(n-k)$ matrix; here n denotes the degree of the representation. By 1.6 (v), since y and e both lie in K, the rank of $\Gamma(e)$ must equal the rank of $\Gamma(y)$. This implies that $C=0$. Hence $\Gamma(y)=\Gamma(e)$. Since Γ is faithful, this shows that $y=e$. This clearly implies (ii).
3.2. Lemma. Let S, A, K, and e be as in 3.1. Then

$$
R(A)=e A+A e+e A e=e A+A e
$$

Proof. We know from the first paragraph of the proof of 2.3 that $e . A$ and $A e$ are always contained in $R(A)$. It follows that

$$
e A e \subseteq e R(A) \subseteq e A \subseteq R(A)
$$

Hence $e A e+e A+A e \subseteq R(A)$.
Now let $r \in R(A)$. Since S is K-semi-simple, $K=R(S)$; hence 2.4 implies that $R(A)=K-e$ for some idempotent e in K. Thus $r=x-e$ for $x \in K$. By 3.1 (ii), $x=e x+x e-e x e$, and so

$$
r=e x+x e-e x e-e=e(x-e)+(x-e) e-e(x-e) e
$$

which is an element of $e A+A e+e A e$ since $x-e \in S-e=A$. This shows that $R(A)=e A+A e+e A e$. Since $e A$ is contained in $A, e A e \subset A e$ and therefore $A e+e A=A e+e A+e A e$.
3.3. Lemma. Let A be a subalgebra of a finite-dimensional algebra B, and let e be an idempotent of B such that $R(A)=e A+A e$. Then there exists a principal idempotent f in A such that fAf is semi-simple.

Proof. First, since $e A \cup A e \subseteq R(A)$, we have

$$
e A e \subseteq e R(A) \subseteq e A \subset R(A)
$$

Whence $R(A)=e A+A e+e A e$. It follows that if we let

$$
A_{0}=(1-e) A(1-e)=\{a-e a-a e+e a e: a \in A\}
$$

we obtain that $A=R(A)+A_{0}$ is a direct sum as vector spaces, i.e., A_{0} is complementary to the radical of A. It follows that A_{0} must be semi-simple. Since A_{0} is semi-simple, it contains an identity, say f. Now

$$
f A f=f\left(e A+A e+A_{0}\right) f=f A_{0} f=A_{0}
$$

since $f \in(1-e) A(1-e)$ implies $f e=e f=0$. To see that f is principal in A, let $g^{2}=g \in A$ such that $f g=g f=0$. Then $g=r+a$ where $a \in A_{0}$ and $r \in R(A)$, whence $0=f g f=f a f=a$. This implies that $g=r$, and therefore $g=0$ since $R(A)$ contains no non-zero idempotents.
3.4. Lemma. Let A be a finite-dimensional algebra such that $A=f A f+R(A)$ is a direct sum as vector spaces for some idempotent f in A. Then every principal idempotent in A is of the form $f+n$ where $n \in R(A)$ and $n=n f+f n+n f n$.

Proof. Let h be a principal idempotent in A. Then $h=g+n$ where $g \in f A f$ and $n \in R(A)$. The idempotency of h easily implies that $g^{2}=g$ and

$$
g n+n g+n^{2}=n
$$

Let $k=f-g$. Since $g \in f A f$, we have $k^{2}=k$. Our aim is to show that $k=0$. Since h is a principal idempotent, it suffices to show that $k h=h k=0$. From

$$
k h=(f-g)(g+n)=(f-g) n=f n-g n
$$

and

$$
h k=(g+n)(f-g)=n(f-g)=n f-n g
$$

it is clear that we need only show that $f n=g n$ and $n f=n g$. To do this, we first note that

$$
f n=f\left(g n+n g+n^{2}\right)=g n+f n g+f n^{2}=g n+f n^{2}
$$

since $f n g=f n g f \in f A f \cap R(A)=(0)$. Similarly, $n f=n g+n^{2} f$. We now show that $f n^{2}=n^{2} f=0$. Since $f n g$ and $f n^{2} g$ lie in $f A f \cap R(A)=(0)$, we have $f n^{2}=f n\left(g n+n g+n^{2}\right)=f n^{3}$ implying that $f n^{2}=f n^{3}=\ldots=f n^{k}=0$ if k exceeds the index of nilpotency of n. A similar argument shows that $n^{2} f=0$. We have therefore established that $g=f$.

From the above paragraph we know that $n=n f+f n+n^{2}$ and that $n^{2} f=f n^{2}=0$. Now

$$
n\left(n f+f n+n^{2}\right)=n^{2} f+n f n+n^{3}=n f n+n^{3}
$$

since $n^{2} f=0$. Thus

$$
\begin{equation*}
n^{2}=n f n+n^{3} \tag{4}
\end{equation*}
$$

This implies that

$$
n^{3}=n\left(n^{2}\right)=n\left(n f n+n^{3}\right)=n^{2} f n+n^{4}=n^{4}
$$

since $n^{2} f=0$. Now since n is nilpotent, $n^{3}=n^{4}$ implies that $n^{3}=0$. From (4) we now conclude that $n^{2}=n f n$; whence

$$
n=n f+f n+n^{2}=n f+f n+n f n .
$$

3.5. Lemma. If A and f are as in 3.4, and h is a principal idempotent of A, then $h A h$ is semi-simple.

Proof. By 3.4, we know that $h=f+n$ where $n \in R(A)$. It is well known (1, p. 25) that $R(h A h)=h R(A) h$. Therefore to show that $h A h$ is semi-simple, it suffices to show that $h R(A) h=0$. Let hah $\in h R(A) h$. Then

$$
h a h=(f+n) a(f+n)=f a n+n a f+n a n,
$$

since $f a f \in f A f \cap R(A)=(0)$. It remains to show that $f a n=n a f=n a n=0$. From 3.4 we know that $n=n f+f n+n f n$, whence

$$
f a n=f a(n f+f n+n f n)=f a n f+f a f n+f a n f n=0
$$

since $f R(A) f=0$. Similarly, naf and nan $=0$.
3.6. Lemma. Let A be a finite-dimensional algebra over F which contains a principal idempotent f such that fAf is semi-simple. Then A is weakly semi-simple.

Proof. Let B be the algebra obtained by adjoining an identity to A in the usual way. Then A is an ideal of B and B / A is isomorphic to F; so, clearly, $S=A+1$ is a translate of A. Let K denote the kernel of S. We must show that $R(S)=K$. By 2.4 we have $R(S)=R(A)+e$ for any idempotent e in K. Thus it suffices to show that $R(A)+e=K$.

Now since f is a principal idempotent, it follows from (1, Lemma 9, p. 26) that

$$
R(A)=(1-f) A f+f A(1-f)+(1-f) A(1-f)
$$

and $A=f A f+R(A)$ is a vector-space direct sum. Whence

$$
R(A) \subseteq(1-f) A+A(1-f)
$$

furthermore

$$
(1-f) A=(1-f)(f A f+R(A))=(1-f) R(A)
$$

Similarly, $A(1-f)=R(A)(1-f)$; consequently,

$$
R(A)=(1-f) R(A)+R(A)(1-f)
$$

Now $R(A)+(1-f)=(R(A)-f)+1$ is a left ideal of $S=A+1$, for

$$
\begin{aligned}
(A+1)(R(A)+(1-f)) \subseteq A R(A)+R(A)+A(1-f) & +(1-f) \\
& \subseteq R(A)+(1-f)
\end{aligned}
$$

since $A R(A) \subseteq R(A)$ and $A(1-f)=R(A)(1-f) \subseteq R(A)$ as shown above. Similarly, $R(A)+(1-f)$ is a right ideal of S and therefore an ideal of S.

Let $g=1-f$. We now show that $R(A)+g$ has no proper ideals. First note that $G=g(R(A)+g) g=g R(A) g+g$ is a group; for if $y=g n g+g \in G$, then $y z=z y=g$ where

$$
z=g\left(-n+n^{2}-\ldots-n^{i}\right) g+g
$$

for any i exceeding the index of nilpotency of n. Now if I is an ideal of $R(A)+g, g I g \subseteq I \cap G$. Since G is a group, G must be contained in I. In
particular, $g \in I$. Now let y be any element of $R(A)+g$. Let $g \bar{y} g$ be the inverse of $g y g$ in the group G, and set $z=y g g \bar{y} g y$. We now have $g z=g y, z g=y g$, and $g z g=$ gyg. By the above, we know that $R(A) g+g R(A)=R(A)$; it follows that $w=g w+w g-g w g$ for any w in $R(A)+g$. This implies that $y=z$. Now from $z=y g g \bar{y} g y$ and $g \in I$, we obtain $y=z \in I$. This shows that $I=R(A)+g$.

Since $R(A)+g$ is an ideal, it follows immediately from the preceding paragraph that $K=R(A)+g$. Clearly, then, $R(A)+g=R(A)+e$ for any idempotent e of K.
3.8. Theorem. If A is a finite-dimensional algebra, the following are equivalent:
(i) A is weakly semi-simple.
(ii) There exists a principal idempotent f in A such that fAf is semi-simple.
(iii) For all principal idempotents f in $A, f A f$ is semi-simple.
(iv) $A=f A f+R(A)$ is a vector-space direct sum for some idempotent f in A.

Moreover, if A is weakly semi-simple, then every subalgebra of A that complements the radical is of the form fAf for some principal idempotent f in A.

Proof. The equivalence of (i), (ii), (iii), and (iv) follow immediately from the foregoing lemmas together with the fact that (ii) is equivalent to (iv), which is a direct result of the Peirce decomposition of A with respect to the principal idempotent f; cf. (1, pp. 25 ff .).

To establish the last sentence of the theorem, assume that A is weakly semi-simple and that $A=D+R(A)$ is a vector-space direct sum for some subalgebra D. D must be semi-simple and therefore has an identity, say f. Then $D \subset f A f$ trivially. To show the converse we need only show f to be principal, for then by (1, $\S 9$, p. 25) we have $\operatorname{dim}(f A f)=\operatorname{dim} D$. Let $g=g^{2} \in A$ such that $g f=f g=0$. Now $g=d+r$ when $d \in D$ and $r \in R(A)$. Hence

$$
0=f g=f(d+r)=d+f r
$$

implying $d=0$. Therefore $g=r \in R(A)$; since g is idempotent and r is nilpotent, $g=0$.
3.9. Corollary. If a finite-dimensional algebra A is a direct sum of a semisimple algebra and a nilpotent algebra, then A is weakly semi-simple.

After R. M. Thrall (5), we shall say that an algebra A is of class Q if it possesses an idempotent e satisfying
(i) $e A e$ is semi-simple,
(ii) $A e A=A$,
and (iii) $A=e A e \oplus R(A)$ (as vector spaces).
We observe that (iii) always implies (i) and that they are equivalent if e is a principal idempotent in (i). In any case, it is clear from the above theorem that (i) and (iii) are equivalent to weak semi-simplicity. This fact enables us to characterize without idempotents the algebras of class Q :
3.9. Theorem. A weakly semi-simple finite-dimensional algebra A is of class Q if and only if $A^{2}=A$ and $R(A)^{3}=0$.

Proof. The necessity of these conditions follows immediately from (5, Corollary 1) and Condition (ii). To show their sufficiency, let e be a principal idempotent such that $A=e A e+R(A)$. Then

$$
A=A^{2}=A^{3}=(e A e+R(A))^{3} \subseteq A e A+R(A)^{3}=A e A ;
$$

whence $A=A e A$.

References

1. A. A. Albert, Structure of algebras (Providence, 1939).
2. W. E. Clark, Affine semigroups over an arbitrary field, Proc. Glasgow Math. Assoc., 7 (1965).
3. A. H. Clifford and G. B. Preston, The algebraic theory of semi§roups, vol. I, Math. Surveys, No. 7 (Amer. Math. Soc., 1961).
4. S. Schwarz, Zur Theorie der Halbgruppen, Sbornik Prac Prirodovedeckej Fakulty Slovenskej Univerzity v Bratislave, no. 6 (1943).
5. R. M. Thrall, A class of algebras without unit element, Can. J. Math., 7 (1955), 382-390.

University of Florida

[^0]: Received February 22, 1965. This research was supported by the Ford Foundation.

