Incident psychiatric comorbidity following stress disorder diagnoses in Danish school-aged children: prospective population-based study

Archana Basu, Dóra Körmenđiné Farkas, Tammy Jiang, Karestan C. Koenen, Timothy L. Lash, Henrik Toft Sørensen and Jaimie L. Gradus

Background
Prospective population-based studies of psychiatric comorbidity following trauma and severe stress exposure in children are limited.

Aims
To examine incident psychiatric comorbidity following stress disorder diagnoses in Danish school-aged children using Danish national healthcare system registries.

Method
Children (6–15 years of age) with a severe stress or adjustment disorder (ICD-10) between 1995 and 2011 (n = 11 292) were followed prospectively for an average of 5.8 years. Incident depressive, anxiety and behavioural disorder diagnoses were examined relative to an age- and gender-matched comparison cohort (n = 56 460) using Cox proportional hazards regression models. Effect modification by gender was examined through stratified analyses.

Results
All severe stress and adjustment disorder diagnoses were associated with increased rates for all incident outcome disorders relative to the comparison cohort. For instance, adjustment disorders were associated with higher rates of incident depressive (rate ratio RR = 6.8; 95% CI 6.0–7.7), anxiety (RR = 5.3; 95% CI 4.5–6.4), and behavioural disorders (RR = 7.9; 95% CI 6.6–9.3). Similarly, PTSD was also associated with higher rates of depressive (RR = 7.4; 95% CI 4.2–13), anxiety (RR = 7.1; 95% CI 3.5–14) and behavioural disorder (RR = 4.9; 95% CI 2.3–11) diagnoses. There was no evidence of gender-related differences.

Conclusions
Stress disorders varying in symptom constellation and severity are associated with a range of incident psychiatric disorders in children. Transdiagnostic assessments within a longitudinal framework are needed to characterise the course of post-trauma or severe stressor psychopathology.

Declaration of interest
None.

Keywords
Trauma; post-traumatic stress disorder; epidemiology; childhood experience; adjustment disorders.

Copyright and usage
© The Authors 2019.
Participants

Of the 1,698,654 Danish-born residents of Denmark between 6 and 15 years of age in the period between 1 January 1995 and 31 December 2011, this study included all children diagnosed with a severe stress disorder in either the Danish Psychiatric Central Research Register (DPCRR) or the Danish National Patient Registry (DNPR). Given the developmentally distinct manifestations of traumatic stress reactions for very young children (0–5 years of age), we focus on school-aged (6–15 years) children and adolescents. We included adolescents through 15 years of age, as this marks the end of compulsory primary education in Denmark. Findings related to older adolescents and adults have been previously published. Stress cohort members had to receive at least one incident stress disorder diagnosis during the study period. The year 1995 was chosen as the start of the study period because ICD-10 coding was implemented in 1994 and the inclusion of out-patient clinic visits in the psychiatric registry in Denmark was implemented in 1995. We excluded anyone with a diagnosis between 1 January 1994 and 31 December 1994 because persons who were diagnosed in 1994 may have been living with the disorder before receiving the diagnosis that year, making them prevalent cases. Prevalent cases may differ from incident cases with respect to disorder aetiology, clinical course and survival. For instance, prevalent cases are affected by factors associated with disorder maintenance and survival. Prevalent cases were therefore removed from the cohort and the current analyses to ensure that only newly occurring cases of stress disorders were examined. In total, 11,292 children received a first severe stress or adjustment disorder diagnosis between 1995 and 2011. A general-population comparison cohort of children was created of individually matched children who had not received a stress disorder diagnosis at the time that their matched stress cohort member was diagnosed (n = 56,460). Members of the comparison cohort were individually matched to stress cohort members by gender and age at the matched index date at a ratio of 5 to 1. Of note, this cohort was designed such that if a member of the comparison cohort was diagnosed with a stress disorder after their match index date they were removed from the comparison cohort and designated to the appropriate stress disorder group, with five new non-stress disorder diagnosed comparison group members then selected to match that participant. Diagnostic validation processes have been the subject of prior studies and suggest that diagnoses (e.g. affective disorders, stress disorders) in the registries have high validity compared with computer-generated diagnoses or independent reassessment.

Predictor and outcome variables

We obtained data from national Danish medical longitudinal registers. The 10-digit Civil Registration number, a unique identifier assigned to all residents of Denmark, was used to retrieve and merge data for each individual for the creation of the cohort.

Predictors

The predictors in our analyses were five ICD-10 stress diagnoses: (a) acute stress reaction (diagnosed in the immediate aftermath of an event; ICD-10 code F43.0), (b) PTSD (diagnosed following a traumatic event and a specified period of symptom maintenance; ICD-10 code F43.1), (c) adjustment disorder (diagnosed following a stressful event and a specified period of non-recovery; ICD-10 code F43.2), and two diagnoses – (d) other reactions to severe stress (ICD-10 code F43.8) and (e) reactions to severe stress, unspecified (ICD-10 code F43.9) – which are used for those who are experiencing symptoms following a traumatic or severe stressor that do not meet the full diagnostic criteria for one of the other three disorders. We obtained diagnostic data from the DPCRR, which records data on patients who were admitted to a psychiatric in-patient hospital, received out-patient clinic psychiatric care, or received treatment at a psychiatric emergency department. Diagnostic data were also obtained from the DNPR, which contains patient data from out-patient clinics, somatic hospitals and emergency rooms. Registries include data since 1995, including treatment dates and up to 20 diagnoses per treatment entry for patients. Our prior validation study of the stress diagnoses in registries showed good validity for acute stress reaction, other reactions to severe stress and unspecified reactions to severe stress and showed high validity for PTSD and adjustment disorder.

Outcomes

The primary outcomes in the present study were incident diagnoses of depressive disorders (ICD-10 codes F32, F33 and F34.1, which include major depression and dysthymia), anxiety disorders (ICD-10 codes F40 and F41, which include phobic anxiety and generalised anxiety disorders) and behavioural disorders, including attention-deficit hyperactivity disorder (ICD-10 code F90), conduct disorders (ICD-10 code F91) and disorders of social functioning with onset specific to childhood and adolescence (ICD-10 code F94). Our study outcomes were similar to those examined in the literature and a recent longitudinal study examining the impact of early life stressors on later psychopathology. However, substance use disorders were not included because of the low incidence rates in our sample in this developmental period.

Analyses

We conducted descriptive and stratified analyses to examine demographic characteristics and psychiatric disorders across categories of stress diagnoses at baseline (i.e. at the time of the initial stress diagnosis). We used Cox proportional hazards regression models to examine associations of severe stress or adjustment diagnoses with each outcome (i.e. depressive, anxiety and behavioural disorders). For each analysis of incident disorders only children without the outcome diagnoses (e.g. depressive disorders) at baseline were included in the analyses, and the model controlled for other disorders at baseline (i.e. anxiety and behavioural disorder diagnoses). Cumulative incidence curves were plotted to examine the occurrence of new-onset depressive, anxiety and behavioural disorders following the initial stress diagnosis (or the index date for the comparison cohort). Incidence curves were plotted for a 10-year period following an initial stress diagnosis owing to some small cell sizes in the subsequent follow-up period. We also examined the number of incident diagnoses following stress disorder diagnoses, and time to incident psychiatric disorder diagnoses.

This study was approved by the Institutional Review Board of Boston University, the Danish Health and Medicines Authority and the Danish Data Protection Agency (record no. 2012-41-0841).

Results

Table 1 displays descriptive data and rates of psychiatric disorders at the time of the initial diagnosis for the stress cohort and the comparison cohort. Sixty-three per cent of the stress diagnosis cohort members were girls and 73% of the children were between 12 and 15 years of age. The proportions of children with comorbid baseline psychopathology differed across the stress disorder groups. Depressive disorders were most prevalent among children diagnosed with an adjustment disorder (5.2%). Depressive (4.2%) and

378

https://doi.org/10.1192/bjp.2019.247 Published online by Cambridge University Press
behavioural disorders (7.4%) were most common among children with PTSD. Additionally, 14% of children diagnosed with PTSD, 13% diagnosed with adjustment disorder and 10% diagnosed with reaction to severe stress unspecified had one or more psychiatric diagnoses at baseline, other than their stress-related diagnoses. Cumulative incidence curves (Fig. 1) show that children in the stress cohort had a higher incidence of depressive, anxiety and behavioural disorders following their severe stress or adjustment diagnoses than did members of the comparison cohort following their matched index date over the course of the study. On average children in the stress cohort were followed for 5.8 years (Table 1).

Results from the Cox proportional hazards regression models (Table 2) indicate that each of the stress disorders is associated with higher rates of depressive, anxiety and behavioural disorders. For example, the rate of depressive disorders among children diagnosed with an adjustment disorder was 6.8 (95% CI 6.0–7.7) relative to the control comparison group. All other stress disorders also had strong associations with each type of incident psychiatric disorder. We examined proportions of incident psychiatric comorbidity (supplementary Table 1 available at https://doi.org/10.1192/bjp.2019.247). Across all stress disorders, a greater proportion of children diagnosed with incident comorbid psychiatric disorders, with rates of two or more incident diagnoses ranging between 3.0 and 5.3%, with an average of 4.4% for the full stress cohort, compared with 0.5% in the comparison cohort. With respect to time toincident psychiatric comorbidity for each type of disorder (supplementary Table 2), for the full stress cohort an incident depressive disorder was diagnosed 3.9 years after a baseline stress disorder, and incident anxiety and behavioural disorders were diagnosed after 4.5 and 2.5 years respectively. In the comparison cohort incident depressive disorders were diagnosed 5.9 years from baseline, and incident anxiety and behavioural disorders were diagnosed 6.3 years and 3.8 years from baseline respectively.

We also examined effect modification by gender in the associations between stress disorders and incident psychiatric disorders (Table 2). Small cell sizes (<5) limited calculation of estimates of associations between stress disorders and incident psychiatric diagnoses in some cases. With respect to all incident diagnoses, the pattern across boys and girls was similar. For instance, for anxiety disorders, relative to comparison controls, boys with a baseline diagnosis of reaction to severe stress unspecified had a hazard ratio of 8.3 (95% CI 4.6–15) and girls had a hazard ratio of 6.0 (95% CI 4.4–8.0).

The hazard ratio for the association between adjustment disorder and behavioural disorders for boys was 6.3 (95% CI 5.0–8.0) whereas for girls it was 10 (95% CI 7.8–13). Overall, there was no evidence of possible effect modification by gender on the multiplicative scale.

Discussion

To the best of our knowledge this is the first prospective longitudinal population-based study of school-aged children and adolescents examining rates of incident psychiatric disorders following diagnosis of a range of stress disorders. At baseline, our study sample had a higher proportion of girls diagnosed with a stress disorder than boys, and most children with stress disorder diagnoses were older (12–15 years of age). These findings are consistent with existing data indicating a higher prevalence of PTSD among women relative to men in adult samples and in the limited available findings from another population-based study of US adolescents, which used the National Comorbidity Survey Replication Adolescent Supplement (NCS-A). In the stress cohort a greater proportion of older children had stress disorder diagnoses than younger children. This may represent the developmental course of stress disorders such that symptoms may emerge or worsen in adolescence. This may also be consistent with other population-based data showing an increase in rates of potentially traumatic events with increasing age, although our study could not assess this directly. At baseline, across the full stress cohort, behavioural disorders were most common, followed by depressive disorders.

Regardless of the type of stress disorder diagnosis, the rates for all three types of incident comorbid disorders – anxiety, depressive and behavioural disorders – were elevated compared with the comparison cohort, which includes children who may have experienced trauma or severe stress but had no stress or adjustment disorder diagnoses. Thus, severe stress disorders in childhood may confer a transdiagnostic diathesis for a range of mental disorders rather than disorder-specific risk. These findings are also consistent with those from multiple adult samples, including adults with stress diagnoses in the larger Danish stress cohort. Aetiological research suggests that regulatory mechanisms (e.g. stress- and immune-related mechanisms) are affected by traumatic and stressful events and play a role in disease risk for multiple psychiatric disorders.
This is consistent with the above-mentioned population-based cross-sectional study of US adolescents using NCS-A data examining trauma and other severe stressors, which found an increased risk for a range of psychiatric comorbidities in adolescents, and with our findings that children in the stress cohort were more likely to be diagnosed with a greater number of incident psychiatric diagnoses.

To the extent that stress disorders represent a range in ICD-10 disorder severity, depending on the number and types of symptoms (e.g., children who do not meet criteria for PTSD are diagnosed with another, less severe, stress disorder such as an adjustment disorder), our findings also suggest that being diagnosed with a more or less severe stress disorder is not differentially associated with risk for future diagnoses. For instance, in our sample, children across all stress diagnoses had comparable risk for all incident psychopathology. One possible explanation for this finding is that the structure of PTSD may differ across developmental stages and the criteria may be more representative of adult manifestations and hence, diagnostic specificity across stress diagnoses may not be comparable to that in adult samples. For instance, studies with children have found that those exposed to trauma or severe stressors exhibit a broad range of disorders. However, adult studies have also reported similar findings, where individuals diagnosed with PTSD and those with subthreshold PTSD symptoms (i.e., those who suffer from post-traumatic stress symptoms but do not meet diagnostic criteria for PTSD) present with comparable functional impairment and risk for incident psychiatric comorbidity and also other deleterious outcomes, such as risk for re-traumatisation, suicidality and all-cause mortality. An alternative explanation stems from evidence suggesting that symptom severity rather than the total number of symptoms or specific symptom constellation required for an ICD-10 diagnosis is associated with individual functional impairment. In addition to symptom severity, the impact of trauma or severe stressors on a range of psychological or biological outcomes (for instance the multiple domains of functioning proposed within the National Institute of Mental Health’s Research Domain Criteria framework) maybe associated with future psychopathology. Finally, individual variations in the latency of symptom development may also affect the course of psychopathology. In our study, findings related to time to incident psychopathology indicate that psychiatric comorbidity was evident earlier in the stress cohort than in the comparison cohort. Future research needs to examine whether differences in the time to incident psychopathology diagnoses represent a natural disorder course (i.e., manifestation of pathophysiology following trauma or severe stressor exposure), or an artefact of how diagnoses are made (i.e., symptoms of incident stress disorders).

Fig. 1 Cumulative incidence curves for diagnoses of ICD-10 depressive, anxiety and behavioural disorders after receipt of a stress diagnosis in children 6–15 years of age in Denmark, 1995–2011.

PTSD, post-traumatic stress disorder.
between adolescent boys and girls who had experienced a range of child-
NCS-A data, indicating no differences in psychiatric outcomes
pattern of differences, which is consistent with findings from the
disorders may be recognised sooner as part of a post-trauma or
hood adversities.2 It is possible that gender-related differences noted in
samples and countries. Third, despite the large sample size, the fre-
other countries with available population-based studies of children
Danish individuals (i.e. tax-supported universal healthcare that
Second, given the healthcare and social support systems for
severe presentation, were under-sampled in the stress cohort.
by a mental health professional. It is possible that children diag-
that should be kept in mind when evaluating our results. First, this
by a general practitioner, who may present with a less
chronicity of stressors or revictimisation,2,22 timing of trauma or severe
exposure misclassification in observed associations will be driven
by specificity. A previous validation study of stress diagnoses in the
in the absence of a traumatic or severe stressor-related disorder).
With respect to gender-related findings, our study did not identify a
pattern of differences, which is consistent with findings from the
NCS-A data, indicating no differences in psychiatric outcomes
between adolescent boys and girls who had experienced a range of child-
It is possible that gender-related differences noted in
adult samples become more clearly established later in the life course.

Strengths and limitations

It is notable that the unpredictable nature of most traumatic events
and severe stressors makes data collection for stress studies uniquely
challenging, and extensive primary data collection is often prohibi-
tive in terms of the cost and time involved. Thus, a majority of
studies tend to be retrospective and to focus on an index trauma
or severe stressor and/or PTSD, rather than a range of post-trauma-
diagnostic reactions or diagnoses. Thus, the use of prospectively
collected longitudinal data from a large unselected sample that draws
from the full country population is a methodological strength of
this study.

In addition to this strength, our study has important limitations
that should be kept in mind when evaluating our results. First, this
sample includes only children who had a stress diagnosis diagnosed
by a mental health professional. It is possible that children diag-
nosed by a general practitioner, who may present with a less
severe presentation, were under-sampled in the stress cohort.
Second, given the healthcare and social support systems for
Danish individuals (i.e. tax-supported universal healthcare that
enables all members to receive healthcare at no cost) relative to
other countries with available population-based studies of children
(e.g. NCS-A in the USA) and the lack of racial/ethnic variability in
our sample, our study findings need to be replicated in other
samples and countries. Third, despite the large sample size, the fre-
quencies of certain stress disorders (e.g. PTSD) in our study were
low compared with other population-based studies.4 Accordingly,
some of the cell sizes for gender-related stratified analyses were
too small to reliably examine associations. These associations
need to be examined further in future research. Within the
current sample, PTSD is rare and thus the strength of bias from

Table 2	Associations between baseline ICD-10 stress disorders and incident psychiatric comorbidity in children 6–15 years of age in Denmark, 1995–2011		
Stress cohortb	Depressive disorders, RRadj (95% CI)	Anxiety disorders, RRadj (95% CI)	Behavioural disorders, RRadj (95% CI)
Acute stress reaction	5.7 (4.0–8.1)	8.3 (4.6–15)	6.0 (3.9–9.2)
PTSD	7.4 (4.2–13)	7.1 (3.5–14)	4.9 (2.3–11)
Adjustment disorder	6.8 (5.0–7.7)	5.3 (4.5–6.4)	7.9 (6.9–9.3)
Reactions to severe stress	11 (6.5–18)	6.9 (3.3–13)	7.1 (4.0–13)
Reactions to severe stress, unsp.	6.7 (5.8–8.1)	6.2 (4.7–8.0)	8.4 (6.8–11)
Boysb	4.6 (2.1–10)	n.p.	5.0 (2.4–8.8)
Acute stress reaction	6.1 (4.6–8.1)	7.1 (4.9–10)	6.3 (5.0–8.0)
PTSD	15 (4.8–46)	n.p.	10 (4.4–22)
Reactions to severe stress, unsp.	9.8 (6.2–16)	8.3 (4.6–15)	8.7 (6.4–12)
Girlsb	6.0 (4.1–8.9)	n.p.	7.4 (4.0–13)
Acute stress reaction	7.0 (6.1–8.0)	4.9 (4.0–6.0)	10 (7.8–13)
PTSD	9.9 (5.6–17)	n.p.	5.0 (2.2–12)
Reactions to severe stress, unsp.	6.3 (5.0–7.6)	6.0 (4.4–8.0)	8.4 (6.5–11)

| RRadj, adjusted rate ratio; PTSD, post-traumatic stress disorder; n.p., results not presented because fewer than five incident psychiatric disorder cases were identified. |
| a. Full stress cohort models were adjusted for age, gender and baseline depressive, anxiety and behavioural disorders. |
| b. Gender-stratified models were adjusted for age and baseline depressive, anxiety and behavioural disorders. |

Implications

Results from this study suggest a need to examine a broad range of
post-traumatic or severe stress reactions using a transdiagnostic
multidimensional approach, akin to the Research Domain Criteria
framework proposed by the National Institute of Mental Health.
One option is to use person-centred approaches (e.g. latent class
or latent profile analyses) that identify homogeneous subsets of
individuals on the basis of their post-trauma or severe stressor diag-
noses or symptoms, other relevant indicators (e.g. gender, symptom
severity, functional impairment, latency of symptom development)
and characteristics of the trauma or severe stressor history itself (e.g.
chronicity of stressors or revictimisation,2,22–24 timing of trauma or severe
stressor exposure24 and type of trauma or severe stressor2) within a
larger heterogeneous sample. For instance, one study
using this approach examined psychopathology outcomes in a
sample of 815 adults at age 20 following exposure to ‘early social
stress’ (perinatal through age 5) and found support for two broad
latent dimensions of internalising and externalising psychopath-
ology, rather than disorder-specific vulnerability.14 With respect
to treatment implications, our study findings lend support to the
increasing attention on developing transdiagnostic, rather than dis-
order-specific, assessment and treatment models.19,25 Aetiologically
relevant operationalisation of traumatic or severe stress reactions
via multidimensional clinical outcomes within a longitudinal frame-
work are necessary first steps to diagnostic clarity, which is central
to prevention and intervention efforts.
This study shows that rates of incident depressive, anxiety and behavioural disorders in school-aged children are comparable across a range of stress disorders. Future research within a longitudinal framework, particularly in diverse samples, is needed to examine transdiagnostic approaches in the course of post-trauma psychopathology.

Archana Basu, PhD, Research Associate, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA; Dóra Kőrmendiné Farkas, MSc, Biostatistician, Department of Clinical Epidemiology, Aarhus University, Denmark; Tammy Jiang, MPH, Doctoral Candidate, Department of Epidemiology, Boston University School of Public Health, Massachusetts, USA; Karestan C. Koenen, PhD, Professor, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA; Timothy L. Lash, DSc, MPH, Robbins Professor and Chair, Department of Epidemiology, Robbins School of Public Health, Emory University, Georgia, USA; Henrik Toft Sørensen, MD, PhD, Clinical Professor and Chair, Department of Clinical Epidemiology, Aarhus University, Denmark; Jaimie L. Gradus, DMSc, DSc, MPH, Associate Professor, Department of Epidemiology, Boston University School of Public Health, Public Health, Massachusetts, USA.

Correspondence: Archana Basu. Email: arbasu@hsph.harvard.edu

First received 15 Mar 2019, final revision 3 Sep 2019, accepted 7 Oct 2019

Funding

I. L. G., T. I. L. and H. T. S. were funded by the National Institute of Mental Health, grant numbers R01MH109507, R01MH110453 and R21MH094551.

Author contributions

J. L. G., T. I. L. and D. K. F. contributed to the acquisition of the data. A. B., T. J., K. C. K. and J. L. G. made substantial contributions to the conception or design of the work. A. B., D. K. F., K. C. K., T. J. and J. L. G. were involved in the analysis. All authors were involved in interpretation of data for the work, either drafting the work or revising it critically for important intellectual content, provided final approval of the version to be published, and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Supplementary material

Supplementary material is available online at https://doi.org/10.1192/bjp.2019.247.

References