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Abstract

Only three of the 15 973 distinct six-element semigroups are presently known to be nonfinitely based.
This paper introduces a fourth example.
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1. Introduction

A semigroup is finitely based if its identities are finitely axiomatizable. In the 1960s,
Perkins proved that the six-element Brandt monoid

B1
2 = 〈a, b, 1 | a2 = b2 = 0, aba = a, bab = b〉

is nonfinitely based as a semigroup [8]. In the decades that followed, two more similar
semigroups were discovered: the six-element monoid

A1
2 = 〈a, b, 1 | a2 = aba = a, bab = b, b2 = 0〉

was independently shown by Sapir [10] and Trahtman [12] to be nonfinitely based,
and the nonfinite basis property of the six-element semigroup

Ag
2 =

〈
a, b, g, z

∣∣∣∣∣ a2 = aba = a, ag = ga = bg = gb = zg = gz = g,
bab = b, az = za = bz = zb = b2 = g2 = z2 = z

〉
follows from results of either Mashevitskiı̆ [7] or Volkov [14] (an explicit basis for
Ag

2 was recently given by Lee and Volkov [6]). Since all semigroups with five or
fewer elements are finitely based [3, 13], the semigroups A1

2, Ag
2, and B1

2 are minimal
with respect to being nonfinitely based. Apart from these three examples, no other
minimal nonfinitely based semigroup is known. This prompted Lee and Li [4] to ask
the following fundamental question: is there any minimal nonfinitely based semigroup
that is distinct from A1

2, Ag
2, and B1

2? Recall that two semigroups are distinct if they
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are neither isomorphic nor anti-isomorphic. There are 15 973 distinct six-element
semigroups [9], among which 1373 are monoids [2] and 14 600 are nonunital.

Lee and Li partially answered the above question by proving that among all distinct
six-element monoids, only A1

2 and B1
2 are nonfinitely based [4]. After establishing this

result, Lee continued investigating the finite basis problem for the remaining 14 600
nonunital six-element semigroups. In a private communication, he suggested that the
authors examine the finite basis problem of several six-element semigroups. It turned
out that one of these semigroups,

L = 〈d, e | d2 = d, e2 = e, ded = 0〉,

is nonfinitely based. The main aim of this paper is to present a proof of this result.
Consequently, the number of distinct minimal nonfinitely based semigroups is at least
four.

This paper is organized as follows. In Section 3, it is shown that Lee’s semigroup
L has a basis that consists of identities with some special property. In Section 4, some
restrictions on the identities satisfied by L are established. The semigroup L is then
shown to be nonfinitely based in Section 5.

Recall that a semigroup S is inherently nonfinitely based if any locally finite variety
containing S is nonfinitely based. Sapir proved that the semigroups A1

2 and B1
2 are

inherently nonfinitely based [10]. On the other hand, a semigroup that satisfies a
nontrivial identity of the form xyx ≈ w is not inherently nonfinitely based [10]. Since
the semigroups Ag

2 and L satisfy the identities xyx ≈ xyxyx and xyx ≈ xyx2 respectively,
they are not inherently nonfinitely based.

2. Preliminaries

Let X be a countably infinite alphabet throughout. For any subset Y of X, let Y+

and Y∗ denote the free semigroup and free monoid over Y respectively. Elements of
X are called letters and elements of X∗ are called words. A word is a singleton if it is
a single letter. For any word w:
• the head of w, denoted by h(w), is the first letter occurring in w;
• the tail of w, denoted by t(w), is the last letter occurring in w;
• the content of w, denoted by con(w), is the set of letters occurring in w;
• the number of occurrences of a letter x in w is denoted by occ(x, w);
• a letter x is simple in w if occ(x, w) = 1;
• the set of simple letters of w is denoted by sim(w);
• the set of nonsimple letters of w is denoted by non(w).
Note that con(w) = sim(w) ∪ non(w) and sim(w) ∩ non(w) = ∅. Two words u and v
are disjoint if con(u) ∩ con(v) = ∅.

An identity is written as u ≈ v where u, v ∈ X+. An identity u ≈ v is nontrivial if
u , v. A semigroup S satisfies an identity u ≈ v if for any substitution ϕ fromX into S ,
the elements uϕ and vϕ of S are equal. A set Σ of identities satisfied by a semigroup
S is a basis for S if every identity of S can be deduced from Σ. A semigroup is finitely
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based if it has a finite basis. For any concept of universal algebra that appears but
is not defined in this paper, refer to Burris and Sankappanavar [1] and Shevrin and
Volkov [11].

By writing a = ede, b = de, and c = ed in the semigroup L, the multiplication table
for L is given by

L 0 a b c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 0 0 0 b
c 0 0 a 0 c a
d 0 0 b 0 d b
e 0 a a c c e

L 1. Suppose that the semigroup L satisfies an identity u ≈ v. Then sim(u) =

sim(v) and non(u) = non(v).

P. Suppose that x ∈ con(u) and x < con(v). Then letting ϕ : X→ L be the
substitution that maps x to 0 and any other letter to e, we obtain the contradiction
uϕ = 0 , e = vϕ. Thus con(u) = con(v). Suppose that x ∈ sim(u) and x < sim(v).
Then letting ψ : X→ L be the substitution that maps x to a and any other letter to
e, we obtain the contradiction uψ = a , 0 = vψ. Therefore sim(u) = sim(v), whence
non(u) = non(v). �

3. Connected identities

A semigroup S is idempotent-separable if the following holds for any distinct
elements x and y of S : ex , ey for some idempotent e in S , and x f , y f for some
idempotent f in S . (The idempotents e and f need not be distinct.) It is easy to verify
that the semigroup L is idempotent-separable by referring to its multiplication table in
Section 2.

The variety generated by a semigroup S is the class of all semigroups that satisfy
all identities of S . The four-element semigroup

A0 = 〈a, b | a2 = a, b2 = b, ab = 0〉

is required in the following result.

L 2 [5, Proposition 3.2]. Let S be any idempotent-separable semigroup such
that the variety generated by S contains the semigroup A0. Suppose that S satisfies an
identity u ≈ v where the word u can be written as u = u′u′′ for some disjoint words
u′, u′′ ∈ X+. Then the word v can be written as v = v′v′′ for some disjoint words
v′, v′′ ∈ X+ such that con(u′) = con(v′) and con(u′′) = con(v′′). Further, S satisfies
the identities u′ ≈ v′ and u′′ ≈ v′′.

A word of length at least two is connected if it cannot be written as a product of two
disjoint nonempty words. A connected identity is an identity that is formed by a pair
of connected words.
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L 3. The semigroup L has a basis that contains only connected identities.

P. By identifying the elements a and b of L with 0, we obtain a semigroup
isomorphic to A0. Hence the semigroup A0 belongs to the variety generated by L.
As observed earlier, the semigroup L is idempotent-separable, whence Lemma 2 is
applicable to L.

Let u ≈ v be any nontrivial identity satisfied by the semigroup L. Write u =

u1 · · · um where u1, . . . , um ∈ X
+ are pairwise disjoint words, each of which is either

connected or a singleton. By repeatedly applying Lemma 2, we obtain v = v1 · · · vm

for some pairwise disjoint words v1, . . . , vm ∈ X
+ such that for each i, the semigroup L

satisfies the identity ui ≈ vi with con(ui) = con(vi). For any i, it follows from Lemma 1
that if either ui or vi is a singleton, then they must be the same word, whence the
identity ui ≈ vi is trivial.

Now suppose that, for some i, both ui and vi are not singletons and vi is not
connected. Then vi = v′iv

′′
i for some disjoint words v′i , v′′i ∈ X

+. But then Lemma 2
implies that ui = u′iu

′′
i for some disjoint words u′i , u′′i ∈ X

+, contradicting the
connectedness of ui. Hence vi must be connected.

We have just shown that the semigroup L satisfies the nontrivial identity u ≈ v if
and only if it satisfies the identities u1 ≈ v1, . . . , um ≈ vm; each of these m identities is
either trivial or connected. Consequently, any nontrivial identity in a basis for L that is
not connected can be replaced by identities that are connected. �

4. Identities satisfied by L

It is routine to verify that the semigroup L satisfies the identities

x3 ≈ x2, x2yx ≈ xyx, xyx2 ≈ xyx. (1)

In this section, we present some restrictions on identities satisfied by L.

L 4. The semigroup L does not satisfy the identity

xy2x ≈ z (2)

for any z ∈ {xyxyx, xyxy, yxyx, x2y2, y2x2}.

P. Let x = e and y = d. Then the left-hand side of (2) is ed2e = a. But the right-
hand side of (2) can only be edede = eded = dede = 0, e2d2 = c, or d2e2 = b. �

For each n ≥ 2, define the sets of words

Pn = {xr1 ys1
1 · · · y

sn
n xr2 | r1, r2 ≥ 1, s1, . . . , sn ≥ 2},

Qn = {xr1 ysn
n · · · y

s1
1 xr2 | r1, r2 ≥ 1, s1, . . . , sn ≥ 2}.

Note that any word in Pn written in reverse order belongs to Qn, and vice versa.

L 5. Let u ≈ v be any identity satisfied by the semigroup L such that u ∈ Pn. Then
v ∈ Pn ∪ Qn.
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P. By assumption,
u = xr1 ys1

1 · · · y
sn
n xr2 ,

for some r1, r2 ≥ 1 and s1, . . . , sn ≥ 2. By Lemma 1, we have sim(v) = sim(u) = ∅ and
non(v) = non(u) = {x, y1, . . . , yn}. Hence

(a) occ(x, v) = k and occ(yi, v) = `i for some k, `i ≥ 2.

Suppose that h(v) = y j for some j. Then by letting ϕ be the substitution yi 7→ y2

for all i, we obtain

xy2x
(1)
≈ (uϕ)x2 L

≈ (vϕ)x2 ∈ y2{x, y2}+x2 (1)
≈ {y2x2, yxyx}.

But this implies that the semigroup L satisfies an identity from (2), contradicting
Lemma 4. Therefore h(v) , y j for any j, whence h(v) = x. By a symmetrical argument,
we have t(v) = x. Hence v can be written as

(b) v = xk1 wxk2 for some k1, k2 ≥ 1 and w ∈ {x, y1, . . . yn}
+ with h(w) , x , t(w).

Suppose that x ∈ con(w), say w = w1xw2 for some w1, w2 ∈ X
+. Then

xy2x
(1)
≈ uϕ

L
≈ vϕ

(1)
≈ xyxyx.

But this implies that the semigroup L satisfies the identity xy2x ≈ xyxyx from (2),
contradicting Lemma 4. Therefore x < con(w), whence by (a) and (b) we have

(c) v = xk1 wxk2 for some w ∈ {y1, . . . yn}
+ and k1, k2 ≥ 1 with k1 + k2 = k.

Suppose that some yi in w is sandwiched between two occurrences of y j with i , j,
say w = w1y jw2yiw3y jw4 for some w1, w2, w3, w4 ∈ X

∗. Then by letting χ be the
substitution z 7→ x2 for all z , y j, we obtain

xy2
j x

(1)
≈ uχ

L
≈ vχ

(1)
≈ xy jxy jx.

But this implies that the semigroup L satisfies the identity xy2x ≈ xyxyx from (2),
contradicting Lemma 4. Hence no letter in w is sandwiched between two same
occurrences of some other letter. It then follows from (a) and (c) that

(d) v = xk1 y`1π
1π · · · y

`nπ
nπ xk2 for some integers k1, k2 ≥ 1 and `1π, . . . , `nπ ≥ 2 and some

permutation π of {1, . . . , n}.

Suppose that there exists some i such that neither y`i
i y`i+1

i+1 nor y`i+1
i+1y`i

i is a factor of v.
Then by letting ψ be the substitution that maps both yi and yi+1 to y and any other letter
to x, we obtain

xy2x
(1)
≈ uψ

L
≈ vψ

(1)
≈ xyxyx.

But this implies that the semigroup L satisfies the identity xy2x ≈ xyxyx from (2),
contradicting Lemma 4. Therefore

(e) for each i, either y`i
i y`i+1

i+1 or y`i+1
i+1y`i

i is a factor of v.

It is now easy to show by (d) and (e) that either π is a trivial permutation or
(1π, 2π, . . . , nπ) = (n, n − 1, . . . , 1), whence either v ∈ Pn or v ∈ Qn. �
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L 6. Let u ≈ v be any connected identity satisfied by the semigroup L such that
|con(u)|, |con(v)| ≤ n. Suppose that there exist words e, f ∈ X∗ and an endomorphism
ϕ of X+ such that e(uϕ)f ∈ Pn. Then e(vϕ)f ∈ Pn.

P. By assumption, e(uϕ)f = x where

x = xr1 ys1
1 · · · y

sn
n xr2

for some r1, r2 ≥ 1 and s1, . . . , sn ≥ 2. Since the word u is connected, the image uϕ is
a connected factor of x. The connected factors of x are exhausted by the following:

(F1) the factors of xr1 , ys1
1 , . . . , ysn

n , xr2 of length at least two;
(F2) xq1 ys1

1 · · · y
sn
n xq2 where 1 ≤ q1 ≤ r1 and 1 ≤ q2 ≤ r2.

Case 1. uϕ belongs to (F1). It suffices to assume that uϕ is a factor of some ysi
i , since

the argument is very similar when uϕ is a factor of either xr1 or xr2 . Then uϕ = yk
i for

some k ∈ {2, . . . , si}. Hence

x = xr1 ys1
1 · · · y

si−1
i−1 yk′

i︸              ︷︷              ︸
e

· yk
i︸︷︷︸

uϕ

· yk′′
i ysi+1

i+1 · · · y
sn
n xr2︸               ︷︷               ︸

f

(3)

for some k′, k′′ ≥ 0 such that k′ + k + k′′ = si. Since the semigroup L satisfies the
identity u ≈ v, we have sim(u) = sim(v) and non(u) = non(v) by Lemma 1. It follows
that vϕ = y`i for some ` ≥ 2, whence e(vϕ)f ∈ Pn in view of (3).

Case 2. uϕ belongs to (F2). Then

x = xr1−q1︸︷︷︸
e

· xq1 ys1
1 · · · y

sn
n xq2︸             ︷︷             ︸

uϕ

· xr2−q2︸︷︷︸
f

.

By assumption, |con(u)| < n + 1 = |con(uϕ)|. Hence there exists some letter z of u
such that the factor zϕ of uϕ contains at least two distinct letters. Therefore the word
zϕ contains one of the following factors: xy1, y1y2, . . . , yn−1yn, ynx. Now one of these
is a factor of vϕ so that e(vϕ)f < Qn. Since e(uϕ)f ∈ Pn and the identity e(uϕ)f ≈ e(vϕ)f
is satisfied by the semigroup L, we have e(vϕ)f ∈ Pn ∪ Qn by Lemma 5. Consequently,
e(vϕ)f ∈ Pn. �

5. Main result

L 7. For each n ≥ 2, the semigroup L satisfies the identity p(n) ≈ q(n) where

p(n) = xy2
1 · · · y

2
nx and q(n) = xy2

n · · · y
2
1x.

P. Let ϕ be any substitution into L. It is easy to check that zLz = {0} and z2 = 0 for
any z ∈ {0, a, b, c}. Hence we have p(n)ϕ = 0 = q(n)ϕ whenever xϕ ∈ {0, a, b, c} or yiϕ ∈
{0, a, b, c} for some i. Therefore it suffices to assume that xϕ, y1ϕ, . . . , ynϕ ∈ {d, e}. It
is also clear that the condition y1ϕ = · · · = ynϕ implies that p(n)ϕ = q(n)ϕ. Hence further
assume that {y1ϕ, . . . , ynϕ} = {d, e}. Then there are two cases depending on how the
elements d and e appear in the sequence (y1ϕ, . . . , ynϕ).
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Case 1. Some e in the sequence (y1ϕ, . . . , ynϕ) is sandwiched by two or more
occurrences of d. Then it is easy to show that (y2

1 · · · y
2
n)ϕ = 0 = (y2

n · · · y
2
1)ϕ, whence

p(n)ϕ = 0 = q(n)ϕ.

Case 2. Each e in the sequence (y1ϕ, . . . , ynϕ) is not sandwiched by any two
occurrences of d. Then the sequence (y1ϕ, . . . , ynϕ) is one of the following:

(d, . . . , d, e, . . . , e), (e, . . . , e, d, . . . , d ), (e, . . . , e, d, . . . , d, e, . . . , e).

Recall that xϕ ∈ {e, d}. Therefore (y1ϕ, . . . , ynϕ) = (d, . . . , d, e, . . . , e) implies that

p(n)ϕ = (xϕ)de(xϕ) = (xϕ)ed(xϕ) = q(n)ϕ,

(y1ϕ, . . . , ynϕ) = (e, . . . , e, d, . . . , d ) implies that

p(n)ϕ = (xϕ)ed(xϕ) = (xϕ)de(xϕ) = q(n)ϕ,

and (y1ϕ, . . . , ynϕ) = (e, . . . , e, d, . . . , d, e, . . . , e) implies that

p(n)ϕ = (xϕ)ede(xϕ) = q(n)ϕ.

This concludes the proof. �

T 8. The semigroup L is nonfinitely based.

P. Working toward a contradiction, suppose that the semigroup L is finitely based.
Then there exist a basis Σ for L and some fixed integer n ≥ 2 such that

(†) if u ≈ v ∈ Σ, then |con(u)|, |con(v)| ≤ n.

By Lemma 3, we may further assume that the identities in Σ are connected. Now by
Lemma 7, the semigroup L satisfies the identity p(n) ≈ q(n). Therefore we have some
deduction sequence

p(n) = w0⇒ w1⇒ · · · ⇒ wm = q(n),

where each deduction wi⇒ wi+1 indicates that there exist words ei, fi ∈ X
∗, an identity

ui ≈ vi from Σ, and an endomorphism ϕi of X+ such that

wi = ei(uiϕi)fi and wi+1 = ei(viϕi)fi.

Since w0 ∈ Pn and the semigroup L satisfies the identities w0 ≈ w1 ≈ · · · ≈ wm, we have
w1, . . . , wm ∈ Pn ∪ Qn by Lemma 5. Suppose that wk ∈ Pn. Then wk = ek(ukϕk)fk

where uk ≈ vk ∈ Σ. Since the identity uk ≈ vk is satisfied by L and |con(uk)|,
|con(vk)| ≤ n by (†), we have ek(vkϕk)fk ∈ Pn by Lemma 6, that is, wk+1 ∈ Pn.
Therefore we have just shown by induction that w0, . . . , wm ∈ Pn, which implies the
contradiction q(n) = wm < Qn. Consequently, the finite basis Σ for the semigroup L does
not exist. �
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