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Abstract Inspired by Nakamura’s work [36] on ε-isomorphisms for pϕ,Γq-modules over (relative) Robba
rings with respect to the cyclotomic theory, we formulate an analogous conjecture for L-analytic Lubin-
Tate pϕL,ΓLq-modules over (relative) Robba rings for any finite extension L of Qp. In contrast to Kato’s
and Nakamura’s setting, our conjecture involves L-analytic cohomology instead of continuous cohomology
within the generalized Herr complex. Similarly, we restrict to the identity components of Dcris and DdR,
respectively. For rank one modules of the above type or slightly more generally for trianguline ones, we
construct ε-isomorphisms for their Lubin-Tate deformations satisfying the desired interpolation property.
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1. Introduction

In [36] Nakamura generalized Kato’s p-adic local ε-conjecture [27, 23] to the framework

of pϕ,Γq-modules over the Robba ring (over Qp-affinoid algebras) and proved the

essential parts of it for rigid analytic families of trianguline pϕ,Γq-modules. The technical
foundations for this had been laid by the work of Kedlaya, Pottharst and Xiao [28]

who had established the fundamental theorems concerning their cohomology (finiteness,

base change property, Tate duality, Euler-Poincaré formula) and Nakamura’s work [35],
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ε-Isomorphisms for rank one pϕ,Γq-modules over Lubin-Tate Robba rings 3

in which he generalized the theory of Bloch-Kato exponential maps and Perrin-Riou’s
exponential maps in that framework.

Recently there has been much progress concerning pϕL,ΓLq-modules over Lubin-Tate

extensions [21, 30, 6, 22, 45, 46]. In particular, the results by Steingart [50, 51] regarding
such pϕL,ΓLq-modules over families (finiteness, base change property, Euler-Poincaré

formula, perfectness of Iwasawa cohomology) make it possible to study a version of

Nakamura’s approach for L-analytic trianguline modules.

Let LĎCp be a finite extension of Qp and L8 a Lubin-Tate extension of L with Galois
group ΓL “ GalpL8{Lq corresponding to a uniformiser πL of the ring of integers oL of

L. A continuous representation of GL on a finite dimensional L-vector space V is called

L-analytic, if the semi-linear representation Cp bQp
V –

ś

σ : LÑCp
Cp bL,σ V is trivial

at the components where σ ‰ id . By a theorem of Berger the category of L-analytic

representations is equivalent to the category of étale L-analytic pϕL,ΓLq-modules over

the Robba ring RL (cf. [5]). Analyticity means here, that the action of the Lie group
ΓL is differentiable and the action of LiepΓLq is (not only Qp-, but even) L-bilinear.

For analytic pϕL,ΓLq-modules one can define analytic cohomology (see Section 4 for a

precise definition). Finiteness of analytic cohomology allows us to attach to a family

M of analytic pϕL,ΓLq-modules over A a graded invertible line bundle ΔApMq over A
which is essentially the determinant of the analytic cohomology of M. Note that, for an

L-analytic étale pϕL,ΓLq-module attached to some L-analytic Galois representation V of

GL with coefficients in L, these analytic cohomology groups in general do not coincide
with the Galois cohomology groups HipL,V q of V for i ą 0. Nonetheless they behave

similarly to Galois cohomology and allow us to study certain invariants of V “at the

identity component”. If M is the pϕL,ΓLq-module attached to an L-analytic de Rham
representation V , then one can also attach an ε-constant to the “identity component” of

DpstpV q, i.e., the GL-smooth vectors in Bst bL0
V (which injects into the full Bst bQp

V ).

This can be generalised to the non-étale case as well (see Section 7.4 for details). The

content of the analytic variant of the ε-conjecture is a trivialisation of ΔApMq which
interpolates these ε-constants at the de Rham points, i.e., the points x P SppAq where the

specialisation Mx is de Rham.

We formulate the following conjecture in a more general setting (and indicate in
Remark 7.7 (ii) how to formulate a version of this conjecture for L-analytic pϕL,ΓLq-

modules over the character variety XoL in the sense of Schneider-Teitelbaum).

Conjecture (See Conjecture 7.6). Choose a compatible system u “ punq of rπn
Ls-torsion

points of the Lubin-Tate group and a generator t1
0 of the Tate module of its Cartier dual.

Let K be a complete field extension of L containing Lab, and A an affinoid algebra over

K. For each L-analytic pϕL,ΓLq-module M over RA satisfying condition (63) there exists

a unique trivialisation

εA,upMq : 1A
–

ÝÑ ΔApMq

satisfying the following axioms:
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(i) For any affinoid algebra B over A we have

εA,upMq bA idB “ εB,upMb̂ABq

under the canonical isomorphism ΔApMq bAB – ΔBpMb̂ABq.

(ii) εA,u is multiplicative in short exact sequences.

(iii) For any a P oˆ
L we have

εA,a¨upMq “ δdetM paqεA,u.

(iv) εA,upMq is compatible with duality in the sense that for the dual module M̃ (see
section 4.3) we have

εA,upM̃q
˚

bhpχrM q “ p´1q
dimK H0

pMqΩ´rM
t1
0

εA,´upMq

under the natural isomorphisms 1A – 1A b1A and ΔpMq – ΔpM̃q˚ b pAprM q,0q,

where hpχrM q : AprM q Ñ A maps eχrM to 1 and rM denotes the rank of M over

RK .

(v) For L “ Qp, πL “ p and u “ pζpn ´ 1qn the trivialisation coincides with that of

Nakamura, in the sense of Proposition 8.7.

(vi) Let F {L be a finite subextension of K,M0 be a de Rham pϕL,ΓLq-module over RF

and M “ Kb̂FM0. Then

εK,upMq “ εdRF,upM0q,

where the isomorphism εdRF,upM0q : 1K
–

ÝÑ ΔKpMq is called the de Rham ε-

isomorphism which is defined in (65) unconditionally using a generalized Bloch–

Kato exponential and dual exponential map as well as the ε-constant associated
to M0 in section 7.4.

While in the cyclotomic setting the ε-constants depend on the choice of a norm

compatible system of p-power roots of unity, in the Lubin-Tate setting this is replaced

by a compatible system of πL-power torsion points of the Lubin-Tate formal group, see

Remarks 6.1, 6.3 for a comparison of both. We also fix a generator t1
0 of the Tate module

of the Cartier dual of the Lubin Tate group which determines a certain period Ωt1
0

P Cp

(cf. [43]). We prove parts of this conjecture for L-analytic trianguline pϕL,ΓLq-modules.

More precisely, we construct the ε-isomorphism for the Lubin-Tate deformation of a rank
one, de Rham L-analytic pϕL,ΓLq-module M over some finite extension F of L

εDpΓLq,upDfmpKb̂FMqq : 1DpΓLq
–

ÝÑ ΔXΓL
pDfmpKb̂FMqq,

see Theorem 8.6. This lives over the rigid analytic character variety XΓL
over L. The

Cp-points of this variety correspond to locally L-analytic characters ΓL Ñ Cˆ
p . We refer

to subsection 4.2 for the precise definition of the Lubin-Tate deformation DfmpNq of
a pϕL,ΓLq-module N over RK . Heuristically one can think of it as the base changed

pϕL,ΓLq-module DpΓL,Kqb̂KN over the relative Robba ring DpΓL,Kqb̂KRK . But due

to the complicated behaviour of completed tensor products over LF-spaces which are not
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Fréchet, it requires a more technical treatment. The correct point of view, which is used for
the cyclotomic setting in earlier articles of Pottharst (but apparently neither consequently

pursued nor carefully explained in [28, Def. 4.4.7, Thm. 4.4.8] unfortunately), consists of

viewing this deformation as a sheaf of pϕL,ΓLq-modules over XΓL
, which is not affinoid and

hence does not strictly speaking fit into the above Conjecture. Instead, the isomorphism

εDpΓLq,u is a trivialisation of a line bundle over XΓL
which restricts to an isomorphism of

the conjectured type on each affinoid subdomain.

Philosophically, the L-analytic theory over Lubin-Tate extensions is one-dimensional
and thus very similar to the cyclotomic case in the sense that ΓL is - although

rL :Qps-dimensional over Qp - one-dimensional as p-adic Lie group over L. Nevertheless,

technically we have had to overcome serious difficulties. We are going to describe these
differences compared to Nakamura’s work in the following.

In the cyclotomic setting, Herr-complexes are formed with respect to the two operators

ϕ and γ ´1 for a topological generator γ of the torsion-free part of Γ; moreover, one can
directly go over to the complex consisting of the fixed part under the torsion subgroup Δ

of Γ. In the Lubin-Tate setting (with L ‰ Q) there is no intrinsic counterpart of γ as one

needs at least rL :Qps elements to generate the (torsion-free part of) ΓL topologically. So

instead we make use of Fourier theory and the Lubin-Tate isomorphism à la Schneider
and Teitelbaum [43]

DpΓn,Kq – OpXΓn
q – OpBq

over a huge field extension K of L, over which the character variety XΓn
for the subgroup

of n-th higher units Γn – oL of ΓL can be identified with the open unit disk B for n

sufficiently big. Via this isomorphism we can now choose Zn P DpΓn,Kq corresponding to
the choice of a coordinate of B. The generalized Herr-complex in the Lubin-Tate setting

can thus be formed using the two operators ϕL and Zn. Unfortunately, in contrast to

Δ Ď ΓQp
, the remaining quotient ΓL{Γn in general cannot be identified with a subgroup

of ΓL, whence we cannot take ΓL{Γn-invariants as before, but have to circumvent this

problem.

An important step for our approach consists of establishing the analogue of local Tate
duality for analytic cohomology, see subsection 4.3. In contrast to [36] we find an intrinsic

way to normalize our trace map without any comparison to Galois cohomology (which is

not available anyway as we indicated); nevertheless for L “ Qp our choice coincides with

that of Nakamura (for an appropriate choice of period Ω).
Another price we have to pay is the fact that even the minimal choice for K is no

longer spherically complete, which means that the functional analysis requires some

additional care. For the explicit descent calculation Lemma 8.16 we make use of the
explicit reciprocity law from [45].

Contrary to the cyclotomic case, it seems difficult to establish integral results in the

analytic case. On the one hand the “dualizing character” χ used to establish Tate duality
has Frobenius action given by πL

q and hence does not make sense integrally (unless

L “ Qp), on the other hand the period Ω is not a unit (unless L “ Qp). The L-analytic

distribution algebra DpΓL,Lq contains the ring ΛXΓL
of power-bounded functions on the
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character variety. It is not known whether ΛXΓL
“ oL�ΓL�. Paradoxically, the Iwasawa

algebra oL�ΓL�r1{ps is dense inside both the d -dimensional Qp-analytic distribution

algebra and the 1-dimensional L-analytic distribution algebra making it unclear how
to descend to integral results even under the assumption ΛXΓL

“ oL�ΓL�.

The structure of the paper is as follows: In section 3 we introduce (analytic) pϕL,ΓLq-

modules. In section 4 we introduce and study analytic cohomology of analytic pϕL,ΓLq-
modules and recall the main results of [50] while providing some generalisations suited to

our needs. Furthermore, we develop an analogue of Tate duality for analytic cohomology.

In section 5 we develop an analogue of the Bloch-Kato (dual) exponential map for
analytic cohomology. We recall classical ε-constants in section 6 and state the conjecture

in Section 7. Section 8 is dedicated to proving the main result. In the Appendix we adapt

Nakamura’s density argument to the Lubin-Tate setting.

2. Notation

We denote by N the natural numbers including 0.
Let Qp Ď L Ă Cp be a field of finite degree d over Qp, oL the ring of integers of L,

πL P oL a fixed prime element, kL “ oL{πLoL the residue field, q :“ |kL| and e the absolute

ramification index of L. We always use the absolute value | | on Cp which is normalized by

|πL| “ q´1. This choice of normalisation is consistent with [15] and [46]. We normalize the
reciprocity map of local class field theory such that πL is sent to the geometric Frobenius.

We fix a Lubin-Tate formal oL-module LT “ LTπL
over oL corresponding to the prime

element πL. We always identify LT with the open unit disk around zero, which gives
us a global coordinate Z on LT . The oL-action then is given by formal power series

raspZq P oLrrZss. For simplicity the formal group law will be denoted by `LT .

The power series BpX`LTY q

BY |pX,Y q“pZ,0q
is a unit in oLrrZss and we let gLT pZq denote

its inverse. Then gLT pZqdZ is, up to scalars, the unique invariant differential form on LT

([24] §5.8). We also let

logLT pZq “ Z `. . . (1)

denote the unique formal power series in LrrZss whose formal derivative is gLT . This

logLT is the logarithm of LT in the sense of [32, §8.6] and converges on the maximal ideal
in oCp

(by §8.6, Lemma 3 (ii) ibid.). By expLT :“ log´1
LT in LrrZss we denote the inverse

power series of logLT , i.e., satisfying logLT ˝expLT pZq “ expLT ˝ logLT pZq “ Z.1

In particular, gLT dZ “ d logLT . The invariant derivation Binv corresponding to the form
d logLT is determined by

f 1dZ “ df “ Binvpfqd logLT “ BinvpfqgLT dZ

and hence is given by

Binvpfq “ g´1
LT f

1. (2)

1expLT converges on D :“ tz P Cp|vπLpzq ą
1

q´1u and induces on D the inverse of logLT

respecting the valuation, see [32, §8.6, Lem. 4]
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For any a P oL we have

logLT praspZqq “ a ¨ logLT and hence agLT pZq “ gLT praspZqq ¨ ras
1
pZq (3)

([32] 8.6 Lemma 2).

Let Tπ be the Tate module of LT . Then Tπ is a free oL-module of rank one and we

choose a generator u “ punqnPN where u0 “ 0, u1 ‰ 0 and, for all n, we have un P mCp

as well as rπLspun`1q “ un. Then the action of GL :“ GalpL{Lq on Tπ is given by a
continuous character χLT :GL ÝÑ oˆ

L . Let T
1
π denote the Tate module of the p-divisible

group Cartier dual to LT with period Ωt1
0

P yLab, which again is a free oL-module of
rank one and where t1

0 is a generator. The Galois action on T 1
π – T˚

π p1q is given by the

continuous character τ :“χcyc ¨χ´1
LT , where χcyc is the cyclotomic character. As mentioned

in [8, §1] and [42, §3] it follows from the work of Tate on p-divisible groups that we have
natural oL-linear isomorphisms

T 1
π – HomoCp

pLT,Ĝmq – HomZp
pTπ,Zpp1qq – HomZp,ctspTπ boL L{oL,μppqq, (4)

where the last isomorphism is induced by Pontryagin duality and the adjunction between

Hom and b. According to the proof of [8, Lem. 13] the above composite sends at1
0

to the map sending u b
1
πn
L

to ηt1
0
pa,unq, where, for x P oL, we define ηt1

0
px,Zq :“

exp
`

Ωt1
0
x logLT pZq

˘

P 1`Zo
yL8

rrZss; when the choice of t1
0 is clear from the context,

we often omit this index from Ωt1
0
or ηt1

0
px,Zq.

Our constructions will depend crucially on the choices of u and t1
0, which determine the

period Ω “ Ωt1
0
. By (4) these two choices automatically determine a system

ηp1,T q|T“un
“ exppΩlogLT pT qq|T“un

of compatible p-power roots of unity.2 In the cyclotomic case where LT “ Gm it suffices

to fix a choice of compatible p-power roots of unity because one can then take the identity

as a canonical generator t1
0 of T 1

π “ HompGm,Gmq.
For n ě 0 we let Ln{L denote the extension (in Cp) generated by the πn

L-torsion points

of LT , and we put L8 :“
Ť

nLn. The extension L8{L is Galois. We let ΓL :“ GalpL8{Lq

and HL :“ GalpL{L8q. The Lubin-Tate character χLT induces an isomorphism ΓL
–

ÝÑ oˆ
L .

Note that by [7, Rem. 1.17] we have NL{Qp
˝χLT “ χcyc if and only if NL{Qp

pπLq P pZ.
Note that we have homomorphisms oL Ñ 1 ` Zo

yL8
rrZss, x ÞÑ ηpx,Zq, and LT Ñ

Ĝm, Z ÞÑ ηpx,Zq, respectively. For a πn
L-torsion point a (whence pm-torsion with m “ r

n
e s

being the smallest integer greater or equal to n
e ) we thus obtain a character oL Ñ

Zprζpmsˆ,x ÞÑ ηpx,aq, of finite order. In particular ηpx,unq belongs to μpm for any x P oL.

If γ P ΓL, we have γηpx,Zq “ ηpχLT pγqx,Zq, while ϕpηpx,Zqq “ ηpπLx,Zq.

Remark 2.1. Since for σ in GL, one has σpΩq “ Ωτpσq by [46, Lem. 4.1.24], it follows

that σηpx,Zq “ ηpxτpσq,Zq “ ηpx,rτpσqspZqq, if we let act GL on the coefficients only,

and σpηpx,Zqq “ ηpxτpσq,rχLT pσqspZqq “ ηpx,rχcycpσqspZqq, if we let act GL on the

2E.g. if L “ Qp and LT is the special group corresponding to pX `Xp and Ω “ 1, then ηp1,T q

is the Artin-Hasse exponential exppX `Xp
{p`. . . q.

https://doi.org/10.1017/S147474802500012X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802500012X


8 M. Malcic et al.

coefficients and on the variable. In particular, σpηpx,unqq “ ηpxτpσq,rχLT pσqspunqq “

ηpx,rχcycpσqspunqq “ ηpxχcycpσq,unq “ ηpx,unqχcycpσq.Moreover, for a fixed choice ζpn of
a primitive pnth root of unity, there is a unique homomorphism βun

: oL Ñ Z{pnZ such

that the following diagram is commutative

Z{pnZ
ζ´
pn

���
��

��
��

��

oL

βun

����������� ηp ,́unq �� μpn,

i.e., ηpx,unq “ ζ
βun pxq

pn . One easily checks that βun
pχcycpσqxq “ χcycpσq ¨βun

pxq.

Henceforth we use the same notation as in [45]. In particular, the ring endomorphisms

induced by sending Z to rπLspZq are called ϕL where applicable; e.g. for the ring AL

defined to be the πL-adic completion of oLrrZssrZ´1s, or BL :“ ALrπ´1
L s which denotes

the field of fractions of AL. Recall that we also have introduced the unique additive

endomorphism ψL of BL (and then AL) which satisfies

ϕL ˝ψL “ π´1
L ¨TrBL{ϕLpBLq.

Moreover, the projection formula

ψLpϕLpf1qf2q “ f1ψLpf2q for any fi P BL

as well as the formula

ψL ˝ϕL “
q

πL
¨ id

hold. An étale pϕL,ΓLq-module M comes with a Frobenius operator ϕM and an induced
operator denoted by ψM .

For a perfectoid field extension F of L in the sense of [41, Section 1.4] let

oF 5 :“ lim
ÐÝ

oF {poF with the transition maps being given by the Frobenius ϕpaq “ ap.

We may also identify oF 5 with lim
ÐÝ

oF {πLoF with the transition maps being given by

the q-Frobenius ϕqpaq “ aq. We recall that xL8 and Cp are perfectoid and that oC5
p
is

a complete valuation ring with residue field Fp and its field of fractions C5
p “ lim

ÐÝ
Cp is

algebraically closed of characteristic p (cf. [41, Lemma 1.4.6,Proposition 1.4.7 and Lemma
1.4.10, Proposition 1.4.12]). Let mC5

p
denote the maximal ideal in oC5

p
. The q-Frobenius

ϕq first extends by functoriality to the rings of the Witt vectors W poC5
p
q Ď W pC5

pq and

then oL-linearly to W poC5
p
qL :“ W poC5

p
q boL0

oL Ď W pC5
pqL :“ W pC5

pq boL0
oL, where L0

is the maximal unramified subextension of L. The Galois group GL obviously acts on C5
p

and W pC5
pqL by automorphisms commuting with ϕq. This GL-action is continuous for

the weak topology on W pC5
pqL (cf. [41] Lemma 1.5.3).

Sometimes we omit the index q,L, or M from the Frobenius operator, but we always

write ϕp when dealing with the p-Frobenius.
Evaluation of the global coordinate Z of LT at πL-power torsion points induces

a map (not a homomorphism of abelian groups) ι : Tπ ÝÑ oC5
p
. Namely, if t “

pznqně1 P Tπ with rπLspzn`1q “ zn and rπLspz1q “ 0, then zqn`1 ” zn mod πL and hence
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ε-Isomorphisms for rank one pϕ,Γq-modules over Lubin-Tate Robba rings 9

ιptq :“ pzn mod πLqn P oC5
p
. As before we fix an oL-generator u of Tπ and put ωu :“ ιpuq.

Then there exists a (unique) lift Zu P W poC5
p
qL of ωu satisfying (cf. [45, Lem. 4.1])

(i) if u1 “ au with a P oˆ
L denotes another generator of Tπ, then Zu1 “ raspZuq is the

corresponding lift;

(ii) φqpZuq “ rπLspZuq;

(iii) σpZuq “ rχLT pσqspZuq for any σ P GL.

By sending Z to Zu P W poC5
p
qL we obtain an GL-equivariant, Frobenius compatible

embedding of rings

oL�Z� ÝÑ W poC5
p
qL. (5)

Let K Ď Cp be a complete subfield containing L8 and Ω, i.e., the minimal choice is the

completion of the extension L8pΩq of L8; by an observation of Colmez the completion
yLab would be a possible choice, where we write Lab “ LnrL8 and Lnr for the maximal
abelian and for the maximal unramified extension of L, respectively. If L ‰ Qp, such K

cannot be discretely valued even if we replace L8 by L, see [42, Lem. 3.9]. Following

Colmez we define Kn :“ Ln bLK “
ś

poL{πn
Lqˆ K, where the latter identification is given

by mapping lbL k to pσaplq ¨kqaPpoL{πn
Lqˆ , and have the maps

TrKn{K :
ź

poL{πn
Lqˆ

K Ñ K, plaqaPpoL{πn
Lqˆ ÞÑ

ÿ

aPpoL{πn
Lqˆ

la.

Note that we have vppΩq “
1

p´1 ´
1

epq´1q
and, for n ě 1,rn :“ vppunq “

1
epq´1qqn´1 .

For any ring R, let D
ra,bs

perf pRq (respectively Db
perfpRq, D´

perfpRq) denote the triangulated
subcategory of the derived category DpRq of (cochain) complexes of R-modules consisting

of the complexes of R-modules which are quasi-isomorphic to complexes of finitely

generated projective R-modules concentrated in degrees ra,bs (respectively bounded
degrees, degrees bounded above).

Furthermore, if R is a commutative ring, X an R-module and t P R a non-zerodivisor,

we write Xt :“ Xr
1
t s for the localisation at the multiplicatively closed set t1,t,t2, . . .u.

For a locally L-analytic group G and a complete field F Ď Cp containing L we

write DpG,F q for the locally L-analytic distribution algebra with coefficients in F ; if

the coefficients are clear from the context we often abbreviate this as DpGq. Dirac

distributions associated with group elements g P G are denoted by δg or rgs.

3. pϕL,ΓLq-Modules over the Robba ring

For the entire section, fix a complete intermediate field F of the extension Cp{L.

3.1. Definition of the Robba ring R
For any interval I Ď p0,8q that is either compact or of the form p0,rs, r ą 0, we define

RI
F :“

#

ÿ

kPZ

ak ¨Zk
| ak P F, lim

|k|Ñ8
vF pakq `kt “ 8 for all t P I

+

.
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10 M. Malcic et al.

We always assume that the boundary points of I are in the value group of vF , so that
RI

F is the ring of rigid analytic functions on the annulus

tx P F | vF pxq P Iu.

Furthermore, for r ą 0, let

Rr
F :“ Rp0,rs

F .

i.e. the ring of rigid analytic functions on the annulus with outer radius 1 and inner radius

depending on r. For any s P p0,rs, one has Rrs,rs

F Ď Rr
F , and Rrs,rs

F is a Banach algebra
over F with the norm

Vrs,rs pfq “ min
tPrs,rs

ˆ

inf
kPZ

pvF pakq `ktq

˙

, where f “
ÿ

kPZ

akZ
k

P Rrs,rs

F .

Thus Rr
F “

Ş

0ăsďrR
rs,rs

F is a Fréchet space. There are natural inclusions Rr
F Ď Rs

F for

s ď r. Now the Robba ring over F in the variable Z is defined by

RF :“
ď

rą0

Rr
F .

We endow RF with the locally convex direct limit topology of the Rr
F , making it an

LF-space.

Moreover, let

R`
F :“ RF XF rrZss.

This is the ring of power series with coefficients in F that are convergent on the open

unit disk. In particular, we have R`
F Ď Rr

F for all r ą 0. For a complete field extension

F Ă F 1 Ă Cp we have

F 1
b̂F,iRF – RF 1

(see. [7, Corollary 2.1.8]). Their proof also shows F 1b̂F,πRr
F – Rr

F 1 .
Inside RF , we have the subring Rb

F of bounded elements, i.e., those Laurent series

f “
ř

kPZ akZ
k where the coefficients ak are bounded in F. It is well-known that Rˆ

F “

pRb
F qˆ. Furthermore, the map f ÞÑ ‖f‖1 :“ supk|ak| defines a multiplicative norm on Rb

F ,

see [7, §1.3].

3.2. Frobenius and ΓL-action on R
On RF , we define a Frobenius ϕL and a commuting ΓL-action by

ϕLpZq :“ rπLspZq and γpZq :“ rχLT pγqspZq for γ P ΓL

on the variable and trivial actions on the coefficients. For r ą 0, the Frobenius ϕL and

each γ P ΓL restrict to maps

ϕ : Rr
F ÝÑ Rr{q

F and γ : Rr
F

„
ÝÑ Rr

F .
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For r small enough, there is a left inverse

ψL : Rr{q
F ÝÑ Rr

F

of ϕL, given by Ψ “
ϕ´1

L

q ˝TrRr{q
F {ϕLpRr

F q
, see [22, §2]. We have Ψ “

πL

q ψL.

3.3. pϕL,ΓLq-Modules

Definition 3.1. A ϕL-module over RF is a finitely generated free RF -module M,

equipped with a continuous3, ϕL-semilinear endomorphism ϕM , such that the induced

RF -linear map

RF bRF ,ϕL
M ÝÑ M, f bx ÞÝÑ f ¨ϕM pxq

is an isomorphism. Note that in the above tensor product, RF is viewed as a left-module

over itself in the usual way and as a right module via ϕL.

We will often simply write ϕ instead of ϕM .

Proposition 3.2. Let M be a ϕL-module over RF . Then there exists an rpMq ą 0 such

that, for each 0 ă r ď rpMq, there exists a unique finitely generated free Rr
F -submodule

Mr Ď M satisfying the following properties:

(i) M “ RF bRr
F
Mr.

(ii) ϕM induces an isomorphism Rr{q
F bRr

F ,ϕL
Mr „

ÝÑ Rr{q
F bRr

F
Mr.

In particular, for 0 ă s ď r ď rpMq, one has

Ms
“ Rs

F bRr
F
Mr.

Proof. See Thm. I.3.3 in [4].

Remark 3.3. Let M be a ϕL-module over RF . Then for 0 ă s ď r ď rpMq and

? P ts,rs,rs,∅u we write

M? :“ R?
F bRrpMq

F

MrpMq.

Composing the canonical map Mr ÝÑ Rr{q
F bRr

F ,ϕL
Mr, m ÞÝÑ 1bm with the isomor-

phism Rr{q
F bRr

F ,ϕL
Mr – Mr{q from Prop. 3.2(ii) above, we obtain ϕL-semilinear maps

ϕ : Mr
ÝÑ Mr{q.

There is also an operator

ΨM : Mr{q
– Rr{q

F bRr
F ,ϕL

Mr
ÝÑ Mr

given by f bm ÞÝÑ Ψpfq ¨m.

3where M is, of course, endowed with the product topology from RF .
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12 M. Malcic et al.

Definition 3.4. A pϕL,ΓLq-module over RF is a ϕL-module M over RF which carries

a continuous, semilinear action of ΓL that commutes with ϕM . We shall write MpRF q

for the category of pϕL,ΓLq-modules over RF .

Remark 3.5. If M is a pϕL,ΓLq-module over RF and 0 ă r ď rpMq, then from the

uniqueness in Prop. 3.2 it follows that γpMrq “ Mr for all γ P ΓL.

Definition 3.6.

(i) For n ě 1 we put rn :“ vppunq “
1

epq´1qqn´1 .

(ii) Let M be a pϕL,ΓLq-module over RF . For any n such that rn ď rpMq, define

M pnq :“ Mrn .

Observe that for the Frobenius we then have ϕ : M pnq ÝÑ M pn`1q for n " 0.

Let M be a pϕL,ΓLq-module over RF . After fixing a basis of M, consider the matrix

P P GLnpRF q representing ϕM . Then we have detpP q P Rˆ
F “ pRb

F qˆ and may thus take

the norm ‖detpP q‖1 introduced at the end of Subsection 3.1. Define the degree degpMq

of M as the number satisfying ‖detpP q‖1 “ q´degpMq; one checks that this is independent

of the initial choice of basis of M, see [7, §3.3] for details. Furthermore, the slope of M

is defined as μpMq :“ degpMq{rkpMq.

Definition 3.7. A pϕL,ΓLq-module M over RF is called étale, if it has degree 0 and

every pϕL,ΓLq-submodule has slope ě 0.

Definition 3.8. For an affinoid algebra A over F we define RI
A :“ Ab̂FRI

F (with the

projective tensor product topology) and similarly Rr
A and RA. We can extend A-linearly

the actions of ϕL and ΓL. By a pϕL,ΓLq-module overRA we mean aRA-moduleM which

arises as a base change of a projective Rr
A-module Mr for some r " 0, together with a

continuous Rr
A-semilinear action of ΓL on Mr and a ϕL-semilinear map ϕM : Mr ÑMr{q,

which commutes with ΓL. We can analogously extend the definition of Ψ.

If F is not spherically complete, we do not know if there exist non-free, projective

pϕL,ΓLq-modules over RF . In all cases considered by us, we will only need free modules.
According to [7] Prop. 2.25 the ΓL-action on a pϕL,ΓLq-module M is differentiable so

that the derived action of the Lie algebra Liepoˆ
Lq on M is available.

Definition 3.9. A pϕL,ΓLq-module M over R P tRF ,RAu is called L-analytic, if the

derived action LiepΓLq ˆ M Ñ M is L-bilinear, i.e., if the induced action LiepΓLq Ñ

EndpMq of the Lie algebra LiepΓLq of ΓL is L-linear (and not just Qp-linear). We shall

write ManpRq for the category of L-analytic pϕL,ΓLq-modules over R.

In the case R “ RF , we write M
an,étpRF q for the category of étale, L-analytic pϕL,ΓLq-

modules over RF .

For the relation with L-analytic continuous Galois representations RepanL pGLq of GL on

finite dimensional vector spaces V, which are analytic, i.e., satisfying that, if D
Qp

dRpV q :“

pV bQp
BdRqGL , the filtration on D

Qp

dRpV qm is trivial for each maximal ideal m of LbQp
L

which does not correspond to the identity id : L Ñ L, Berger’s theorem is crucial.
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Theorem 3.10. There is an equivalences of categories

RepanL pGLq ÐÑ Man,ét
pRLq

V ÞÑ D:

rigpV q.

Proof. Thm. D in [5]

The embedding oL�Z� Ñ W pC5
pqL in (5) depends by construction on the choice of u.

Any other choice does not change the image of the embedding oL�Z� Ñ W pC5
pqL because

Zau “ raspZuq for a P oˆ
L by property (i) above (5). As explained in [47, §8] the image

Zu of the variable Z already lies in W pL̂5
8qL, so that we actually have an embedding

oLrrZss Ñ W pL̂5
8qL. Similarly, as in [29, Def. 4.3.1] for the cyclotomic situation one shows

that the latter embedding extends to a ΓL- and ϕL-equivariant topological monomorphism
RL Ñ R̃L into the perfect Robba ring, see [47, §5] for a definition and [57, Konstruktion

1.3.27] for a proof in the Lubin-Tate setting.

Remark 3.11. In order to trace the choice of u in our constructions, we should view
RL as a subring of rRL via the embedding induced by Z ÞÑ Zu and define pϕL,ΓLq-

modules over this (isomorphic) subring. We will ignore this dependence for the most part

by working with a fixed Z “ Zu. This “hidden” dependence on u is only relevant if an
element of a pϕL,ΓLq-module is explicitly defined in terms of power series in the variable

Z, see e.g. (77), (79), (30).

3.4. Rank one modules and characters

Let A be an affinoid algebra over F. To each continuous character δ : Lˆ Ñ Aˆ we can
attach a pϕL,ΓLq-module of rank one RApδq :“ RAeδ by setting ϕLpeδq “ δpπLqeδ and

γpeδq “ δpχLT pγqqeδ for γ P ΓL. We say a module is of character type if it arises in this

way. A pϕL,ΓLq-module of character type is L-analytic (in the sense of Definition 3.9) if

and only if δ is locally L-analytic (or equivalently δ
|oˆ

L
is locally L-analytic). Over RL

any rank one module is of character type (cf. [22, Proposition 1.9]). We write Σ “ ΣpAq

for the set of continuous characters δ : Lˆ Ñ Aˆ. We denote by Σan :“ ΣanpAq the
set of locally L-analytic characters δ : Lˆ Ñ Aˆ. Consider the following characters δLT ,

χ “ x|x|,δunc : Lˆ Ñ Lˆ for c P Lˆ given by

δLT pπLq “ 1, δLT |oˆ
L

“ idoˆ
L
,

χpπLq “
πL

q
, χ

|oˆ
L

“ idoˆ
L
,

δunc pπLq “ c, pδunc q
|oˆ

L
” 1.

In particular, χ “ δunπL
q

δLT . Then δLT corresponds via class field theory to the character

χLT : GL Ñ oˆ
L . Let δ : L

ˆ Ñ Lˆ be any continuous character; setting δ0 :“ δunδ´1pπLq
δ we

may always decompose δ “ δunδpπLq
δ0 satisfying δ

|oˆ
L

“ pδ0q
|oˆ

L
and δ0pπLq “ 1. If |δpπLq| “ 1,

the character δ corresponds to a Galois character χδ via local class field theory. Then

D:

rigpLpχδqq “ RLpδq and we call δ étale.
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Later, for descent calculations we will have to select out the sets of special characters
Σ1 :“ tx´i|i P Nu and Σ2 :“ txiχ|i P Nu from the generic ones Σgen :“ ΣanzpΣ1 YΣ2q.

Note that we have two ψ-operators. While ψ satisfies the identity ψ ˝ϕ “
q
πL

id and

makes sense even integrally, Ψ denotes the left inverse of ϕ, i.e., satisfying Ψ˝ϕ “ id. In
particular, we have ψ “

q
πL

Ψ. Note that ψpeδq “
q
πL

δ´1pπLqeδ.

If δ P ΣanpKq and a P oˆ
L such that logpaq ‰ 0, then one defines the weight of δ as

ωδ :“ logpδpaqq{ logpaq (which is independent of a). We shall say that δ is de Rham, if
the attached pϕL,ΓLq-module RKpδq is de Rham in the sense that will be introduced in

subsection 5.4 below. As shown in the Appendix A, Remark A.8, δ is de Rham if and

only if there exist some locally constant character δlc and kp“ ωδq P Z, such that

δ “ δlcx
k (or equivalently δ “ δlcδ

k
LT for some other δlcq,

see also [46, Rem. 3.2.3/4] for the étale case.

We fix some notation for the remainder of the article. Consider the differential

operator B :“ Binv “
1

log1
LT pZq

d
dZ acting on RK . (This differs from [15] by a constant.)

Let ∇ P LiepΓLq – L be the element corresponding to 1 P L.

Remark 3.12. We obtain the following properties (cf. [15, 1.2.4]):

(i) B ˝ϕ “ πLϕ˝ B.

(ii) B ˝γ “ χLT pγqγ ˝ B.

(iii) ∇f “ tLT Bf for f P RK .

(iv) ∇pfeδq “ p∇f `ωδfqeδ for δ P Σan.

(v) Bηpx,T q “ Ωxηpx,T q

3.5. The modules D
p`q

dif pMq

We set tLT “ logLT pZq P LrrZss, so that

ϕptLT q “ πL ¨ tLT and γptLT q “ χLT pγq ¨ tLT for all γ P ΓL

by (3). For n ě 1, we set

rπ´n
L spZq :“ un `LT expLT p

tLT

πn
L

q P LnrrZss.

Then rπn
Lspun `LT expLT p

tLT

πn
L

qq “ Z, which is how Colmez justifies this notation in

[15, 1.4.2]. Note that the constant term of rπ´n
L spZq is equal to un and hence is non-

zero, so rπ´n
L spZq is a unit in LnrrZss.

Furthermore, let θ :KnrrtLT ss Ñ Kn denote the Kn-linear map sending tLT to 0, i.e.,
the reduction modulo tLT . This is the completed base change to K of the restriction of

θ :B`
dR Ñ Cp to LnrrtLT ss Ñ Ln.

In the following, let F be a complete non-Archimedean field containing L.
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Definition 3.13. The group ΓL acts diagonally on

Fn :“ Ln bLF

(trivially on the right factor and naturally on the left), and we extend this to an action

on FnrrZss via its usual action on Z.4 Now define

ιn “ ιpF q
n :Rrn

F Ñ FnrrtLT ss “ FnrrZss,
ÿ

kPZ

akZ
k

ÞÑ
ÿ

kPZ

akprπ´n
L spZqq

k,

where on the right-hand side ak denotes (by abuse of notation) the image under the
canonical embedding F ãÝÑ Ln bLF and rπ´n

L spZq is viewed as a power series over Ln bL

F via the embedding Ln ãÝÑ Ln bLF .

Remark 3.14.

(i) The map ιn is well-defined.

(ii) For the power series tLT “ logLT pZq P R`
F , we have

ιnptLT q “
tLT

πn
L

.

(iii) ιn is injective for every n.5

Proof. To see that ιn is well-defined for F “ L first recall that by [14, Prop. 8.10], the

ring B`
dR contains a period tL for the Lubin-Tate character, i.e. we have gptLq “ χLT pgqtL

for all g P GL and tL differs from the usual t by a unit. Thus LnrrtLT ss embeds into B`
dR

via tLT ÞÝÑ tL and we endow it with the subspace topology, making it a closed subspace

of B`
dR. It hence suffices to show that ιnpfq converges in B`

dR. A series of the form

x “
ř

k"´8
pkrxks P W poC5

p
qr1{ps converges in B`

dR if and only if θpxq converges in Cp

(which is the case precisely when k`vpxkq Ñ 8 for k Ñ 8). As in [12, Prop. III.2.1 (i)],

the condition x “
ř

kPZ akZ
k
u with ak P oL and vppakq ` k ¨ rn Ñ 8 for k Ñ ´8 implies

that ιnpxq converges in B`
dR. Even though the coefficients of an element x P Rrn

L are not

bounded, they do satisfy the same growth condition, which ensures the convergence of

ιnpxq. The case of general F is obtained via completed base change Rrn
F “ F b̂L,πRrn

L Ñ

FnrrtLT ss “ F b̂L,πLnrrtLT ss.

For the second point we compute

ιnptLT q “ logLT prπ´n
L spZqq “ logLT punq

loooomoooon

“0

` logLT expLT

ˆ

tLT

πn
L

˙

“
tLT

πn
L

.

4Note that FnrrtLT ss “ FnrrZss because the map FnrrZss{Zk
ÝÑ FnrrZss{Zk,Z ÞÝÑ tLT is an

isomorphism for all k, a consequence of tLT being an element of Z `Z2LrrZss.
5The injectivity of ιn in the cyclotomic case is [3, Proposition 2.11, Proposition 2.25], but the
map ιn is defined in terms of Witt vectors. The argument given by us is in a similar spirit as
(loc.cit.).
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For the injectivity of ιn we can assume F “ L because completed base change F b̂L,π´

preserves injectivity by [19, 1.1.26]. Consider θ : Ln�tLT � Ñ Ln the reduction modulo

tLT such that θ ˝ ιnpfq “ fpunq. If ιnpfq “ 0 then fpunq “ 0 and hence f is divisible by

QnpZq :“
rπn

LspZq

rπn´1
L spZq

. Because ιnptLT q ‰ 0 and Qn | tLT “Z
ś

μě1
Qμ

πL
we conclude ιnpQnq ‰

0 and hence ιnpf{Qnq “ 0. Inductively Qk
n | f for every k ě 0. The choice of n ensures

that Qn P Rrn
L is a non-unit. By considering the image of f in the noetherian domain

Rrrn,rns

L under the inclusion Rrn
L Ă Rrrn,rns

L we conclude f “ 0 by Krull’s Intersection

Theorem.

The map ιn commutes with the action of ΓL. Writing Tr “ idF b
1
qTrLn`1{Ln

we obtain

the commutative diagrams

Rrn
F FnrrtLT ss

Rrn`1

F Fn`1rrtLT ss

ϕ

ιn

ιn`1

and

Rrn
F FnrrtLT ss

Rrn`1

F Fn`1rrtLT ss.

ιn

ιn`1

ψ Tr

Definition 3.15. Let M be a pϕL,ΓLq-module over RF . Viewing FnrrtLT ss as an Rrn
F -

module via ιn, we define the FnrrtLT ss- and FnpptLT qq-modules

D`
dif,npMq :“ FnrrtLT ss bRrn

F
M pnq and Ddif,npMq :“ D`

dif,npMqtLT
,

respectively, where p´qtLT
means localising an FnrrtLT ss-module at the multiplicative

subset generated by tLT . Furthermore, D`
dif,npMq carries the diagonal action of ΓL, which

also extends to Ddif,npMq. Under the isomorphism ϕ˚pM pnqq “ Rrn`1

F bϕ,Rrn
F

M pnq –

M pn`1q, the map ϕ : M pnq ÑM pn`1q corresponds to the canonical map cann,n`1 : M
pnq Ñ

ϕ˚pM pnqq;x ÞÑ 1bx. The above diagrams then induce the diagrams (see [36, §2.B] for
details)

M pnq D
p`q

dif,npMq

M pn`1q D
p`q

dif,n`1pMq

ϕ

ιn

cann,n`1

ιn`1

where the map cann,n`1 is given by fptq bx ÞÑ fptq bϕpxq fl fptq b cann,n`1pxq “ fptq b

1bx, and ιn by m ÞÑ 1bm, as well as, for n ě 1,
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M pnq D
p`q

dif,npMq

M pn`1q D
p`q

dif,n`1pMq

ιn

ιn`1

ψ Tr

with transitions maps fptqbx ÞÑTrpfptqqbψpxq on the right hand side. Finally, we define

D
p`q

dif pMq :“ lim
ÝÑ
n"0

D
p`q

dif,npMq

with cann,n`1 as transition maps.

As in [36], we have D`
dif,npMq bFnrrtLT ss Fn`1rrtLT ss

„
ÝÑ D`

dif,n`1pMq and hence

D
p`q

dif pMq “ D
p`q

dif,npMq bFnrrtLT ss p
ď

měn

FmrrtLT ssq

for n " 0.

Remark 3.16. SinceM pnq is a free module overRpnq

F , say of rank d, we haveD`
dif,npMq –

FnrrtLT ssd. The Fréchet-space-structure on FnrrtLT ss “ lim
ÐÝ

FnrrtLT ss{ptkLT q (with base

field F, where each factor is a finite-dimensional F -vector space endowed with it’s

canonical topology) thus induces one on D`
dif,npMq, which is of course independent of the

choice of the isomorphism above. Furthermore, Ddif,npMq “ lim
ÝÑk

D`
dif,npMq ¨t´k

LT becomes

an LF-space over F in this way. Finally, the modules D`
difpMq and DdifpMq are also LF-

spaces6 over F.

Later on it will be crucial to form the cohomology groups Hi
ϕ,ZpD`

difpMqq from

Section 4. For this we need a DpΓL,F q-module-structure on D
p`q

dif pMq, which we get
from Proposition 3.18 below after showing that the action is pro-L-analytic. Let us first

recall this notion.

Definition 3.17. Let G be an L-analytic group (the main example to have in mind is
G “ ΓL).

(a) Let V be a Banach space over F equipped with a continuous linear G-action. We

say that a vector v P V is locally L-analytic if there exists an open subgroup

Γn Ď G together with a chart � : Γn
„
Ñ πn

LoL (for some n ě 0) such that the orbit
map of v restricted to Γn is given by a power series

γpvq “
ÿ

kě0

�pγq
kvk

where vk P V is a sequence of vectors satisfying πnk
L vk Ñ 0 for k Ñ 8. We say that

the action of G is locally L-analytic if all v P V are locally L-analytic.

6Note that this topology is not the norm topology on L8 because a strict LF-space is complete.
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(b) Let W “ lim
ÝÑm

Wm be an LF-space over F, with Fréchet spaces Wm “ lim
ÐÝn

Wm,n

and Banach spaces Wm,n, such that G acts linearly and continuously on W. We

say that a vector w P W is pro- L-analytic if its orbit map G Ñ W factors over
some Wm and the induced maps G Ñ Wm,n are locally L-analytic for all n. We

denote by WL´pa the subset of pro-L-analytic vectors of W. We say the action is

pro-L-analytic if WL´pa “ W.

Proposition 3.18. Let W be an LF-space over F carrying a pro-L-analytic action of ΓL.
Then this action extends uniquely to a separately continuous action of DpΓL,F q on W.

Proof. This follows from the proof of [46, Proposition 4.3.10].

Lemma 3.19. Let B be a Fréchet ΓL-ring over F and W a finitely generated free B-
module with a compatible ΓL-action. Assume there is a basis A :“ pe1, . . . ,edq for W such

that the map

ΓL ÝÑ GLdpBq, γ ÞÝÑ MatApγq

is pro-L-analytic. WL´pa “
Àd

j“1B
L´pa ¨ej.

Proof. This is proven for F “ L “ Qp in [5, Prop. 2.4] and the identical proof applies for
general F and L.

Proposition 3.20. For an L-analytic pϕL,ΓLq-module M over RF , the ΓL-action on the

LF-spaces D`
difpMq and DdifpMq is pro-L-analytic.

Proof. We start with D`
difpMq “ lim

ÝÑn"0
D`

dif,npMq. By definition, it suffices to check that

the ΓL-action on the Fréchet space D`
dif,npMq is pro-L-analytic for n " 0.

We wish to apply Lemma 3.19 with B :“FnrrtLT ss andW :“D`
dif,npMq “BbRpnq

F

M pnq:

Choose any Rpnq

F -module basis x1, . . . ,xd of M pnq. Then A :“ p1bx1, . . . ,1bxdq is a basis

of the free B -module W, and the map γ ÞÝÑ MatApγq is given by the composite

ΓL ÝÑ GLdpRpnq

F q
ιn

ÝÑ GLdpBq

where the first map is pro-L-analytic because M pnq is pro-L-analytic by assumption.

Moreover, since ιn is a continuous homomorphism of F -algebras, we conclude that 3.19
is applicable. Thus we obtain

WL´pa
“

d
à

j“1

BL´pa
¨ p1bxjq “ FnrrtLT ss

L´pa
bRpnq

F

M pnq.

Finally, from [38, Prop. 2.6 2.] it follows that FnrrtLT ssL´pa “ FnrrtLT ss, which completes
the proof for D`

difpMq.

Moving on to DdifpMq, we write DdifpMq “ lim
ÝÑn,k

D`
dif,npMq ¨ t´k

LT as a direct limit of

Fréchet spaces. By what we have just shown, one can express D`
dif,npMq for n " 0 as
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inverse limit D`
dif,npMq “ lim

ÐÝr
Bn,r for certain F -Banach spaces Bn,r on which ΓL acts

L-analytically. So for any k one has

D`
dif,npMq ¨ t´k

LT “ lim
ÐÝ
r

Bn,r ¨ t´k
LT ,

where by Bn,r ¨ t´k
LT we denote the ΓL-module Bn,r whose ΓL-action is twisted by χ´k

LT .

Since the inversion in ΓL is an L-analytic map, we see that the twisted action b ÞÝÑ

χLT pγ´kq¨γpbq on Bn,r is again L-analytic. Thus ΓL acts pro-L-analytically onD`
dif,npMq¨

t´k
LT for n " 0 and k ě 1, so the claim follows.

Note that DdifpMq depends on the coefficient field of RF . For a complete field extension

F 1{F and an L-analytic pϕL,ΓLq-module M over RF one checks that F 1b̂F,iM is an

L-analytic pϕL,ΓLq-module over RF 1 . Here b̂F,i denotes the inductive tensor product

topology.

Remark 3.21. Let F 1{F be a complete field extension and let M be an L-analytic
pϕL,ΓLq-module over RF . The natural maps

F 1
b̂F,iDdifpMq Ñ DdifpMb̂F,iF

1
q

and

F 1
b̂F,iDdif,npMq Ñ Ddif,npMb̂F,iF

1
q

are ΓL-equivariant isomorphisms.

Proof. The completed inductive tensor product commutes with strict locally convex

inductive limits by [19, Theorem 1.1.30] together with the argument in the proof of

[7, 2.1.7(i)]. Hence the first statement follows from the second. For Fréchet spaces
inductive and projective tensor products agree and commute with projective limits (of

Hausdorff spaces) with dense transition maps (cf. [7, 2.1.4] and [40, 17.6]). This allows

us to first reduce to the corresponding statement for D`
dif ,npMqt´k0

LT since Ddif ,npMq “

lim
ÝÑk

D`
dif ,npMqt´k

LT and by 3.16 we have D`
dif,npMq – lim

ÐÝk
D`

dif,npMq{ptkLT q, hence we

even have surjective transition maps which allow us to reduce to the corresponding

statement for D`
dif,npMq{ptkLT q (assuming for simplicity k0 “ 0, the general case being

treated analogously). Since each D`
dif,npMq{ptkLT q is finite dimensional over F, we may

omit the completion and see that

F 1
bF D`

dif,npMq{ptkLT q Ñ D`
dif,npMb̂F,iF

1
q{ptkLT q

is an isomorphism of finite dimensional F 1-vector spaces, which follows from the fact that

any basis of M pnq gives rise on the one hand to a FnrrtLT ss basis of D`
dif,npMq and on

the other hand to a basis of F 1b̂M pnq and thus to a F 1
nrrtLT ss basis of D`

dif,npF 1b̂Mq.

Note that FnrrtLT ss{ptLT qk bF F 1 – F 1
nrrtLT ss{ptLT qk by a dimension argument.
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Lemma 3.22. Let V be a F-Banach space and let G be a group acting on V via continuous
F-linear maps. Let W be an F-Banach space of countable type endowed with the trivial

G-action. Then

pV b̂W q
G

“ V G
b̂W

Proof. Assume without loss of generality, that W is infinite dimensional (the finite

dimensional case being simpler). By [37, Corollary 2.3.9] W is isomorphic to c0pF q, the
space of zero sequences in F indexed by N. We obtain a G-equivariant isomorphism

V b̂W – c0pV q by first identifying c0pF q (resp. (c0pV q)) with the completion of
À

nPNF

(resp.
À

nPNV ) and using the G-equivariant isomorphism p
À

nPNF qbF V –
À

nPNV and
passing to completions. Note that g P G acts via continuous automorphisms with respect

to the product topology and hence extends to an automorphism of the completions with g

acting on a sequence pv1,v2, . . . q via gpv1,v2, . . . q “ pgv1,gv2, . . . q. It is clear that any such
sequence is G-invariant if and only if each component is G-invariant.

Corollary 3.23. Let F 1{F be a complete field extension contained in Cp and let M be

an L-analytic pϕL,ΓLq-module over RF . We have

D
p`q

dif pMq
ΓLb̂F,iF

1
“ D

p`q

dif pMb̂F,iF
1
q
ΓL .

Proof. Like in the proof of 3.21 we reduce to the corresponding statement for the Banach

spaces Ddif,npMq`t´k0

LT {Ddif,npMq`tk´k0

LT . The field F 1 is of countable type over F since
F 1 XQp is dense in F 1 by [26, Theorem 1] (and of at most countable dimension over

Qp) and hence also F pF 1 XQpq is a dense F -subspace of at most countable F -dimension.

Because the action on F 1 is trivial, we can deduce the result from 3.22.

4. (Analytic) Cohomology groups

For the moment let F be any field extension of L and G be any L-analytic group (of
dimension one); we shall reserve the letter U for a (sub)group isomorphic to oL. If K is

big enough such that DpUq :“ DpU,Kq – R`
K “: R` then we denote by Z P DpUq the

element corresponding to the variable Z P R`. Let V be any (abstract) DpG,F q-module.
We define cohomology groups H‚

♣,♠pV q for ♣ P tϕ,ψu and ♠ P tDpG,F q,Z,LiepGq,∇u

as follows: By RHomDpGqpF,V q we denote any (bounded) complex of F -vector spaces

whose cohomology gives Ext‚
DpGqpF,V q (extensions as abstract DpGq-modules). Let f be

any endomorphism of V which commutes with the DpGq-action inducing an operator on

RHomDpGqpF,V q and we denote by

Kf,DpGqpV q :“ cone
´

RHomDpGqpF,V q
f´id

ÝÝÝÑ RHomDpGqpF,V q

¯

r´1s

the induced mapping fibre. For U – oL and K being big enough

0 �� DpUq
Z �� DpUq �� K �� 0

is a projective resolution of the trivial representation K and we can choose V
Z

ÝÑ V
(functorially) for RHomDpUqpK,V q. In this context we shall also use the notation Kf,ZpV q

for Kf,DpUqpV q. Note that
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Kf,ZpV q – cone
´

V b
L
DpGq K

f´id
ÝÝÝÑ V b

L
DpGq K

¯

r´2s

as RHomDpGqpK,V q – V bL
DpGq

Kr´1s. Analogous isomorphisms exist for Kf,DpGqpV q for

any G of dimension one, since in our context taking G{U -invariants and -coinvariants

coincide and form exact functors by Maschke’s theorem.
Following [31] we write D8pGq for the algebra of locally constant distributions, i.e., the

quotient of DpGq by the ideal generated by LiepGq ĎDpGq. We then obtain isomorphisms

by [44, p. 306]

Ext‚
DpGqpD8

pGq,V q – H‚
pLiepGq,V q, (6)

where the latter denotes Lie algebra cohomology. Since the reference does not cover

coefficient fields such as our K, which is not spherically complete, we would like to briefly

justify this isomorphism: For LiepGq “ L∇ we have a strict exact sequence of Hausdorff
locally convex vector spaces over L

0 �� DpG,Lq
∇ �� DpG,Lq

pr �� D8pG,Lq �� 0 (7)

by [44, §3], i.e., a resolution of D8pG,Lq by free DpG,Lq-modules. Moreover, it arises by

base change DpG,LqbULpLiepGqq ´ from the following resolution of L by free ULpLiepGqq-

modules, where the latter denotes the enveloping algebra of LiepGq :

0 �� ULpLiepGqq
∇ �� ULpLiepGqq

pr �� L �� 0 (8)

see [44, Rem. 1.1]. Base changeKb̂L´ of (7) leads to the strict exact sequence of Hausdorff

locally convex K -vector spaces

0 �� Kb̂LDpG,Lq
∇ �� Kb̂LDpG,Lq

pr �� Kb̂LD
8pG,Lq �� 0 (9)

by [46, Lem. 4.3.6]. Since Kb̂LDpG,Lq – DpG,Kq by the proof of [46, Lem. 4.1.2], we

also obtain Kb̂LD
8pG,Lq – D8pG,Kq, i.e., this sequence is the analogue of (7) for K

replacing L and visibly it arises again by base change DpG,Kq bUKpLiepGqq ´ from the

analogue of (8)

0 �� UKpLiepGqq
∇ �� UKpLiepGqq

pr �� K �� 0 . (10)

Since HomDpG,KqpDpG,Kq,V q – HomUKpLiepGqqpUKpLiepGq,V q the isomorphism (6) fol-

lows.
If RHomDpGqpD8pGq,V q denotes any (bounded) complex of K -vector spaces having

the groups (6) as cohomology, we again write

Kf,LiepGqpV q :“ cone
´

RHomDpGqpD8
pGq,V q

f´id
ÝÝÝÑ RHomDpGqpD8

pGq,V q

¯

r´1s

for the induced mapping fibre.
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Assume ∇ P LiepUq “ K corresponds to 1. Then V
∇

ÝÑ V is a valid (functorial) choice

for RHomDpUqpD8pUq,V q and we shall also use the notation Kf,∇pV q instead.

Finally, we set

H‚
♣,♠pV q :“ h‚

pK♣,♠pV qq.

Note that we have isomorphisms (see proof of [31, Thm. 4.8] or [56, §10.8.2])

RHomD8pGqpK,RHomDpGqpD8
pGq,V qq – RHomDpGqpK,V q

and, for G0 Ď G any L-analytic normal subgroup, (see [56, Exc. 10.8.5])

RHomDpG{G0qpK,RHomDpG0qpK,V qq – RHomDpGqpK,V q

in the derived category, therefore inducing the spectral sequences

ExtiD8pGqpK,ExtjDpGq
pD8

pGq,V qq ñ Exti`j
DpGq

pK,V q

and

Hi
pG{G0,Ext

j
DpG0q

pK,V qq ñ Exti`j
DpGq

pK,V q.

They both degenerate by the projectivity of K as D8pGq- and DpG{G0q “ KrG{G0s-

module (cf. the proof of [31, Thm. 4.10] for the first claim over L, from which the
general case again follows by complete base change to K, and using Maschke’s theorem

for the second claim). Moreover, note that HomD8pGqpK,W q – WG, for any D8pG,Kq-

module W, because the Dirac measures δγ P D8pG,Kq induce the elements δγ ´ 1 in
the augmentation ideal, which is the kernel of D8pG,Kq � K and which is a finitely

generated ideal by Cor. 4.6 of (loc. cit.) plus complete (exact) base change; using this,

the above spectral sequences induce the isomorphisms

Hi
pLiepGq,V q

G
“ ExtiDpGqpK,V q (11)

and

H0
pG{G0,Ext

j
DpG0q

pK,V qq “ ExtjDpGq
pK,V q. (12)

Remark 4.1. In [15] the pro-L-locally analytic cohomology groups Hi
anpA`,Mq for the

L-analytic semi-group A` – ΓL ˆ tϕZu with M being specified below are defined. By

[53, 3.7.6] they are isomorphic to the cohomology groups Hi
ϕL,ΓL,an

pMq which arise as

follows: Following [15, §5] we write C‚
anpG,Mq for the locally L-analytic cochain complex

of an L-analytic group G with coefficients in M and Hi
anpG,Mq :“ hipC‚

anpG,Mqq for

locally L-analytic group cohomology. More precisely, letM “ lim
ÝÑs

lim
ÐÝr

M rr,ss with Banach

spaces M rr,ss be an LF space with a pro-L-analytic action of G (cf. Definition 3.17). If
MapslocL´anpG,M rr,ssq denotes the space of locally L-analytic maps from G to M rr,ss,

then

Cn
anpG,Mq “ lim

ÝÑ
s

lim
ÐÝ
r

MapslocL´anpGn,M rr,ss
q
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is the space of locally L-analytic functions (locally with values in lim
ÐÝr

M rr,ss for some

s and such that the composite with the projection onto M rr,ss is locally L-analytic for

all r). Then Hi
ϕL,G,anpMq :“ hipKϕL,G,anpMqq is the cohomology of the mapping fibre

KϕL,G,anpMq of C‚
anpG,ϕLq and analogously for ψ instead of ϕL. By [50, Corollary 4.2.6]

we have natural isomorphisms

Hi
anpG,Mq – ExtiDpGqpK,Mq (13)

and hence, for ♣ P tϕ,ψu,

Hi
♣,G,anpMq – Hi

♣,DpGqpMq. (14)

For n " 0 we have that 1`πn
LoL is isomorphic to πn

LoL via logp. In particular, we have
the chain of isomorphisms

�n : Γn
χLT

ÝÝÝÑ 1`πn
LoL

logp
ÝÝÑ πn

LoL
¨π´n

L
ÝÝÝÑ oL (15)

which yields

DpΓn,Kq – DpoL,Kq – R`
K, (16)

the last isomorphism being the Fourier isomorphism. Since Γn is clopen in Γ, every locally
analytic function on Γn is the restriction of a locally analytic function on ΓL. Hence, by

considering the restriction of functions from ΓL to Γn and taking its dual, we obtain an

injective map DpΓn,Kq ãÝÑ DpΓL,Kq.

Definition 4.2. For n " 0 such that Γn “ GalpL8{Lnq – oL we denote by

Zn P DpΓn,Kq – R`
K the element corresponding to Z P R`

K . If the precise choice of n
is not relevant, we frequently write pU,Zq instead of pΓn,Znq.

Remark 4.3. Let n " 0 such that Γn – oL. Under the natural inclusions DpΓn`1,Kq Ď

DpΓn,Kq and LiepΓLq “ LiepΓnq Ď DpΓn,Kq we have:

(i) Zn`1 “ rπLspZnq in the ring DpΓn,Kq.

(ii) ∇ “
Ω
πn
L
logLT pZnq in DpΓn,Kq. In particular, ∇ is divisible by Zn.

Proof. For (i) see [50, Definition 1.2.10]. For (ii) see (the proof of) [46, Remark 4.4.8].

Lemma 4.4. Let A be K-affinoid and let M P ManpRAq. Then:

(i) For r P p0,1q large enough the action of Z on pMrqψ“0 is invertible.

(ii) The action of Z on Mψ“0 is invertible.

(iii) Analogous results hold for M (resp. Mr) replaced by MtLT
(resp. Mr

tLT
q.

Proof. The case A“K is originally treated in [46, Theorem 4.3.21]. For (i) in the general
case see [50, Theorem 2.4.5]. The second point follows by passing to the colimit. The third

point also follows by passing to the colimit, where for mt´k
LT P Mt´k

LT one extends ψ by

setting ψpmt´k
LT q :“ πk

Lψpmqt´k
LT (cf. [46, Lemma 4.5.23] for details in the case A “ K).

https://doi.org/10.1017/S147474802500012X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802500012X


24 M. Malcic et al.

Lemma 4.5.

(i) Hi
♣,♠pV q “ 0 for i ‰ 0,1,2.

(ii) H‚
ϕ,DpGq

pMq – H‚
ϕ,LiepGq

pMqG for M in ManpRq.7

(iii) H‚
ϕ,DpGq

pMq – H‚
Ψ,DpGq

pMq for M in ManpRq.8

Proof. Part (i) holds due to the length of the total complex. (ii) follows immediately from
(11) upon considering one of the spectral sequences attached to the double complexes

arising from the defining mapping fibres. By (12), (iii) is reduced to the case H‚
ϕ,ZpMq –

H‚
Ψ,ZpMq, which is a consequence of Lemma 4.4.

4.1. Finiteness of analytic Cohomology

Theorem 4.6. Let A,B be K-affinoid and let M be an L-analytic pϕL,ΓLq-module over
RA. Let f : A Ñ B be a morphism of K-affinoid algebras. Then:

(1) KϕL,ZpMq P D
r0,2s

perf pAq.

(2) The natural morphism KϕL,ZpMq bL
AB Ñ KϕL,ZpMb̂ABq is a quasi-isomorphism.

Proof. See [50, Theorem 3.3.12].

For a commutative ring R and an object C P DbpRq whose cohomology groups are

of finite rank over R, we denote by χRpCq “
ř

ip´1qi rankHipCq the Euler-Poincaré-

characteristic of C. Recall that a pϕL,ΓLq-module is called trianguline if it can be
written as a successive extension of rank one modules of character type in the sense of

section 3.4.

Remark 4.7. Let A{K be affinoid and letM be a trianguline L-analytic pϕL,ΓLq-module

over RA. Then the Euler-Poincaré Formula holds, i.e.,

χpMq :“ χpKϕL,Zn
pMqq “

ÿ

p´1q
irkRA

pHi
ϕL,Zn

pMqq “ rΓL : ΓnsrkRA
pMq.

Proof. Without loss of generality we may assume that M “ RApδq is an L-analytic

module of character type (attached to an A-valued locally L-analytic character δ : Lˆ Ñ

Aˆq. Then the case A “ K is treated in [51, Remark 6.3]. The validity of the formula

can be checked at each maximal ideal of A. Note that RApδq{m is a pϕL,ΓLq-module

of character type over RK1 for some finite extension K 1{K for each m P MaxpAq by the

Nullstellensatz and the claim hence follows from the previous case.

We will require a slight generalization of 4.6. Recall that KϕL,ZpMq is (up to shift) quasi
isomorphic to the cone of 1´ϕ on RHomDpU,KqpK,Mq. As a consequence of [51, Lemma

2.5] K admits a finite projective resolution consisting of finitely generated projective

DpΓL,Kq-modules. In particular the complex computing RHomDpU,KqpK,Mq (and hence

7In [15, Thm. 5.6] the analogous statement for Hi
anpA`,Mq and Hi

LiepA`,Mq, as defined in
(loc. cit.), is claimed referring to [22, Thm. 4.2], but this only covers i “ 0,1.

8Cf. [15, Thm. 5.5] and [6, Cor. 2.2.3] for related statements in cohomological degrees 0,1.
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also KϕL,ZpMq) can be represented by a complex of ArΓL{U s-modules the terms of which

are all of the form HomDpU,KqpP,Mq, where P is the restriction of scalars of a projective

DpΓL,Kq-module with ΓL acting via pγfqpxq “ γpfpγ´1xqq and A acting by multiplication
on M.

Remark 4.8. In the situation of 4.6, if we view KϕL,ZpMq as an object in DpArΓL{U sq

we have

KϕL,ZpMq P D
r0,2s

perf pArΓL{U sq.

Proof. The finiteness of the cohomology groups over A already implies that KϕL,ZpMq

belongs to D´
perfpArΓL{U sq. Choosing a complex of bounded above projective ArΓL{U s-

modules representingKϕL,ZpMq, truncating and using [28, Lemma 4.1.3], we can conclude
that the complex in question is quasi isomorphic to a bounded complex of finitely

generated projectives outside of perhaps degree 0, where the module is finitely generated

over ArΓL{U s and its underlying A-module is flat. But then it is projective as an A-module

and by [51, Lemma 2.5] also projective as an ArΓL{U s-module, hence the claim.

4.2. Perfectness of analytic Iwasawa cohomology and the Lubin-Tate

deformation

For M any pϕL,ΓLq-module over any basis consider the complex

TΨpMq :“ rM
Ψ´1

ÝÝÝÑ M s

concentrated in degrees 1 and 2, whose cohomology we call (analytic) Iwasawa cohomology

due to Fontaine’s classical result, which relates these groups in the étale case to usual
Iwasawa cohomology defined in terms of Galois cohomology. We set D :“ DpΓL,Kq. The

following result [51, Thm. 4.8] will be central for the whole article:

Theorem 4.9. For M P ManpKq trianguline, TΨpMq is a perfect complex of D-modules,
i.e., belongs to Db

perfpDq.

For the rest of this subsection we assume that M P ManpKq is trianguline.

Later for our approach it will be important to interpret Iwasawa cohomology as
analytic cohomology of a deformation DfmpMq of M via generalized Herr complexes.

This deformation lives over the character variety XΓL
(base changed to K ) of the locally

L-analytic group ΓL ([42]) and will allow to use density arguments to deduce many
properties of the Epsilon-isomorphism for rank one modules just from properties over its

de Rham points.

We pick an affinoid cover Xn – SppDnq of XΓL
with Dn :“ KrΓLs bKrUs DrnpU,Kq

for a decreasing sequence rn such that each DrnpU,Kq corresponds to the ring of rigid
analytic functions on the annulus rrn,8s via the Fourier isomorphism for DpU,Kq.

Over the space XΓL
we have the sheaf of Robba rings RXΓL

given by mapping Xn to

ROXΓL
pXnq and DfmpMq should be thought of as a pϕL,ΓLq-module (sheaf) over RXΓL

(but unfortunately, Schneider’s and Teitelbaum’s formalism of coadmissible modules does

not apply here as RXΓL
pXΓL

q does not form a Fréchet-Stein algebra in any obvious sense):
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For an L-analytic pϕ,ΓLq-module M over RL we define

DfmpMqpXnq :“ DfmnpMq :“ OXΓL
pXnqb̂LM,

where ΓL acts diagonally, on the left factor via the inversion and on M via its given
action. For each n this is a pϕ,ΓLq-module M over ROXΓL

pXnq by [51, Prop. 3.2].

As definition for the generalized Herr complex for the sheaf DfmpMq, philosophically,
we would like to take the complex in DpDpΓL,Kqq9 defined as total derived sheaf
cohomology of the complex of sheaves

KΨ,DpΓL,KqpDfmpMqq “ TΨpDfmpMqq b
L
DpΓL,Kq,diag K p” – KΨ,ZpDfmpMqq b

L
KrΓL{Us,diagK”q,

where for the last (quasi-)isomorphism in quotation marks we used implicitly the free
resolution

0 �� DpΓL,Kq
Z �� DpΓL,Kq �� KrΓL{U s �� 0 (17)

which induces an isomorphism TΨpDfmpMqq bL
DpΓL,Kq,diagKrΓL{U s – KΨ,ZpDfmpMqq.

But strictly speaking one needs a resolution of DpΓL,Kq bK KrΓL{U s-modules

in order to define the pDn,KrΓL{U sq-bimodule structure on KΨ,ZpDfmnpMqq –

TΨpDfmnpMqqbL
DpΓL,Kq

KrΓL{U s. To this end we can formally work with the resolution

0 �� C :“ ker �� DpΓL,Kq bK KrΓL{U s �� KrΓL{U s �� 0 (18)

for an explicit construction of KΨ,ZpDfmpMqq in DppDn,KrΓL{U sq´bimodq, with the

last non-trivial map given by ab b ÞÑ Hpaq ¨ b, where H : DpΓL,Kq Ñ KrΓL{U s denotes
the augmentation map sending the Dirac distributions of u P U to 1. Indeed, the kernel

C is projective (hence flat) as a D-module by the same reasoning as for [51, Lem. 2.5].

This sequence is related to (the direct sum of) the sequences

0 �� Iχi
:“ ker �� DpΓL,Kq

γ ÞÑχ´1
i pγq�� Kpχiq

�� 0

for the characters χi of ΓL which factor through ΓL{U.

Instead of verifying that we really have a complex of (coherent) sheaves we just use the

facts as a motivation that on a Stein space ΓpXΓL
,´q “ lim

ÐÝn
ΓpXn,´q and that higher

sheaf cohomology of coherent sheaves vanishes on affinoids. Thus we rather take the total

derived inverse limit as a formal definition, i.e.,

C‚ :“ RΓΨ,DpΓL,KqpXΓL
,DfmpMqq :“ Rlim

`

KΨ,DpΓL,KqpDfmnpMqq
˘

.

The following results are variants of those in [51, §3.3]; among others they are
based on the observation that for the sheaf of cohomology groups sending Xn to

Hi
Ψ,DpΓL,Kq

pDfmnpMqq the formalism of coadmissible modules over DpΓL,Kq does apply.

9instead of e.g. forming the generalized Herr complex attached to the global sections
DfmpMqpXΓL

q!
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Theorem 4.10.

(i) For all i, the cohomology groups Hi
Ψ,DpΓL,Kq

pXΓL
,DfmpMqq of the complex

RΓΨ,DpΓL,KqpXΓL
,DfmpMqq coincide with the global sections

lim
ÐÝ
n

Hi
Ψ,DpΓL,KqpDfmnpMqq

of the sheaf of cohomology groups sending Xn to Hi
Ψ,DpΓL,Kq

pDfmnpMqq.

(ii) There is an isomorphism in Db
perfpDpΓL,Kqq

RΓΨ,DpΓL,KqpXΓL
,DfmpMqq – TΨpMq.

Remark 4.11. In accordance with (21) the isomorphism in (ii) only becomes inde-
pendent of the choice of Z if we insert the scalar factor CTrpZnq (see (20) below) in

the identification DfmnpMq{ZDfmnpMq – Dnb̃DpU,KqM in the proof of Lemma 4.12,

compare with [36, (32), p. 369].

For the proof of Theorem 4.10 we need the following lemma for which we recall some

notation from [51, Def. 3.20]: We define Dnb̂DMr as the completion of Dn bDMr with
respect to the quotient topology of the projective tensor product Dn bK,π M

r. Then we

set Dnb̃DM :“ lim
ÝÑr

Dnb̂DMr.

Lemma 4.12.

(i) The natural map Dn bDM Ñ Dnb̃DM induces a quasi-isomorphism

Dn bD TΨpMq “ TΨpDn bDMq Ñ TΨpDnb̃DMq.

(ii) Viewing DfmnpMq as Dn-module via the left tensor factor, there is a natural
isomorphism in DpDnq

DfmnpMq b
L
DpΓL,Kq,diagK – Dnb̃DM r0s,

where the latter module is considered as complex concentrated in degree 0.

Proof. For (i) the same proof as for [51, Lem. 3.23] works and the assumptions are

satisfied by Theorem 4.9, but note that thereDn, D have a slightly different meaning. The

augmentation ideal IΓL
is a finitely generated submodule of DpΓL,Kq and thus projective

as a DpU,Kq-module since the latter is a Prüfer Domain. Using [51, Lemma 2.5] one can

conclude projectivity as a DpΓL,Kq-module. Using that DZ is contained in IΓL
gives rise

to the projective resolution of D-modules

0 �� IΓL
�� D �� K �� 0.

We can represent the complex in question in (ii) by the complex

DfmnpMq bD,diag IΓL
Ñ DfmnpMq bD,diagD

with cokernel
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DfmnpMq{IΓL
DfmnpMq – pDfmnpMq{ZDfmnpMqq{pIΓL

{DZq

“ pDnb̃DpU,KqMqΓL{U

“ Dnb̃DM,

where γ P ΓL Ď DpΓL,Kq acts diagonally (via γpab bq “ δγ´1ab γbq) on Dnb̃DpU,KqM
and this action factors over ΓL{U . For the second equality we use an obvious variant of

[51, (31)], while by the exactness of colimits the last one is easily reduced to the claim

that on the level of models Mr we have

pDmb̂DpU,KqM
r
qΓ{U – Dmb̂DpΓL,KqM

r.

Since Γ{U is finite and taking ΓL{U -invariants in this situation is exact by Maschke’s
theorem, this follows in the context of Fréchet spaces by completion from the well-known

fact that

pDmbDpU,KqM
r
qΓ{U – DmbDpΓL,KqM

r.

The injectivity of the non-trivial differential in the above complex can be checked by

calculating instead the cohomology in degree ´1 of DfmnpMq bL
DpΓL,Kq,diag KrΓL{U s,

because taking ΓL{U -(co)invariants is exact and leads to the original complex

`

DfmnpMq b
L
DpΓL,Kq,diagKrΓL{U s

˘

bKrΓL{Us K – DfmnpMq b
L
DpΓL,Kq,diagK.

For this composition of functors it is crucial that DfmnpMq bL
DpΓL,Kq,diag KrΓL{U s

belongs to DppDn,KrΓL{U sq´bimodq as in (18) in order to allow an action by ΓL{U .

But then the vanishing in degree ´1 can be checked just as complex of K -vector spaces

and therefore it suffices to calculate the derived functor by a projective resolution of D-

modules (instead of bi-modules). To this end we use the resolution (17), which leads to
the complex

DfmnpMq
Z

ÝÑ DfmnpMq,

which is left exact by an obvious variant of [51, (31)], again.

Proof of Theorem 4.10. Using Lemma 4.12 we obtain isomorphisms in DpDnq

KΨ,DpΓL,KqpDfmnpMqq

– cone
`

DfmnpMq b
L
DpΓL,Kq,diagK

Ψ´1
ÝÝÝÑ DfmnpMq b

L
DpΓL,Kq,diagK

˘

r´2s

– TΨpDnb̃DMq

– DnbDTΨpMq

compatible for the variation in n by an obvious variant of Theorem 4.6 (2). Thus,

combining [51, Prop. 3.15] with Theorem 4.9 we obtain in Db
perfpDq an isomorphism

TΨpMq – Rlim
`

Dn bD TΨpMq
˘

– Rlim
`

KΨ,DpΓL,KqpDfmnpMqq
˘

.
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This proves (ii) while (i) follows by the same arguments as in [51, Rem. 3.16] using

that the projective system pKΨ,DpΓL,KqpDfmnpMqqqm defines a consistent object in

DpmodpN,Dqq (using the notation of (loc. cit.)) together with the fact that D is a
Fréchet-Stein algebra.

4.3. Replacing Local Tate duality

In this subsection we develop local duality analogous to local Tate duality for Galois

cohomology, see [25, 33] for an approach purely in terms of pϕ,Γq-modules. We focus

technically on the complexes Kf,Z and shall then apply (12) to deal with Kf,U . Assume
henceforth that M is an analytic pϕL,ΓLq-module over R“RK . For an analytic character

δ : Lˆ Ñ Kˆ we define the twisted module Mpδq P ManpRq, where Mpδq :“ M bRRpδq

endowed with the diagonal ϕL- and ΓL-action. Recall the residue map (at Z )

Res : Ω1
R :“ RdZ bRRpδunχpπqq Ñ K,

ÿ

i

aiZ
idZ beδun

χpπq
ÞÑ a´1,

and that the pϕL,ΓLq-action on RdZ with respect to the basis d logLT “ gLT dZ is given
by the character χLT .

10 As a formal consequence, we have the following:

Lemma 4.13. The map

Rpχq
–

ÝÝÑ Ω1
R,

feχ ÞÝÑ fd logLT beδun
χpπq

,

is an isomorphism of pϕL,ΓLq-modules.

Setting M̃ :“ HomRpM,Rqpχq – HomRpM,Ω1
Rq, for any finitely generated projective

R-module M, we obtain more generally the pairing

x , y :“ x , yM : M̃ ˆM Ñ K, pg,fq ÞÑ Respgpfqq, (19)

where by abuse11 of notation we also write Res :Rpχq ÑK for the map sending
ř

i aiZ
ib

eχ to a´1. This map identifies M and M̃ with the (strong) topological duals of M̃ and
M, respectively. Moreover, the isomorphism M̃ – HomK,ctspM,Kq (induced by x , y) is

DpΓL,Kq-linear by [46, Corollary 4.5.4].

Lemma 4.14. The residuum map induces an isomorphism Res :H2
ϕL,Zn

pΩ1
RqΓL – K.

Proof. We know from Lemma 4.22 that dimKH2
ϕL,Zn

pΩ1
RqΓL “ 1 while Res is a surjection

Ω1
R �K which factorizes over pϕL ´ idqΩ1

R and Z ¨Ω1
R by [46, Lemma 4.5.1] or [15, Prop.

1.5]. The claim follows as H2
ϕL,Zn

pΩ1
RqΓL “ H2

ϕL,Zn
pΩ1

RqΓL
.

For compatibility questions we renormalise the residuum map to obtain the trace map
Tr “ CTrpZnqRes :H2

ϕL,DpΓLq
pΩ1

Rq “ H2
ϕL,Zn

pΩ1
RqΓL – K by setting

10The action on Ω1
R differs by δunχpπq from the action considered in [46, Section 4] and agrees

with the action from [15, 1.3.5].
11Note that Colmez defines ΩRespσ´1pgqpfqq instead.
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CTrpZnq :“
q

q´1

Ω

πn
L

. (20)

Note that for L “ Qp and πL “ p this trace map is compatible with Tate’s trace map in

Galois cohomology by [36, Prop. 5.2]. Independence of n follows by the same argument

as for Definition 5.11 below. The principle is explained as follows:

The map of complexes, for m ě n,

M
Zn �� M

Qm´npZnq

��
M

Zm �� M

induces the restriction maps resnm : Hi
Zn

pMq Ñ Hi
Zm

pMq, where Qm´npZnq :“ Zm

Zn
“

ϕm´n
L pZnq

Zn
with Qm´np0q “ πm´n

L . Since CTrpZnq “ πm´n
L CTrpZmq by (48) the isomor-

phism

ϑn :H1
Zn

pMq
ΓL –

ÝÑ MΓL
,rxs ÞÑ rCTrpZnqxs (21)

into the ΓL-coinvariants is compatible with resnm, i.e., the diagram

H1
Zn

pMqΓL

resnm
��

ϑn �� MΓL

H1
Zm

pMqΓL

ϑm

������������

commutes.

For a complex pX‚,dXq of topological K -vector spaces we define its K -dual ppX˚q‚,dX˚ q

to be the complex with

pX˚
q
i :“ HomK,ctspX´i,Kq

and

dX˚ pfq :“ p´1q
degpfq´1f ˝dX .

The following lemma is taken from [46, Lemma 5.2.4 and Remark 5.2.6].

Lemma 4.15. Let pC‚,d‚q be a complex in the category of locally convex topological F-

vector spaces.

(i) If C consists of Fréchet spaces and hipC‚q is finite-dimensional over F, then di´1

is strict and has closed image.

(ii) If di is strict and either F is spherically complete or the spaces involved in degree

i are of countable type12, then h´ipC˚q – hipCq˚.

12From [37] we recall that a locally convex vector space V is said to be of countable type, if for
every continuous seminorm p on V its completion Vp at p has a dense subspace of countable
algebraic dimension. They are stable under forming subspaces, linear images, projective limits,
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(iii) If C‚ consists of LF -spaces, Ci`2 “ 0 and hipC‚q is finite dimensional, then di is

strict.

(iv) If V
α

ÝÑ W is a continuous linear map of Hausdorff LF -spaces over F with finite

dimensional cokernel, then α is strict and has closed image.

The translationXrns of a complex X is given byXrnsi :“Xi`n and diXrns
:“ p´1qndi`n

X .

Let ι denote the involution on DpoL,Kq induced by the inversion on the group oL. We

observe that
Zι

“ λZ (22)

for a unit λ P DpoL,Kq as they both generate the augmentation ideal: more explicitly,

Zι “ r´1spZq,λ´1 “ λι.

Theorem 4.16.

(i) There is a canonical quasi-isomorphism

Kϕ,ZpMq : 0 �� M

¨

˝

ϕ´1
Z

˛

‚

�� M ‘M

´Ψ‘λ

��

´

Z 1´ϕ
¯

�� M

´λΨ

��

�� 0

KΨ,ZιpMq : 0 �� M

¨

˝

Ψ´1

Zι

˛

‚

�� M ‘M

´

Zι 1´Ψ
¯

�� M �� 0.

(23)

(ii) Via the pairing (19) there are canonical isomorphisms of complexes in the derived

category DpKq

KϕL,ZpMq
˚

– KΨL,ZιpMq
˚

–KϕL,ZpM˚
qr2s–KϕL,ZpM̃qr2s.

given by the following diagram of quasi-isomorphisms

Kϕ,ZpMq
˚

r´2s : 0 �� M˚
´

´

Z 1´ϕ
¯˚

�� pM ‘Mq
˚

¨

˝

ϕ´1
Z

˛

‚

˚

�� M˚ �� 0

KΨ,ZιpMq
˚

r´2s : 0 �� M˚

p´λΨq˚

��

´

´

Z
ι 1´Ψ

¯˚

�� pM ‘Mq
˚

Υ –

��
¨

˝

Ψ´1
Z
ι

˛

‚

˚

�� M˚ �� 0

Kϕ,ZpM˚
q: 0 �� M˚

¨

˝

ϕ´1
Z

˛

‚

�� M˚
‘M˚

Ξ

��

´

Z 1´ϕ
¯

�� M˚ �� 0

Kϕ,ZpM̃q: 0 �� M̃

¨

˝

ϕ´1
Z

˛

‚

�� M̃ ‘M̃

´

Z 1´ϕ
¯

�� M̃ �� 0

(24)

and countable inductive limits, cf. theorem 4.2.13 in (loc. cit.). By corollary 4.2.6 in (loc. cit.)
for such vector spaces the Hahn-Banach theorem holds, too. By [53, Prop. 5.4.3] the Robba
ring over any complete intermediate field Qp Ď K Ď Cp (and hence also finitely generated
modules over it) is of countable type as K -vector space.
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with Υ “ p´Ψ‘λq˚ : pM

À

Mq˚ Ñ pM
À

Mq˚ and Ξpx,yq “ y‘ ´x. In particular,

we obtain isomorphisms

Hi
ϕL,ZpMq

˚
– H2´i

ΨL,Z
pM̃q–H2´i

ϕL,Z
pM̃q. (25)

induced by the perfect pairings, denoted by x ,́´y :“ x ,́´yM ,

H1
ϕ,ZpMq ˆH1

ϕ,ZpM̃q Ñ K,ppm,nq,pf,gqq ÞÑ ´Res
´

ϕpgqpmq ` pλιfqpnq

¯

,

H2
ϕ,ZpMq ˆH0

ϕ,ZpM̃q Ñ K,pm,ñq ÞÑ ´Res
´

ñpλιϕpmqq

¯

,

H0
ϕ,ZpMq ˆH2

ϕ,ZpM̃q Ñ K,pm,ñq ÞÑ Res
´

ñpmq

¯

.

Remark 4.17. Identify M with ˜̃M via m ÞÑ m˚˚ and consider the pairing in degree p1,1q

from Theorem 4.16 obtained by exchanging the roles of M and M̃, i.e.,

x ,́´yM̃ : H1
ϕ,ZpM̃q ˆH1

ϕ,Zp
˜̃Mq Ñ K,

ppf,gq,pm˚˚,n˚˚
qq ÞÑ ´Respϕpn˚˚

qpfq ` pλιm˚˚
qpgqq.

We have

xpm,nq,pf,gqyM “ ´xpf,gq,pm˚˚,n˚˚qyM̃ . (26)

In the other degrees consider

x ,́´yM̃ : H2
ϕ,ZpM̃q ˆH0

ϕ,Zp
˜̃Mq Ñ K,

pf,m˚˚
q ÞÑ Respm˚˚

p´λι
pϕpfqqqq,

satisfying xf,m˚˚yM̃ “ xm,fyM and

H0
ϕ,ZpM̃q ˆH2

ϕ,Zp
˜̃Mq Ñ K,

pg,n˚˚q ÞÑ Respn˚˚
pgqq,

satisfying xg,n˚˚yM̃ “ xn,gyM .13

Proof. By viewing Kϕ,ZpM̃q as a Koszul complex attached to the automorphisms ϕ´1,Z

of M one can see that Z and ϕL ´1 act as 0 on the cohomology groups. Since

λ “ ´1` terms divisible by Z

we see that the class pf,gq P H1
ϕ,ZpM̃q is equal to the class of p´λf, ´λgq. Now let pm,nq P

H1
ϕ,ZpMq. Using Zf “ pϕ´1qg and Zm “ pϕ´1qn we compute

xpm,nq,pf,gqyM “ Res
´

´ϕpgqpmq ´ pλιfqpnq

¯

“ Res
´

´ rg`Zf spmq ´ pλιfqpϕpnq ´Zmq

¯

13In the cyclotomic case L “ Qp and Z “ γ ´ 1 one has λι
“ ´γ because Z

ι
“ γ´1

´ 1 “

p´γ´1
qpγ ´1q. We see that the pairing from [36, Definition 2.13] agrees with our x ,́´yM̃ .
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“ Res
´

´gpmq ´ pλιfqϕpnqq ´ pZfqpmq ` pλιZιfqpmq
looooooooooooomooooooooooooon

“0

¯

“ Res
´

pλgqpmq ` pλλιfqpϕpnqq

¯

“ Res
´

m˚˚
pλgq `ϕpn˚˚

qpfq

¯

“ ´xpf,gq,pm˚˚,n˚˚qyM̃,

where in the fifth equation we replace pf,gq with p´λf, ´λgq. Now consider the degree

p0,2q case with regard to x ,́´yM . Since ϕpfq “ f we get Respfpmqq “ Respϕpfqpmqq “

´Respϕpfqpλmqq using that Zm “ 0 in H0 and hence λm “ ´m. The computation in

degree p2,0q is similar.

Later in explicit calculations we will need to work partly with Ψ-versions, which we

therefore establish in the next remark.

Remark 4.18. As a obvious variant of (i) in Theorem 4.16 there is also a canonical

quasi-isomorphism

Kϕ,ZpMq : 0 �� M

¨

˝

ϕ´1
Z

˛

‚

�� M ‘M

´Ψ‘id

��

´

Z 1´ϕ
¯

�� M

´Ψ

��

�� 0

KΨ,ZpMq : 0 �� M

¨

˝

Ψ´1

Z

˛

‚

�� M ‘M

´

Z 1´Ψ
¯

�� M �� 0.

(27)

In particular, we obtain an isomorphism Υ1
M : H1

ϕL,Z
pMq – H1

ΨL,Z
pMq sending a class

rpx,yqs to the class rp´Ψpxq,yqs.

Using this one derives from x ,́´yM in Theorem 4.16 the (asymmetric) perfect pairings,

denoted by tt ,́´uuM,

H1
Ψ,ZpMq ˆH1

ϕ,ZpM̃q Ñ K,ppm,nq,pf,gqq ÞÑ Res
´

gpmq ´ pλιfqpnq

¯

,

H2
Ψ,ZpMq ˆH0

ϕ,ZpM̃q Ñ K,pm,ñq ÞÑ Res
´

ñpλmq

¯

,

H0
Ψ,ZpMq ˆH2

ϕ,ZpM̃q Ñ K,pm,ñq ÞÑ Res
´

ñpmq

¯

,

for which by construction we have

xx,yyM “ ttΥ1
M pxq,yuuM .

Moreover, we obtain, for x P Hi
ϕ,ZpMq, y P H2´i

ϕ,Z pM̃q,

p´1q
i
xx,yyM “ xy,x˚˚

yM̃ “ ttΥ1

M̃
pyq,x˚˚

uuM̃, (28)

by Remark 4.17.
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Proof of the Theorem. (i) is an immediate consequence Lemma 4.4. Now consider (ii):

The first isomorphism is induced by (i). Up to signs, p´q˚ transforms ϕL into ψL and Z

into Zι. Using that Zι “ λZ one easily verifies that also the second map is an isomorphism.
Finally, the last isomorphism stems from the identification M˚ – M̃ by [46, Cor. 4.5.4].

For the pairing on the level of cohomology groups, we want to apply (ii) of Lemma 4.15,

for which we have to check strictness of the differentials. But this is not sufficient: in order
to get perfectness of the pairings - which amounts to an algebraic duality while the functor

p´q˚ only measures continuous duals - we also have to check that the induced topology on

the cohomology groups is Hausdorff. In detail this boils down to the following reasoning:
Since by 4.6 all the Hi

ϕL,Z
pMq are finite-dimensional, we may apply Lemma 4.15(iii) to

first conclude that d1 (and trivially d2) is strict. By the same reasoning for Hi
ϕ,ZpM̃q the

d1-differential of KΨ,ZιpM˚q is strict. Moreover, the H2s are always Hausdorff by 4.15 (iv)

and we note that the H0 are always Hausdorff (as they are subspaces of Hausdorff spaces).

Applying 4.15 (ii) and using that for a finite dimensional Hausdorff space the continuous
and algebraic dual agree we conclude the claim for the pairings involving H0 and H2. By

the strictness of d1 we have H
1
ϕ,ZpMq˚ –H1

ϕ,ZpM̃q and, vice versa, H1
ϕ,ZpM̃q˚ –H1

ϕ,ZpMq.

A priori we don’t know if the finite dimensional H1s are Hausdorff but combining both
isomorphisms we see that pH1

ϕ,ZpMq˚q˚ has the same dimension as H1
ϕ,ZpMq which for a

finite dimensional space can only occur, if every functional is continuous, forcing the H1s

to be Hausdorff, which allows us to argue analogously for the pairing of H1s.

4.4. Cohomological computations in the character case

Recall [42, Lem. 4.6] or [15, §2] for the following. The Amice-Katz transform is the
map

A´ :DpoL,Kq Ñ R`
K,

sending a distribution μ to

AμpZq “

ż

oL

ηpx,Zqμpxq,

satisfying:

(i) A´ is a ϕ- and ΓL-equivariant topological isomorphism of rings.

(ii) for z P oK with vppzq ą 0: Aηpx,zqμpZq “ AμpZ `LT zq, where
ş

oL
gpxqpf ¨μqpxq “

ş

oL
fpxqgpxqμpxq for any locally analytic function f : oL Ñ Cp.

(iii) (multiplicativity regarding convolution) Aλ˚μ “ Aλ ¨Aμ

(iv) AResb`πn
L

oL
pμq “

1
qn

ř

rπn
Lspaq“0 ηp´b,aqAμpZ `LT aq “ Resb`πn

LoLAμ, where the lat-

ter denotes the multiplication with the corresponding characteristic function.

(v) BAμ “ AΩxμ where B “
d

dtLT
“

1
log1

LT

d
dZ “ Ωηp1,Zq

d
dηp1,Zq

.14

(vi) Adμ “ tLTAμ, where
ş

oL
fpxqpdμqpxq “

ş

oL
f 1pxqμpxq with f 1pxq “

d
dxf.

14Note that Bηpx,Zq “ xΩηpx,Zq.
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Lemma 4.19. (Mellin transform) The natural inclusion Dpoˆ
L,Kq ãÑ DpoL,Kq combined

with the Fourier isomorphism induces the map

Dpoˆ
L,Kq

–
ÝÝÑ DpoL,Kq

ψD
L “0

– OKpXq
ψX

L “0

λ ÞÝÑ λpδ1q fl λpev1q

which is a topological isomorphism of Dpoˆ
L,Kq-modules. Here ev1 denotes the map on

the character variety which evaluates a character in 1. Moreover, we have a commutative

diagram

Dpoˆ
L,Kq

Ď
��

M –

��

DpoL,Kq

A´

��

Res
o

ˆ
L��

pR`
KqΨ“0

Ď
�� R`

K

1´ϕ˝Ψ
��

where M denotes the Mellin transform, which by definition sends μ to

μ ¨ηp1,Zq “

ż

oˆ
L

ηpx,Zqμpxq,

see [46, §2.1.4, Lem. 2.6, Thm. 2.33,§2.2.7].

Proof. μ P Dpoˆ
Lq Ď DpoLq satisfies Resoˆ

L
pμq “ μ, whence AμpZq “

ş

oL
ηpx,Zqμpxq “

ş

oˆ
L
ηpx,Zqμpxq “ Mpμq.

We write LApoLq :“ LApoL,Kq for the set of locally L-analytic functions φ : oL Ñ K

endowed with the following operators:

ϕpφqpxq :“

"

φp
x
πL

q, if x P πLoL;

0, otherwise.

Ψpφqpxq :“φpπLxq

γpφqpxq :“φpχ´1
LT pγqxq.

By [13, Thm. 2.3] (for the exact sequence), [6, Cor. 2.3.4] (for the surjectivity onR`
Kpδq),

we have for all δ PΣan the following commutative diagram ofDpΓL,Lq-modules with exact

rows

0 �� R`
Kpδq

Ψ´1
����

�� RKpδq

Ψ´1

��

�� LApoLqpχ´1δq

Ψ´1

��

�� 0

0 �� R`
Kpδq �� RKpδq �� LApoLqpχ´1δq �� 0

(29)

which we can also interpret as short exact sequence of complexes of DpΓL,Lq-modules

0 �� TΨpR`
Kpδqq �� TΨpRKpδqq �� TΨpLApoLqpχ´1δqq �� 0.
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with TΨpR`
Kpδqq – pR`

KpδqqΨ“1r0s in degree zero. Here the map RKpδq Ñ LApoLqpχ´1δq

sends feδ to φfeχ´1δ with15

φf pzq :“ Respηp´z,ZqfdtLT q “ Respηp´z,ZqfpZqgLT pZqdZq. (30)

In particular we obtain a short exact sequence

0 �� R`
KpδqΨ“1 �� RKpδqΨ“1 �� LApoLqpχ´1δqΨ“1 �� 0 (31)

and an isomorphism

RKpδq{Ψ´1 – LApoLqpχ´1δq{Ψ´1. (32)

Let PolďN poLq :“ PolďN poL,Kq :“
ÀN

i“0Kzi Ď LApoLq denote the polynomial func-

tions on oL. This subspace is ΓL- and Ψ-stable, more precisely we have

Ψpziq “ πi
Lz

i

γpziq “ χ´i
LT z

i.

for all i ě 0 and γ P ΓL. In particular, we obtain, for i “ 0,1,

Hi
ΨpPolďN poLqpχ´1δqq –

#

Kzkeδχ´1, if δpπLq “
πk`1
L

q for some 0 ď k ď N ;

0, otherwise.
(33)

It follows that

Hj
Z

pHi
ΨpPolďN poLqpχ´1δqqq –

"

Kzkeδχ´1, if δ “ xkχ for some 0 ď k ď N ;

0, otherwise.
(34)

Lemma 4.20. For N ą vπpχ´1δpπqq we have a quasi-isomorphism

TΨpLApoLqpχ´1δqq » TΨpPolďN poLqpχ´1δqq

and an isomorphism

PolďN poLqpχ´1δq
Ψ“1

– PolďN poLqpχ´1δq{pΨ´1q

as L-vector spaces.

Proof. (see [11, Lem. 2.9] for the cyclotomic case, even over affinoid algebras A instead

of L). Use the decomposition LApoLq – xN`1LApoLq ‘PolďN poLq and show that for N

as in the assumption Ψ´1 is a topological isomorphism on xN`1LApoLq.

Similarly, regarding the ΓL- and Ψ-stable submodule DN :“DK,N :“
ÀN

l“0KtlLT ĎR`
K

we obtain for i,j P t0,1u,

Hi
ΨpDN pδqq –

"

KtkLT eδ, if δpπLq “ π´k
L for some 0 ď k ď N ;

0, otherwise,
(35)

15Our map is 1
Ω times Colmez’ one.
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and

Hj
Z

pHi
ΨpDN pδqqq –

"

KtkLT eδ, if δ “ x´k for some 0 ď k ď N ;

0, otherwise.
(36)

Remark 4.21. Note that, by the same reasoning, the analogue of Lemma 4.5 (ii) (but

in general not (iii)) does also hold for M of the form R`
Kpδq or LApoLqpδq.

Recall that Σ1 “ tx´i|i P Nu,Σ2 “ txiχ|i P Nu and Σgen “ ΣanzpΣ1 YΣ2q.

Lemma 4.22. The dimensions of the analytic cohomology groups are as follows:

(i) dimKHj
ϕ,DpΓL,Kq

pR`
Kpδqq “

$

’

’

&

’

’

%

0, δ R Σ1;

1, δ P Σ1,j “ 0;

2, δ P Σ1,j “ 1;
1, δ P Σ1,j “ 2.

(ii) For δ´1 R Σ1 we have dimKHj
ϕ,DpΓL,Kq

pLApoLqpδqq “

$

&

%

0, j “ 0;

1, j “ 1;
0, j “ 2.

(iii) For δ´1 P Σ1 we have dimKHj
ϕ,DpΓL,Kq

pLApoLqpδqq “

$

&

%

0, j “ 0;

2, j “ 1;
1, j “ 2.

(iv) For δ P Σ1 we have dimKHj
ϕ,DpΓL,Kq

pRKpδqq “

$

&

%

1, j “ 0;
2, j “ 1;

0, j “ 2.

(v) For δ P Σ2 we have dimKHj
ϕ,DpΓL,Kq

pRKpδqq “

$

&

%

0, j “ 0;
2, j “ 1;

1, j “ 2.

(vi) For δ P Σgen we have dimKHj
ϕ,DpΓL,Kq

pRKpδqq “

$

&

%

0, j “ 0;

1, j “ 1;

0, j “ 2.

In particular, generic characters are precisely those with vanishing H0 and H2.

Proof. By Remark 4.1 H‚
anpA`,Mq in [15, §5] coincides with H‚

ϕ,DpΓL,Kq
pMq. Note that

Colmez uses L to denote a large field such as our field K.

It is easy to check that analogous results as in this subsection hold for modules of the
form RApδq for affinoids A over K instead of the base field K. The only subtlety is the

appearance of non-trivial zero divisors. By imposing some additional conditions we can

strengthen 4.9 to cover the affinoid case as well.
Note that the action of ΓL on Apδχ˘i

LT q extends to an action of DpΓL,Kq by continuity.

The element Z acts as an A-linear endomorphism on Apδχ˘i
LT q hence by multiplication

with an element Zpδχ˘i
LT q P A.
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Remark 4.23.

(i) Let A be affinoid over K and let δ : Lˆ Ñ Aˆ be a locally L-analytic character.
Assume that 1´ δpπqπi is not a non-trivial zero divisor in A for every i P Z and

assume that (the image of) Zpδχ˘i
LT q P A is not a non-trivial zero divisor in A or

any A{p1´ δpπqπiq16. Then TΨpMq is perfect as a DpΓL,Aq-module for M in

tR`
Apδq,RApδq,LApoL,Aqpδχ´1

q,DA,N pδq,PolďN poL,Aqpχ´1δqu.

(ii) As in Nakamura’s setting we expect the statement of (i) to be true without any

condition. Unfortunately, the methods of [28, Section 5] do not transfer to our

situation directly due to the fact that [28] makes use of the Euler characteristic
formula and perfectness of the Ψ-complex in the étale case. The analogues of these

results are not known to us for analytic cohomology over affinoids.

Proof. First observe that for any locally analytic character ρ : Lˆ Ñ Aˆ the free rank

one module Apρq is perfect as a DpU,Aq-module if Zpρq is not a non-trivial zero divisor

in A. Indeed, let α :“ Zpρq P A. Then, using the assumptions on α, one sees that

Apρq – DpU,Aq{pZ ´ αqDpU,Aq is perfect as a DpU,Aq-module but then also perfect
as a DpΓL,Aq-module by [51, Lemma 2.5]. Let us call a module of the form Apρq of type

F . Now consider the sequence

0 Ñ R`
Apδq Ñ RApδq Ñ LApoL,Aqpχ´1δq Ñ 0. (37)

We have that TΨpLApoL,Aqpχ´1δqq is perfect by [48, Tag 066T] since the inclusion of the
PolďN poL,Aqpχ´1δq induces a quasi-isomorphism for N " 0 to a complex whose terms

are perfect as they are finite direct sums of modules of type F . Similarly for DA,N pδq. To

see that R`
ApδqΨ“1 is perfect, consider the exact sequence

0 Ñ V1 Ñ pRApδq
`

q
Ψ“1 ϕ´1

ÝÝÝÑ pRApδq
`

q
Ψ“0

Ñ V2 Ñ 0,

where V1,V2 are defined as kernel and co-kernel of the middle map. By an adaptation

of [11, Lemma 2.9 and Proposition 2.20] to our situation the kernel is of type F over A

while the cokernel is a finite direct sum of modules of type F over A{p1´ δpπqπiq with
varying i. It suffices to see that they are perfect as DpΓL,Aq-modules. This follows from

the assumption that p1´δpπqπiq is not a zero divisor and hence DpΓL,A{p1´δpπqπiqq is

itself perfect as a DpΓL,Aq-module. It remains to see that R`
Apδq{pΨ´1q is perfect. Again

by a similar argument it is a finite direct sum of perfect DpΓL,A{p1´δpπq´1πiqq modules
(the appearance of δpπq´1 is due to using Ψ´1 instead of ϕ´1). Our assumptions ensure

that 1´δpπq´1πi “ p´δpπq´1πiqp1´δpπqπ´iq is not a zero divisor and we can proceed as

before. This proves the perfectness of TΨpRApδq`q. Finally the perfectness of TΨpRApδqq

follows from the exact sequence (37).

16If we drop the zero divisor assumption the same proof would show that the complexes lie in
D´

perf . If A is a domain and δpπq P Kˆ then p1´ δpπqπi
q is either 0 or a unit and hence the

condition on δpZq is automatically satisfied!
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5. Bloch–Kato exponential for analytic pϕL,ΓLq-modules

Recall that for a module M over a commutative ring R and t PR a non-zerodivisor, we use

the notation Mt for the localisation of M at the multiplicatively closed subset ttnuně0.

5.1. DdR and Dcris for analytic pϕL,ΓLq-modules

In this section we will define versions of DdR and Dcris for L-analytic pϕL,ΓLq-modules
M. The idea is that, for an étale pϕL,ΓLq-module attached to a representation V, these

versions correspond to the identity component of the full DdRpV q, which arise as pBdR bL

V qGL instead of pBdR bQp
V qGL , and similarly for DcrispV q. The comparison between the

definitions used in this article and Fontaine’s classical ones is described in [38, Section 5.2].

Definition 5.1. For an L-analytic pϕL,ΓLq-module M over RF , we define

DdRpMq :“ DdifpMq
ΓL

and

DcrispMq :“ MΓL
tLT

.

Remark 5.2. Let M be an L-analytic pϕL,ΓLq-module M over RL. Then DdRpMq and

DcrispMq are finite dimensional L-vector spaces of dimension ď rkpMq. Furthermore ϕM

induces an automorphism of DcrispMq.

Proof. We first show that DdRpMq is finite dimensional. By construction D :“ DdifpMq

is a finite-dimensional B :“
Ť

ně0LnpptLT qq-semilinear representation of ΓL. We claim

that the natural map

B bBΓL DΓL Ñ D

is injective and BΓL “ L, which shows dimLpDΓLq ď dimBpDq “ rkpMq. We first show

BΓL “ L. Let f “
ř

ait
i
LT P BΓL . We conclude ai “ χLT pγqiγpaiq for every γ P ΓL. Let

n be large enough such that all ai belong to Ln. Then γpaiq “ ai for every γ P Γn and

we conclude that ai “ 0 holds for every i ‰ 0. Finally γpa0q P LΓL
n “ L which proves the

claim. For the injectivity we argue like in the proof of 2.13 in [20]. Consider L-linearly
independent vectors v1, . . . ,vd P DΓL such that

d
ÿ

i“1

λivi “ 0

with some λi P B. Suppose d ě 2,λ1 ‰ 0 and assume without loss of generality λ1 “ 1. We

obtain v1 “ γpv1q “
řd

i“2 ´γpλiqvi. Arguing by induction we may assume that v2, . . . ,vd
are linearly independent over B and conclude λ2, . . . ,λd P BΓL “ L, a contradiction.
From the injectivity of ιn according to Remark 3.14 we deduce that dimLpDcrispMqq ď

dimLpDdRpMqq. Finally ϕM induces an injective endomorphism of MtLT
and by a

dimension argument an automorphism of DcrispMq.
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5.2. exp for analytic pϕL,ΓLq-modules

Let M be an L-analytic pϕL,ΓLq-module over RK . By Prop. 3.18, we have an action of
DpΓ,Kq on M. Thus we may (for some fixed n) consider the complex Kϕ,Zn

pMq, which

(up to sign) amounts to

Kϕ,Zn
pMq “ rM

pϕ´1,Znq
ÝÝÝÝÝÝÑ M ‘M

pZn‘1´ϕq
ÝÝÝÝÝÝÝÑ M s

concentrated in degree r0,2s.

On the other hand, for any DpΓ,Kq-module N, we define

KZn
pNq :“ rN

Zn
ÝÝÑ N s

concentrated in degree r0,1s, and denote its cohomology by H‚
Zn

pNq.

Next we want to define K
pϕq

ϕ,Zn
pM0q and K

pϕq

Zn
pM0q for M0 P tM,MtLT

u. By inspecting

the proof in the reference for Prop. 3.18, one sees that the action of DpΓ,Kq on M
preserves all the M pmq. For m " 0, we set

rKϕ,Zn
pM

pmq

0 q :“ rM
pmq

0

pϕ´1,Znq
ÝÝÝÝÝÝÑ M

pm`1q

0 ‘M
pmq

0

pZn‘1´ϕq
ÝÝÝÝÝÝÝÑ M

pm`1q

0 s

concentrated in degree r0,2s. Passing to the limit with respect to the transition maps

induced by the canonical inclusions M
pmq

0 ãÝÑ M
pm`1q

0 recovers Kϕ,Zn
pM0q, but taking

the limit with respect to the transition maps induced by ϕ : M
pmq

0 ÝÑ M
pm`1q

0 produces

a new complex

K
pϕq

ϕ,Zn
pM0q :“ lim

ÝÑ
m,ϕ

rKϕ,Zn
pM

pmq

0 q

whose cohomology we denote by H
pϕq,‚
ϕ,Zn

pM0q. Similarly we define

K
pϕq

Zn
pM0q :“ lim

ÝÑ
m,ϕ

KZn
pM

pmq

0 q

with cohomology groups denoted by H
pϕq,‚
Zn

pM0q.

Remark 5.3. Note that we have

DdRpMq “ H0
Zn

pDdifpMqq
Γ{Γn

and

DcrispMq “ H0
Zn

pMtLT
q
Γ{Γn .

Lemma 5.4. For m " 0 and M0 P tM,M r1{tLT su, the following natural maps induced
by ϕ are quasi-isomorphisms:

KZn
pD

p`q

dif,mpMqq ÝÑ KZn
pD

p`q

dif,m`1pMqq,

KZn
pM

pmq

0 q ÝÑ KZn
pM

pm`1q

0 q and

rKϕ,Zn
pM

pmq

0 q ÝÑ rKϕ,Zn
pM

pm`1q

0 q
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In particular, the maps

KZn
pD

p`q

dif,mpMqq ÝÑ KZn
pD

p`q

dif pMqq,

KZn
pM

pmq

0 q ÝÑ K
pϕq

Zn
pM0q and

rKϕ,Zn
pM

pmq

0 q ÝÑ K
pϕq

ϕ,Zn
pM0q

are quasi-isomorphisms.

Proof. We only need prove the first statement.By Lemma 4.4 the action of Zn on Mψ“0
0

(resp. pM
pmq

0 qψ“0) is invertible. Using this fact, one can conclude the proof with the same
(purely formal) arguments as in the proof of [36, Lemma 2.17].

Lemma 5.5.

(i) For m " 0 and M0 P tM,MtLT
u, the map

rKϕ,Zn
pM

pmq

0 q ÝÑ Kϕ,Zn
pM0q

induced by the inclusion M
pmq

0 ãÝÑ M0 is a quasi-isomorphism.

(ii) In D´pKq, by composing the inverse of the isomorphism in (i) with the isomorphism
rKϕ,Zn

pM
pmq

0 q ÝÑ K
pϕq

ϕ,Zn
pM0q from Lemma 5.4, one obtains an isomorphism

Kϕ,Zn
pM0q

„
ÝÑ K

pϕq

ϕ,Zn
pM0q

which is independent of the choice of m " 0.

Proof. Both statements follow by purely formal arguments from Lemma 5.4, just as in
the proof of [36, Lemma 2.20].

Definition 5.6.

(a) By the compatibility of the maps ιm with ϕ : M pmq ÝÑ M pm`1q and the inclu-

sions D
p`q

dif,mpMq ãÝÑ D
p`q

dif,m`1pMq as in Definition 3.15, the ιm induce canonical

morphisms17

K
pϕq

Zn
pMq ÝÑ KZn

pD`
difpMqq and K

pϕq

Zn
pMtLT

q ÝÑ KZn
pDdifpMqq

which we will both call ι. Moreover, the inclusions M
pmq

0 ãÝÑ M
pm`1q

0 induce a map

Frob: K
pϕq

Zn
pM0q ÝÑ K

pϕq

Zn
pM0q.

(b) We construct morphisms

fn : Kϕ,Zn
pM0q ÝÑ K

pϕq

Zn
pM0q and gn : Kϕ,Zn

pM0q ÝÑ KZn
pD

p`q

dif pMqq

in the following way:

17Note that obviously we have KZn
pD

p`q

dif pMqq – lim
ÝÑm

KZn
pD

p`q

dif,mpMqq.
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Define fn as the composition of the isomorphism Kϕ,Zn
pM0q

„
ÝÑ K

pϕq

ϕ,Zn
pM0q from

Lemma 5.5(ii) with the mapK
pϕq

ϕ,Zn
pM0q ÝÑK

pϕq

Zn
pM0q obtained by taking the direct

limit of the morphisms

rKϕ,Zn
pM

pmq

0 q :

��

rM
pmq

0

pϕ´1,Znq ��

id
��

M
pm`1q

0 ‘M
pmq

0

Zn‘p1´ϕq ��

px,yqÞÝÑy

��

M
pm`1q

0 s

KZn
pM

pmq

0 q : rM
pmq

0

Zn �� M pmq

0 s

Furthermore, the morphism gn is defined as

gn : Kϕ,Zn
pM0q

fn
ÝÑ K

pϕq

Zn
pM0q

ι
ÝÑ KZn

pD
p`q

dif pMqq.

Proposition 5.7. Consider the following diagram:

Kϕ,ZnpMq

id

��

d1 �� Kϕ,ZnpMtLT q ‘KZnpD`
difpMqq

fn‘id

��

d2 �� KZnpDdifpMqq

x ÞÝÑp0,xq

��

`1 ��

Kϕ,ZnpMq
d3 �� Kpϕq

Zn
pMtLT q ‘KZnpD`

difpMqq
d4 �� Kpϕq

Zn
pMtLT q ‘KZnpDdifpMqq

`1 ��

where the di are given by

d1pxq :“ px,gnpxqq, d2px,yq :“ gnpxq ´y,

d3pxq :“ pfnpxq,gnpxqq, d4px,yq :“ pFrobpxq ´x,ιpxq ´yq.

Then the vertical map is a morphism between two distinguished triangles.

Proof. The proof can be carried out analogously to the proof of [36, Prop. 2.21]: We

make use of the following well-known fact from homological algebra (see for instance

[56, Ex. 10.4.9]):

Let A be a ring and

0 ÝÑ X‚
ÝÑ Y ‚

ÝÑ Z‚
ÝÑ 0

an exact sequence of complexes of A-modules. Then there exists a natural map Z‚ ÝÑ

X‚r1s in the derived category DpAq such that

X‚
ÝÑ Y ‚

ÝÑ Z‚ `1
ÝÑ X‚

r1s

is a distinguished triangle.

First, we show that the upper row is a distinguished triangle. Our goal is to replace the
complexes KZn

pD
p`q

dif pMqq by new, quasi-isomorphic complexes rKϕ,Zn
pD

p`q

dif pMqq, which

we define below, and construct an exact sequence

0 ÝÑ Kϕ,Zn
pMq ÝÑ Kϕ,Zn

pMtLT
q ‘ rKϕ,Zn

pD`
difpMqq ÝÑ rKϕ,Zn

pDdifpMqq ÝÑ 0 (38)
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that will induce the upper triangle in the statement by the above-stated fact. For k ě 0
and m " 0, we put

Dm,kpMq :“
ź

μěm

t´k
LT ¨D`

dif ,μpMq

and denote by rKϕ,Zn
pt´k

LT ¨D`
dif ,mpMqq the complex concentrated in degree r0,2s:

Dm,kpMq
b0

ÝÑ Dm,kpMq ‘Dm`1,kpMq
b1

ÝÑ Dm`1,kpMq,

where

b0ppxμqμq :“ ppZnxμqμěm,pxμ´1 ´xμqμěm`1q,

and

b1ppxμqμěm,pyμqμěm`1q :“ ppxμ´1 ´xμq ´Znyμqμěm`1.

Furthermore, let

rKϕ,Zn
pDdif ,mpMqq :“

ď

kě0

rKϕ,Zn
pt´k

LTD
`
dif ,mpMqq.

We now define

0 ÝÑ rKϕ,Zn
pM pmq

q ÝÑ rKϕ,Zn
pM

pmq

tLT
q ‘ rKϕ,Zn

pD`
dif ,mpMqq ÝÑ rKϕ,Zn

pDdif ,mpMqq ÝÑ 0

(39)

as the sequence of complexes induced by applying rKϕ,Zn
p´q to

0 ÝÑ M pmq c1
ÝÑ M

pmq

tLT
‘

ź

μěm

D`
dif ,μpMq

c2
ÝÑ

ď

kě0

ź

μěm

t´k
LTD

`
dif ,μpMq ÝÑ 0, (40)

where

c1pxq :“ px,pιμpxqqμěmq and c2px,pyμqμq :“ pιμpxq ´yμqμěm.

Down below, the sequence (38) will be obtained as a direct limit of the sequences (39).

We claim that the sequence (40) and hence also (39) is exact. Consequently, the same

will then hold for the direct limit (38).
The crucial part now is the exactness of (40), which generalizes the exactness of the

sequence (5) in the proof of [36, Prop. 2.21]. The latter is demonstrated in [35, Lem. 2.9],

and we check that the arguments carry over to our sequence (40). The non-trivial

statements are kerpc2q “ impc1q and the surjectivity of c2.
The second statement can be reduced to showing that the map

M pmq
ÝÑ

ź

μěm

D`
dif ,μpMq{tLT , x ÞÝÑ pιμpxqqμěm (41)

is surjective, using the fact that M
pmq

tLT
“

Ť

kě0 t
´k
LTM

pmq and reducing inductively to the

case k “ 1 via dévissage. Now we fix an Rpmq

F -basis e1, . . . ,ed of M pmq, assuming m is large
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enough for Proposition 3.2 to hold. From [3, Prop. 4.8 & Lem. 4.9] it follows that for any

μ ě m, the composition

Rpmq

L

ιμ
ÝÑ LμrrtLT ss

tLT ÞÝÑ0
ÝÑ Lμ

induces an isomorphism Rpmq

L {pQμq – Lμ where Qμ :“ ϕμ
pZq

ϕμ´1pZq
.18 Therefore, using [46,

Lemma 4.3.6], we obtain on the level of the extension F an isomorphism

Rpmq

F {Qμ – pRpmq

L
pbLF q{Qμ – pRpmq

L {QμqpbLF – Lμ bLF “ Fμ

for μ ě m. As a result, we see that pιμpeiqqi“1,...,d is an Fμ-basis of D`
dif ,μpMq{tLT for

any μ ě m. Now the surjectivity of (41) is proven just as in [35, Lem. 2.9]: For a family

pyμqμěm in the target, we write yμ “
řd

i“1 aμ,i ¨ιμpeiq for μěm. Choosing a representative

ai P Rpmq

F of the preimage of paμ,iqμěm under the natural isomorphism

Rpmq

F {ptLT q
„

ÝÑ
ź

μěm

Fμ, a ÞÝÑ pιμpaqqμěm (42)

for each i, we obtain a preimage
řd

i“1 aiei of pyμqμ under (41). To see (42) one uses

tLT “ Z
ś

μě1
Qμ

πL
as well as the fact that tLT and

ś

μěm
Qμ

πL
differ by a unit in Rpmq

F since

for ν ăm the Qν are units as they have no zeros inside the annulus of convergence ofRpmq

F .

Now (42) follows via a projective limit argument from the isomorphisms Rpmq

F {pQμq – Fμ

and the Chinese remainder theorem.
Concerning the first statement kerpc2q “ impc1q, one needs to show for any x P M

pmq

tLT

that if ιμpxq PD`
dif ,μpMq for all μ ě m, then we have in fact x PM pmq. Writing x “ x0 ¨t´k

LT

with x0 P M pmq, Remark 3.14 implies

ιμpxq “
ιμpx0q ¨πμk

LT

tkLT

.

So the claim follows if we show that if tkLT divides ιμpx0q in FμrrtLT ss for all μ ě m, then
it also divides x0 in M pmq. Of course, we can assume k “ 1 as well as M “ RF after

choosing a basis of M. Then the isomorphism (42) yields the desired result.

Now that the exactness of (40) is established, it follows by construction that the
sequence (39) of complexes is exact as well.

Next we form the direct limit of the sequences (39) over m, where the transition maps

are the ones induced by the natural inclusions M
pmq

0 ãÝÑ M
pm`1q

0 and the maps

a‚ : rKϕ,Zn
pD

p`q

dif ,mpMqq ÝÑ rKϕ,Zn
pD

p`q

dif ,m`1pMqq

given by “cutting off” the component at the lowest index. So by defining

rKϕ,Zn
pD

p`q

dif pMqq :“ lim
ÝÑ
m,a‚

rKϕ,Zn
pD

p`q

dif ,mpMqq

we obtain the desired exact sequence (38).

18In case the underlying Lubin-Tate group law is special, then Qm is just the minimal
polynomial of a uniformiser of Lm{L.
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This sequence yields a distinguished triangle as explained in the beginning of the
proof; in order to bring this triangle into the desired form, it remains to define suitable

quasi-isomorphisms of complexes KZn
pD

p`q

dif pMqq ÝÑ rKϕ,Zn
pD

p`q

dif pMqq, which is done

in the following way: First, for m " 0 consider the morphisms KZn
pD`

dif,mpMqq ÝÑ

rKϕ,Zn
pD`

dif,mpMqq defined by

D`
dif ,mpMq

x ÞÝÑpxqμěm

��

Zn �� D`
dif ,mpMq

x ÞÝÑppxqμěm,0q

��
ś

μěm
D`

dif ,μpMq �� ś

μěm
D`

dif ,μpMq ‘
ś

μěm`1
D`

dif ,μpMq �� ś

μěm`1
D`

dif ,μpMq,

(43)

noting that b0ppxqμěmq “ ppZnxqμěm,px´xqμěm`1q “ ppZnxqμěm,0q. There are similar

morphisms KZn
pDdif,mpMqq ÝÑ rKϕ,Zn

pDdif,mpMqq, and one checks that they are all
quasi-isomorphisms, using the exactness of the sequence

0 �� Dp`q
dif ,mpMq

x ÞÑpxqμěm �� ś

μěm
D

p`q
dif ,μpMq

pxμqÞÑpxμ´1´xμqμěm`1 �� ś

μěm`1
D

p`q
dif ,μpMq �� 0.

It is obvious that the quasi-isomorphisms KZn
pD

p`q

dif,mpMqq
„

ÝÑ rKϕ,Zn
pD

p`q

dif,mpMqq

are compatible with the transition maps, induced by the inclusions D
p`q

dif ,mpMq ãÝÑ

D
p`q

dif ,m`1pMq on the left and given by the a‚ on the right, so they induce a quasi-

isomorphism

KZn
pD

p`q

dif pMqq
„

ÝÑ rKϕ,Zn
pD

p`q

dif pMqq.

Putting everything together, and inspecting the explicit definitions of the morphisms

involved, we get that the upper row of the diagram in the statement is in fact a

distinguished triangle.
To demonstrate that the second row is also a distinguished triangle, we start again with

forming a certain direct limit of the exact sequences (39) of complexes. But this time,

instead of the a‚ from above, we define morphisms

pa1
q

‚ : rKϕ,Zn
pD

p`q

dif ,mpMqq ÝÑ rKϕ,Zn
pD

p`q

dif ,m`1pMqq

given by shifting pxμqμěm ÞÝÑ pxμ´1qμěm`1 instead of cutting off. Then let

rK
pϕq

ϕ,Zn
pD

p`q

dif pMqq :“ lim
ÝÑ

m,pa1q‚

rKϕ,Zn
pD

p`q

dif ,mpMqq.

Furthermore, note that the quasi-isomorphisms KZn
pD

p`q

dif,mpMqq
„

ÝÑ rKϕ,Zn
pD

p`q

dif,mpMqq

from (43) also form a morphism of directed systems if we use the pa1q‚ instead of the a‚

as transition maps on the right, so they yield a quasi-isomorphism

KZn
pD

p`q

dif pMqq
„

ÝÑ rK
pϕq

ϕ,Zn
pD

p`q

dif pMqq. (44)
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After these preparations, we consider the chain of quasi-isomorphisms

rKϕ,Zn
pM pmq

q – cone
´

rKϕ,Zn
pM

pmq

tLT
q ‘ rKϕ,Zn

pD`
dif ,mpMqq ÝÑ rKϕ,Zn

pDdif ,mpMqq

¯

r´1s

– cone
´

KZn
pM

pmq

tLT
q ‘ rKϕ,Zn

pD`
dif ,mpMqq ÝÑ KZn

pM
pm`1q

tLT
q ‘ rKϕ,Zn

pDdif ,mpMqq

¯

r´1s,

(45)

where the first one follows from applying the fact from homological algebra stated at the
beginning of the proof to the sequence (39) and the second one is formally obtained by

the identity

rKϕ,Zn
pM

pmq

tLT
q “ cone

´

KZn
pM

pmq

tLT
q
1´ϕ
ÝÑ KZn

pM
pm`1q

tLT
q

¯

r´1s.

Taking the direct limit of the quasi-isomorphisms (45) with respect to the transition

maps pa1q‚ and the morphisms induced by ϕ : M
pmq

0 ãÝÑ M
pm`1q

0 , and applying the quasi-

isomorphism Kϕ,Zn
pMq – K

pϕq

ϕ,Zn
pMq from Lemma 5.5(ii) to the left-hand side and (44)

to right-hand side, we obtain the distinguished triangle

Kϕ,Zn
pMq ÝÑ K

pϕq

Zn
pMtLT

q ‘KZn
pD`

difpMqq ÝÑ K
pϕq

Zn
pMtLT

q ‘KZn
pDdifpMqq

`1
ÝÑ

which is the bottom row in the statement of the proposition.

We define

D
pnq

dR pMq :“ H0
Zn

pDdifpMqq and D
pnq

crispMq :“ H0
Zn

pMtLT
q.

For m " 0, the map

ϕ : H0
Zn

pM
pmq

tLT
q ÝÑ H0

Zn
pM

pm`1q

tLT
q

is an isomorphism by Lemma 5.4. Moreover, the inclusions H0
Zn

pM
pmq

tLT
q ãÝÑ D

pnq

crispMq are
isomorphisms by a result analogous to [36, Lemma 2.18] which is formally deduced from

Lemma 5.4 (and the fact that the cohomologies are finite-dimensional). Thus the above

ϕ can be viewed as an automorphism

ϕ : D
pnq

crispMq
„

ÝÑ D
pnq

crispMq.

Next we construct two isomorphisms j1,j2 : D
pnq

crispMq
„

ÝÑ H
pϕq,0
Zn

pMtLT
q making the

diagram

D
pnq

crispMq D
pnq

crispMq

H
pϕq,0
Zn

pMtLT
q H

pϕq,0
Zn

pMtLT
q

j1

1´ϕ

j2

Frob´ id

commute, where Frob is induced by the Frob in Definition 5.6(a). Let

j1 : D
pnq

crispMq “ H0
Zn

pM
pmq

tLT
q

ϕ
ÝÑ H0

Zn
pM

pm`1q

tLT
q

„
ÝÑ H

pϕq,0
Zn

pMtLT
q
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where the last map is an isomorphism by Lemma 5.4. Note that j1 is independent of the
choice of m " 0. Finally, we set

j2 : D
pnq

crispMq
j1

ÝÑ H
pϕq,0
Zn

pMtLT
q

Frob
ÝÝÝÑ H

pϕq,0
Zn

pMtLT
q.

Additionally, we define

i : D
pnq

crispMq
j1

ÝÑ H
pϕq,0
Zn

pMtLT
q

ι
ÝÑ D

pnq

dR pMq

where ι is induced by the ι in Definition 5.6(a).

Definition 5.8. Denote by

exp
pnq

M : D
pnq

dR pMq ÝÑ H1
ϕ,Zn

pMq

and

exp
pnq

f,M : D
pnq

crispMq
j2

ÝÑ H
pϕq,0
Zn

pMtLT
q ÝÑ H1

ϕ,Zn
pMq

the boundary maps obtained by taking cohomology of the exact triangles in Proposi-

tion 5.7.

Set

H1
ϕ,Zn

pMqe :“ ImpD
pnq

dR pMq
exp

pnq
M

ÝÝÝÝÑ H1
ϕ,Zn

pMqq

and

H1
ϕ,Zn

pMqf :“ ImpD
pnq

crispMq ‘D
pnq

dR pMq
exp

pnq
f,M `exp

pnq
M

ÝÝÝÝÝÝÝÝÝÑ H1
ϕ,Zn

pMqq

and

t
pnq

M :“ D
pnq

dR pMq{D
pnq

dR pMq
0 where D

pnq

dR pMq
0 :“ H0

Zn
pD`

difpMqq.

Then Proposition 5.7 yields the following diagram with exact rows

0 H0
ϕ,Zn

pMq D
pnq

crispMq
ϕ“1 t

pnq

M H1
ϕ,Zn

pMqe 0

0 H0
ϕ,Zn

pMq D
pnq

crispMq D
pnq

crispMq ‘ t
pnq

M H1
ϕ,Zn

pMqf 0

x ÞÑx

id

x ÞÑipxq

x ÞÑx

exp
pnq
M

x ÞÑp0,xq x ÞÑx

x ÞÑx d5 d6

(46)

where

d5px,yq “ pp1´ϕqx,ipxqq and d6 “ exp
pnq

f,M `exp
pnq

M .

For later calculations we state the analogue (in the LT-setting) of the f-version (with

f P tΨ,ϕu) of the explicit formula for expM and expf,M in [36, Prop. 2.23] and leave the

straight forward adaption of the proof to the reader.
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Proposition 5.9.

(i) For x P D
pnq

dR pMq choose x̃ P M
pn1

q

tLT for some sufficiently large n1 ě n such that

ιmpx̃q ´x P D`
dif,mpMq

for any m ě n1. Then we have

exp
pnq

M pxq “rpf´1qx̃,Znx̃s P H1
f,Zn

pMq.

(ii) For x P D
pnq

dR pMq choose x̃ P M
pn1

q

tLT for some sufficiently large n1 ě n such that

ιmpx̃q P D`
dif,n1 pMq

and

ιn1`kpx̃q ´

k
ÿ

l“1

ιn1`lpϕ
n1

pxqq P D`
dif,n1`kpMq

for any k ě 1. Then we have

exp
pnq

f,M pxq “rpϕ´1qx̃`ϕn1
pxq,Znx̃s P H1

ϕ,Zn
pMq.

5.3. Derivatives of measures

In cyclotomic Iwasawa theory the constant logpχcycpγqq shows up at various places (see

[36]) in order to make constructions independent of the choice of a topological generator

γ of ΓQp
. Since we have replaced the element γ ´ 1 by Zn we again have to check the

dependence on this choice. As our computations below show, the constant Ω plays a role

in normalisation and seems conceptually new at a first glance since in the case L “Qp one

can take Ω “ 1. But recall that Ω is only unique up to units in oL, hence in the cyclotomic
case one could just as well take any element of Zˆ

p . Comparing (20) with [36, Proposition

5.2] we see that we should take ΩQp
“ log0pχpγqq´1, where log0paq :“ logpaq{pvpplogpaqq.

We first generalize the derivative of a measure from the cyclotomic case (e.g. [34, §2.1])
in a naive way:

By x´y : oˆ
L Ñ 1`πLoL we denote the projection which is induced by the Teichmüller

character ω : kˆ
L Ñ oˆ

L . Fix m0 ą
e

p´1 and m1 ě 0 such that logppoˆ
Lq Ď π´m1

L oL. Then,
for s P πm

L oL with m :“ m0 `m1 the map

x´y
s : oˆ

L Ñ 1`πm0

L oL,x ÞÑ xxy
s :“ expps logpxqq

is well-defined. For λ P DpΓL,Kq and f P CanpΓL,Kq we define

Lλpf,sq :“ λpfxχLT y
s
q pLλp ,́sq in DpΓL,Kq for fixed sq

and

L1
λpfq :“ lim

0‰sÑ0

Lλpf,sq ´Lλpf,0q

s
P DpΓL,Kq.

This limit exists and we have

L1
λpfq “ λplogpχLT qfq (47)
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using that lim0‰sÑ0
xχLT pγqy

s
´1

s “ logpχLT pγqq. As an example one easily sees using
Remark 4.3 that the expression

L1
Zn

p1q

πn
L

(48)

is independent of n.

For DpΓnq as at the beginning of subsection 5.2 there is another way of attaching such
a derivative better adapted to the Lubin-Tate situation as follows:

By [43, §3, Thm. 3.6] the characters of Γn are all of the form ψzpγq :“ κzp�npγqq using

their notation. For small γ we have

ψzpγq “ exppΩ�npγq logLT pzqq

and for z “ expLT p
πn
L

Ω q the characters ψz and χLT coincide on an open subgroup of ΓL.

For λ P DpΓnq and f P CanpΓn,Kq we may define

LTλpf,zq :“ λpfψzq pLTλp ,́zq in DpΓn,Kq for fixed zq

and

LT 1
λpfq :“ lim

0‰zÑ0

LTλpf,zq ´LTλpf,0q

z
P DpΓn,Kq.

This limit exists and we have

LT 1
λpfq “

Ω

πn
L

λplogpχLT qfq (49)

using that lim0‰zÑ0
ψzpγq´1

z “
Ω
πn
L
logpχLT pγqq as gLT p0q “ 1 by (1).

We conclude this discussion by considering again λ“ Zn and the trivial character f “ 1.
Then LTZn

p1,zq “ Znpψzq “ z by [43, Lem. 4.6], whence LTZn
p1,0q “ 0 and (49) becomes

1 “ LT 1
Zn

p1q “
Ω

πn
L

ZnplogpχLT qq and
L1
Zn

p1q

πn
L

“
1

Ω
. (50)

5.4. The dual exponential map exp˚

Let M be a free L-analytic pϕL,ΓLq-module over RK . We say that M is de Rham if

the B “
Ť

mKmpptLT qq-module DdifpMq is trivial as a pB,ΓLq-module. By Galois descent

(technically in the form of [48, Tag 0CDR] for the Scheme X “ SpecpKq) this is equivalent

to DdifpMq being trivial as a pB,Γnq-module for some n. Indeed, in this case D
pnq

dR pMq is

a K bLLn-module with a semi-linear ΓL{Γn “ GalpLn{Lq-action (which is trivial on K ).

Note that we have dimKD
pnq

dR pMq “ rLn :Ls ¨rM where rM is the rank of M over RK and

that D
pnq

dR pMq is in fact free as a K bL Ln-module. We denote by δ2,M the connecting

homomorphism

H1
Zn

pDdifpMqq Ñ H2
ϕ,Zn

pMq
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obtained from the sequence in 5.7. We define

CgpZnq :“ L1
Zn

p1q “ ZnplogpχLT qq “
πn
L

Ω
(51)

for the trivial character 1. We stress that this is compatible with Nakamura’s definition

when specializing to the cyclotomic situation.

Lemma 5.10. Let M be de Rham. Then the natural map
˜

ď

m

KmpptLT qq

¸

bKn
D

pnq

dR pMq Ñ DdifpMq

is an isomorphism and the induced map

g
pnq

M :D
pnq

dR pMq Ñ H1
Zn

pDdifpMqq, x ÞÑ CgpZnqp1bxq

is an isomorphism. The inverse is induced by sending f b d P KmpptLT qq bKn
D

pnq

dR pMq

to CgpZnq´1 1
rKm:Kns

TrKm{Kn
pf|tLT “0qd, where by abuse of notation (although tLT gets

inverted!) we denote by f|tLT “0 the constant term of f with respect to tLT .

Proof. The first part follows immediately from the definition and implies that DdifpMq

is isomorphic to the trivial B -semi-linear Γn-representation. For the second statement
it thus suffices to consider the rank 1 case and prove the statement for B itself, namely

that the natural map BΓn Ñ B Ñ B{Zn is an isomorphism. Because the Γ-action respects

the direct product decomposition KmpptLT qq –
ś

kPZKmtkLT and BΓn “ Kn it suffices to

show that any Laurent series, whose constant term vanishes, lies in the image of Zn and
that there is an exact sequence of the form

0 �� Kn
�� Km

Zn �� Km
Tr �� Kn

�� 0

with Tr “
1

rKm:Kns
TrKm{Kn

by Wedderburn theory. Using the product decomposition it

suffices to treat the monomials atkLT with some a P Km. Taking 1 ‰ γ P Γm we obtain

γpaq “ a and γptLT q “ χLT pγqtLT . By construction pγ ´ 1qptLT q “ πl
LutLT for some l P

Z,u P oˆ
L and hence pγ ´1qpatLTπ

´l
L u´1q “ aπ´l

L u´1ppγ ´1qptLT qq “ atLT . Since δγ ´1 is
divisible by Zn in DpΓn,Kq, we conclude that atkLT lies in the image of Zn.

Note that D
pnq

dR pMq, for a pϕL,ΓLq-module M, carries a natural filtration given by

FiliD
pnq

dR pMq “ D
pnq

dR pMq X tiLTD
`
difpMq.

Definition 5.11. Let M be a de Rham pϕL,ΓLq-module over RK . We define the dual
exponential map as the composite

H1
ϕ,Zn

pMq Ñ H1
Zn

pD`
difpMqq Ñ H1

Zn
pDdifpMqq

pg
pnq
M q

´1

ÝÝÝÝÝÑ D
pnq

dR pMq.

Where the first map is given by mapping rx,ys to rιμpyqs with μ" 0. Its image is contained

in Fil0pD
pnq

dR pMqq and we thus obtain a map

exp
,̊pnq

M̃
:H1

ϕ,Zn
pMq Ñ Fil0pD

pnq

dR pMqq.
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We define

exp˚

M̃
:H1

ϕ,DpΓLqpMq Ñ Fil0pDdRpMqq

by taking ΓL-invariants of exp
,̊pnq

M̃
, which is independent of the choice of n. Indeed, as

shown in [50, Lem. 3.2.7] the restriction map

H1
ϕ,Zn

pMq Ñ H1
ϕ,Zm

pMq,rx,ys ÞÑ rx,Qm´nys,

for m ě n induces an isomorphism after taking ΓL-invariants, where Qm´npZnq :“ Zm

Zn
“

ϕm´n
L pZnq

Zn
with Qm´np0q “ πm´n

L and we have CgpZmq “ πm´n
L CgpZnq by (48).

Definition 5.12. We define a pairing

Ydif : H
0
Zn

pDdifpM1qq ˆH1
Zn

pDdifpM2qq Ñ H1
Zn

pDdifpM1 bRK
M2qq

given by px,yq ÞÑ rxbys. Furthermore we define

x ,́´ydif :H
0
Zn

pDdifpMqq ˆH1
Zn

pDdifpM̃qq
Ydif

ÝÝÝÑ H1
Zn

pDdifpM bRK
M̃qq Ñ K

as composite of Ydif with

H1
Zn

pDdifpM bRK
M̃qq

ev
ÝÑ H1

Zn
pDdifpΩ

1
qq

pg
pnq
Ω1 q

´1

ÝÝÝÝÝÑ D
pnq

dR pΩ1
q – Kn

1
rKn:Ks TrKn{K

ÝÝÝÝÝÝÝÝÝÝÑ K

using that D
pnq

dR pΩ1q – Kn via t´1
LT e ÞÑ 1, where e corresponds to 1 in Ω1 – RKpδq. We

further define x ,́´ydR via the composite

D
pnq

dR pMq ˆD
pnq

dR pM̃q Ñ D
pnq

dR pM bM̃q
ev

ÝÑ D
pnq

dR pΩ1
q – Kn

1
rKn:Ks TrKn{K

ÝÝÝÝÝÝÝÝÝÝÑ K.

Remark 5.13. The pairing x ,́´ydR :“ x ,́´ydR,M

D
pnq

dR pMq ˆD
pnq

dR pM̃q Ñ K

is perfect if M is de Rham and induces a perfect pairing

D
pnq

dR pMq{Fil0D
pnq

dR pMq ˆFil0D
pnq

dR pM̃q Ñ K.

Proof. Let us abbreviate V :“ D
pnq

dR pMq,G “ Γn and B “ KnpptLT qq. For a suitable rn
we have that V “ pBbιn M

pnqqG “ pBbKn
V qG by definition. We will first show that the

pairing on the level of Kn is perfect. Observe that base change to B provides us with

an injection HomKn
pV ,Knq ãÑ HomBpB bKn

V ,Bq. The target can be endowed with a
G action by pgλqpxq “ gλpg´1xq and, because the action on V is trivial, we see that

the image of the above map is precisely the set of G-invariant elements. Indeed, since

BG “ Kn, a linear form λ which is fixed by g has to map elements of the form 1bv into
BG “Kn and hence restricts to an element of HomKn

pV ,Knq. The perfectness now follows

from HomBpB bKn
V ,Bq “ HomBpB bιn M,Bq – HomBpB bιn M,BpχLT qq – B bιn M̃

by taking G-invariants, using that the evaluation pairing commutes with base change.
Note that we used that B “ BpχLT q as ΓL-modules (since Bˆ contains tLT ) and that

DdifpMpχLT qq – DdifpMpχqq as they have “the same” ΓL-action. To conclude perfectness

of the K -valued pairing, it suffices to show that the pairing is non-degenerate on one side.
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Set W “ HomKn
pV ,Knq. Let V 1 :“ HomKpV ,Kq which we view as a Kn-module in the

obvious way; we endow W and V 1 with a ΓL{Γn-action via γfp´q “ γfpγ´1´q. By the

above perfectness at the level of Kn it thus suffices to show that the map W Ñ V 1 given
by w ÞÑ TrKn{Kpwp´qq is injective. One easily checks that it is compatible with the Kn-

and ΓL{Γn-structure on V 1. We thus have constructed a ΓL{Γn-semilinear map between

free Kn-modules of the same rank. By Galois descent it suffices to show that it is injective
on ΓL{Γn-invariant elements. Suppose w P WΓL satisfies TrKn{Kpwpvqq “ 0 for all v P V.

This means that the image of the map w : V Ñ Kn is contained in the kernel of the trace

map. For any x P V ΓL , we obtain wpxq P K X kerpTrq “ 0 by the ΓL-equivariance of w.
Thus w is trivial on ΓL-invariants and by Galois descent trivial, because V is generated

by ΓL-invariant elements, which implies w “ 0.

For the second statement observe first that Fil0pD
pnq

dR pΩ1qq “ 0 and Fil´1
pD

pnq

dR pΩ1qqq “

Kn. Hence Fil0pD
pnq

dR pMqq is contained in the subspace orthogonal to Fil0D
pnq

dR pM̃q. In

order to see that this inclusion is an equality, it suffices to show that the canonical

bijective morphism of filtered vectorspaces D
pnq

dR pMqbD
pnq

dR pM̃q – D
pnq

dR pM bM̃q is in fact
an isomorphism. This is not entirely trivial and can be achieved by an analogue of [9,

Proposition 6.3.3]. As in their case one reduces to the corresponding statement about

graded objects and finally to the corresponding statement of rank one objects (which is
clear in our case as well).

Lemma 5.14. The diagram

D
pnq

dR pΩ1q

g
pnq
Ω1

��

Kn
eχ

tLT

a
tLT

eχ ÞÑa
�� Kn

1
rKn:Ks TrKn{K

��
H1

Zn
pDdifpΩ

1qq
´δ2 �� H2

ϕ,Zn
pΩ1q

Tr“CTrpZnqRes�� K

(52)

is commutative.

Proof. Given any a P Kn (in the right upper corner of the diagram) we first have to

calculate δ2p1b
a

tLT
eχq as x :“ 1b

a
tLT

eχ P KnrrtLT ssr
1

tLT
seχ “ Ddif ,npΩ1q represents -

up to a constant - the image of a
tLT

eχ P D
pnq

dR pΩ1q under g
pnq

Ω1 . In order to calculate the

transition map δ2 we use an analogue of [35, Lem. 2.12(2)], which is an easy snake-lemma
application to 5.7: Assume that x belongs to Ddif ,kpΩ1q for some k ě 0. For any element

x̃ P
1

tLT
Ω1,pkq “

1
tLT

Rpχqpkq such that

ιmpx̃q ´ cank,mpxq P D`
dif ,mpΩ1

q

(using the notation of Definition 3.15) for all m ě k, we then have δ2prxsq “ rpϕ´1qx̃s P

H2
ϕ,Zn

pΩ1q.
We construct x̃ as follows. Consider the isomorphism

R`
K{ptLT q

„
ÝÑ

ź

μě0

Kμ, a ÞÝÑ pιμpaqqμě0 (53)
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analogous to (42) and let f be an element in R`
F , whose class in the left hand side

corresponds to the tuple paμqμě0 with

aμ :“

# a
qμ´kπk

L

, if μ ě k;
TrKk{Kμ paq

πk
L

, if k ě μ ě 0;

on the right hand side. Note that the operator Ψ on R`
K induces the map

Ψ :
ź

μě0

Kμ Ñ
ź

μě0

Kμ,

pxμq ÞÑ pq´1x0 ` q´1TrK1{K0
px1q,q´1TrK2{K1

px2q, . . . ,q´1TrKμ`1{Kμ
pxμ`1q, . . .q.

Moreover, pxμqμ satisfies qΨppxμqμq “ pxμqμ if and only TrK1{K0
px1q “ 0 and

TrKm`1{Km
pxm`1q “ xm for all m ě 1. In particular, qΨppaμqμq “ paμqμ if and only

if TrKk{K0
paq “ 0. We now set x̃ “

f
tLT

eχ P
1

tLT
Rpχqpkq and check that, for m ě k,

ιmpx̃q ”
πm
L fpumq

tLT
eχ modD`

dif ,mpRpχqq

“
πm
L am
tLT

eχ

“
πm´k
L a

qm´ktLT
eχ

“ cank,mpxq

as required, i.e., δ2p1b
a

tLT
eχq “ rpϕ´1qp

f
tLT

eχqs “ r

´

ϕpfq

q ´f
¯

1
tLT

eχs. Since

ˆ

ϕpfq

q
´f

˙

pumq “
fpum´1q

q
´fpumq “

am´1

q
´am “ 0

for all m ą k, we conclude from (53) that ϕpfq

q ´f P

´

ś8

mąk
Qm

πL

¯

R`
K, whence

ˆ

ϕpfq

q
´f

˙

1

tLT
P

´

ś8

mąk
Qm

πL

¯

tLT
R`

K “
1

Z
śk

μě1
Qμ

πL

R`
K (54)

using tLT “ Z
ś

μě1
Qμ

πL
. Since all involved maps are K -linear and Kn “ K ‘kerpTrKn{Kq

it suffices to check the commutativity in the two cases a P K, i.e., k “ 0, or TrKn{Kpaq “ 0,

i.e., qΨppaμqμě0q “ paμqμě0.

If k “ 0, the element a
tLT

eχ is sent via the lower composite to

CTrpZnqRes˝ p´δ2q ˝gΩ1p
a

tLT
eχq “ ´CgpZnqCTrpZnqRes˝ δ2p1b

a

tLT
eχq

“ ´
q

q´1
Resp

ˆ

ϕpfq

q
´f

˙

1

tLT
dtLT q
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“ ´
q

q´1

ˆ

ϕpfq

q
´f

˙

|Z“0

“ ´
q

q´1

ˆ

fp0q

q
´fp0q

˙

“ a

where we use for the second equality the definition (20) and for the third equality (54).

Thus the claim follows on the subspace D
pnq

dR pΩ1qΓL, because 1
rKn:Ks

TrKn{Kpaq “ a.

If qΨppaμqμě0q “ paμqμě0, i.e., qΨpfmod tLT q ” fmod tLT , it follows from the surjec-

tivity of 1
πL

Ψ´
1
q on R` by [6, Cor. 2.3.4] and the commutative diagram with exact rows

0 �� R`
K

1
πK

Ψ´ 1
q ����

tLT �� R`
K

Ψ´ 1
q

��

�� R`
K{tLTR`

K

Ψ´ 1
q

��

�� 0

0 �� R`
K

tLT �� R`
K

�� R`
K{tLTR`

K
�� 0

that we may assume without loss of generality that f also satisfies qΨpfq “ f, whence

we obtain Ψp
ϕpfq

q ´ fq “ 0. Using the identity RespΨpfqdtLT q “ χpπLqRespfdtLT q from

[15, Prop. 1.5] we conclude that Resp

´

ϕpfq

q ´f
¯

1
tLT

dtLT q vanishes, from which the

commutativity follows also in this case by a similar calculation as above.

Lemma 5.15. Let z P H0
Zn

pDdifpMqq,rx,ys P H1
ϕ,Zn

pM̃q,a P H0
ϕ,Zn

pMq and rbs P

H2
ϕ,Zn

pM̃q. Using x ,́´y :“ x ,́´yM as before to denote the pairing

Hi
ϕ,ZpMq ˆH2´i

ϕ,Z pM̃q Ñ K

obtained from 4.16 we have

xexp
pnq

M pzq,rx,ysy “ xz,rιnpyqsydif

and

xa,δ2,M prbsqy “ xιnpaq,rbsydif .

Proof. Let z be in D
pnq

dR pMq and rx,ys P H1
ϕ,Zn

pM̃q with x P M̃ pnq,y P M̃ pn`1q. Then we

have

xz,rιnpyqsydif “
1

rKn :Ks
TrKn{K ˝g´1

Ω ˝ev
´

rzb ιnpyqs

¯

“ ´Tr ˝ δ2

´

rzb ιnpyqs

¯

by (52) and, by the same snake-lemma application in order to calculate the transition

map δ2 induced by Proposition 5.7 (compare with [35, Lem. 2.12(2)]),

´Tr
´

δ2przb ιnpyqsq

¯

“ ´CTrpZnqRes
´

rpϕ´1qpz̃byqs

¯

“ ´CTrpZnqRes
´

rpϕ´1qpz̃q bϕpyq ` z̃bZnxs

¯

“ ´CTrpZnqRes
´

ϕpyq
`

pϕ´1qpz̃q
˘

`
`

Znx
˘

pz̃q

¯

,
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where in the second equality we have used the co-boundary condition pϕ´1qpyq “ Znx.

Moreover, z̃ P M
pnq

tLT
is an element with the property that ιmpz̃q´z belongs to D`

dif ,mpMq

for all m ě n, the existence of which is granted by the exactness of (40), whence ιmpz̃ b

yq ´zb ιmpyq P D`
dif ,mpM bM̃q for all m ě n.

On the other hand we have by a straightforward analogue of [35, Lem. 2.12 (1)] for the

first, the formula in Theorem 4.16 for the second equality and (22) for the third equality

xexp
pnq

M pzq,rx,ysy “ xrpϕ´1qpz̃q,Znz̃s,rx,ysy

“ ´CTrpZnqRes
´

ϕpyq
`

pϕ´1qpz̃q
˘

` pλιxqpZnz̃q

¯

“ ´CTrpZnqRes
´

ϕpyq
`

pϕ´1qpz̃q
˘

`
`

Znx
˘

pz̃q

¯

,

which agrees with the above formula. We leave the easy proof of the second identity to

the reader.

Proposition 5.16. Let M be de Rham. Let x P D
pnq

dR pMq{Fil0D
pnq

dR pMq and y P

H1
ϕ,Zn

pM̃q. We have

xexp
pnq

M pxq,yyM “ xx, exp
,̊pnq

M pyqydR,

i.e., exp
pnq

M is adjoint to exp
,̊pnq

M .

Proof. This is a formal consequence of Lemma 5.15 after plugging in the definition 5.11

of exp
,̊pnq

M .

Only for the purpose of the next lemma (needed in the proof of the subsequent
proposition) we introduce the notation Hi

mixpNq as the i -th cohomology of the complex

K
pϕq

Zn
pNtLT

q ‘KZn
pDdifpNqq of the bottom right in Proposition 5.7. We define a pairing

Ymix : H
0
mixpM1q ˆH1

mixpM2q Ñ H1
mixpM1 bRK

M2q

given by px,yq ÞÑ rxbys. Furthermore, we set

x ,́´ymix :H
0
mixpMq ˆH1

mixpM̃q Ñ H1
mixpM bRK

M̃qq
ev

ÝÑ H1
mixpΩq.

Finally, by

G :H1
ϕ,Zn

pM̃q Ñ H1
pK

pϕq

Zn
pM̃tLT

q ‘KZn
pD`

difpM̃qqq Ñ H1
mixpM̃q

we denote the composite H1pd7q ˝ H1pd3q, where d7 : K
pϕq

Zn
pM̃tLT

q ‘ KZn
pD`

difpM̃qq Ñ

K
pϕq

Zn
pM̃tLT

q‘KZn
pDdifpM̃qq sends px,yq to itself using the natural inclusion D`

difpM̃q ãÑ

DdifpM̃q. Then the next Lemma is formally analogous to Lemma 5.15, thus we leave the

details to the interested reader.
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Lemma 5.17. The following diagram is commutative

H0
mixpMq

exp
pnq
f,M `exp

pnq
M

��

ˆ H1
mixpM̃q

x ,́´ymix �� H1
mixpΩ1q

B2

��
H1

ϕ,Zn
pMq ˆH1

ϕ,Zn
pM̃q

´G

��

x ,́´y �� H2
ϕ,Zn

pΩ1q.

Proposition 5.18. Let M be a trianguline L-analytic pϕL,ΓLq-module over RK which is

de Rham. Then H1
ϕ,Zn

pMq
ΓL

f is the orthogonal complement of H1
ϕ,Zn

pM̃q
ΓL

f with respect

to the duality pairing x ,́´yM .

Proof. Analogous to [36, Prop. 2.24]: Replacing the sequence (13) in (loc. cit.) by (46),
using the Euler-Poincaré formula 4.7 as well as duality 4.16 and the de Rham property of

M one shows that dimKH1
ϕ,Zn

pMq
ΓL

f `dimKH1
ϕ,Zn

pM̃q
ΓL

f “ dimKH1
ϕ,Zn

pMqΓL . There-

fore it suffices to show that xx,yy “ 0 for all x P H1
ϕ,Zn

pMq
ΓL

f and y P H1
ϕ,Zn

pM̃q
ΓL

f . This is

accomplished by Lemma 5.17, because Gpyq “ 0 since y P kerH1pd3q by assumption.

6. ε-constants

Let E be a field of characteristic zero containing μp8 , ψ0 :“ ψξ :Qp Ñ Eˆ the character
(with kernel Zp) attached to a fixed compatible system ξ “ pξnqně1 of p-power roots of

unity via ψ0p
1
pn q “ ξn.

Similarly, we may define for the compatible system u “ punqnPN P Tπ (and a choice of

generator t1
0 of T 1

π) the character ψu :“ ψu,t1
0
: L Ñ Eˆ, x

πn
L

ÞÑ ηt1
0
px,unq.

But there is another (canonical) choice: ψL :“ ψ0 ˝TrL{Qp
:L Ñ Eˆ is a locally constant

character (with kernel the inverse of the different ideal DL{Qp
).

Remark 6.1. The character ψL factorizes over oL. Hence, by (4) there exists a“ apt1
0,uq P

oL such that the following diagram commutes

L{oL

x ÞÑubx –

��

TrL{Qp �� Qp{Zp

ψη
t1
0

p1,uq
�� μppq

Tπ boL L{oL
a¨ �� Tπ boL L{oL.

ηt1
0

��

Here ηt1
0
p1,uq :“ pηt1

0
p1,unqqn is a generator of Zpp1q, again by (4). In particular, for the

choice ξ “ ηt1
0
p1,uq we obtain

ψLpxq “ ψupaxq (55)

for all x P L. It is clear that a is a generator of the different ideal DL{Qp
.

Let dx be the Haar measure on L such that
ş

oL
dx “ 1. Let ψ : L Ñ Eˆ be a non-trivial

character which kills an open subgroup of L.

For a finite-dimensional E -linear representation D of the Weil-group WL :“ W pL̄{Lq

which is locally constant (i.e., the image of the inertia group is finite) we have local
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constants

εpD,ξq :“ εEpL,D,ψ,dxq P Eˆ,

see [18] or [52] and [16, §2.2].
If dimED “ 1 corresponding to a locally constant homomorphism δ :Lˆ Ñ Eˆ via local

class field theory (see section 7.4 for the normalisation we choose), i.e., D “ Epδq, then

εEpL,D,ψL,dxq “ δpπLq
apδqqnpψLq

ÿ

iPpoL{π
apδq
L qˆ

δpiq´1ψLp
i

π
apδq

L

q, (56)

εEpL,D,ψu,dxq “ δpπLq
apδqqnpψuq

ÿ

iPpoL{π
apδq
L qˆ

δpiq´1ηpi,uapδqq. (57)

Here npψq denotes the largest integer n such that π´n
L oL Ď kerψ, apδq denotes the

conductor of δ, (0 if δ is unramified, the smallest positive integer m such that 1`

πm
L oL Ď kerδ, if δ is ramified). If W “ pD,Nq is a Weil Deligne representation of WL with

monodromy operator N and underlying Weil group representation D we modify, following
Nakamura, its ε-constant by the factor

εpW q :“ εpDqdetp´Frob | pD{DN“0
q
ILq, (58)

where IL denotes the inertia subgroup. Both definitions agree if N acts as 0 on D.

Remark 6.2. ψupyq is independent of the choice of n such that y “ x{πn
L and npψuq “ 0.

Proof. The independence follows inductively from ηpπLx,unq “ ηpx,ϕLpunqq “ ηpx,un´1q.
On the one hand, by definition oL Ă kerψu. On the other hand by §1, Fact 2 in [8], using

that u1 is a non-zero πL-torsion point we may find a P oL such that ψupa{πLq “ ηpa,u1q

is a primitive p-th root of unity. This proves that π´1
L oL is not contained in kerpψuq. We

conclude npψuq “ 0.

How do the epsilon-constants for the two choices ψL and ψu compare? The first choice
behaves well under induction: there is a constant λ P E depending on L{Qp, the choices

of Haar measures dxQp
,dxL and the choice of ψ0, such that19

εEpQp,Ind
L
Qp

δ,ψ0,dxQp
q “ λεEpL,δ,ψL,dxLq

for all locally constant characters δ : Lˆ Ñ Eˆ (see [2] or [18, (5.6)]).
The second choice is obviously better adapted to the Lubin-Tate situation. By (55) there

exists a P Lˆ such that ψLpxq “ ψupaxq. Moreover, one knows that εEpL,δ,ψLpbxq,dxLq “
δpbq

|b|
εEpL,δ,ψL,dxLq by [52, (3.2.3) or (3.4.4)] for all b P Lˆ. Combining the above we get

the following:

19As εE is inductive with regard to virtual representations of dimension 0, one concludes that

λ “
εEpQp,Ind

L
Qp

δtriv,ψ0,dxQp q

εEpL,δtriv,ψL,dxLq
for the trivial representation δtriv.
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Remark 6.3. There exists λ P E depending on L{Qp, the choices of Haar measures

dxQp
,dxL and the choice of ψ0, as well as a P Lˆ depending on ψ0 and u such that

εEpQp,Ind
L
Qp

δ,ψ0,dxQp
q “ λ

δpaq

|a|
εEpL,δ,ψu,dxLq (59)

for all δ.

If we start with a Haar measure dx of L, then the dual Haar measure d̂x with respect

to the duality induced by ψ, i.e.,

LˆL Ñ μp8 Ď Eˆ,px,yq ÞÑ ψpxyq,

is the unique Haar measure such that fpxq “
ˆ̂
fp´xq “

ş

L
f̂pyqψp´xyqd̂xpyq holds for all

test functions in L1pLq, where

f̂pyq :“

ż

L

fpxqψpxyqdxpxq

denotes the Fourier transform of f. Especially for f “ 1
π

´npψq
L oL

we obtain:

{1
π

´npψq
L oL

pyq “

˜

ż

π
´npψq
L oL

dx

¸

1oLpyq,

whence

{

{1
π

´npψq
L oL

p´xq “

˜

ż

π
´npψq
L oL

dx

¸

ż

oL

ψp´xyqd̂xpyq

“

˜

ż

π
´npψq
L oL

dx

¸

ˆ
ż

oL

d̂xpyq

˙

1
π

´npψq
L

oL

pxq,

i.e.,
ş

oL
d̂xpyq “

1
qnpψq and d̂x “

1
qnpψq dx.

From [52, (3.4.7)] we obtain

εpL,δ,ψ,dxqεpL,δ´1
| ´ |,ψp´xq,d̂xq “ 1 (60)

and similarly for higher rank representations D instead of δ. Since by (3.2.2/3)
in (loc. cit.) we have εpL,δ,ψ,rdxq “ rεpL,δ,dxq for r ą 0 and εpL,δ,ψpaxq,dxq “

δpaq|a|´1εpL,δ,ψpxq,dxq, we conclude that

εpL,δ,ψ,dxqεpL,δ´1
| ´ |,ψpxq,dxq “ δp´1qqnpψq. (61)

Moreover, by (3.4.5) in (loc. cit.) it holds that

εpL,δ´1
| ´ |,ψpxq,dxq “ q´apδq´npψqεpL,δ´1,ψpxq,dxq “ |π

apδq`npψq

L |εpL,δ´1,ψpxq,dxq.

(62)
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7. Epsilon-isomorphisms - the statement of the conjecture

7.1. Determinant functor

Let R be a commutative ring. A graded invertible R-module is a pair pL,rq, where
L is an invertible R-module and r : SpecpRq Ñ Z is a locally constant function. We

define the category PR of graded invertible R-modules by setting MorppL1,rq,pL2,sqq :“

IsomRpL1,L2q if r “ s and empty otherwise. We further define

pL1,rq ¨ pL2,sq :“ pL1,rq b pL2,sq :“ pL1 bL2,r`sq

for each pair of objects and we identify pL1,rq b pL2,sq with pL2,sq b pL1,rq via the
morphism induced by l1 b l2 ÞÑ p´1qr`sl2 b l1. We denote by 1R the object pR,0q, which

acts as a unit with respect to the tensor product and we remark that every object pL,rq has

an inverse given by pL´1, ´rq, where L´1 denotes the R-dual of L. For a ring morphism

R Ñ S and pL,rq P PR we set pL,rqS :“ pLbS,r˚q, where r˚ denotes the pullback of r
along R Ñ S. An isomorphism 1R Ñ L is called a trivialisation of L. Let PfgpRq be

the category of finitely generated projective R-modules and let pPfgpRq,isq be its core,

i.e. the subcategory consisting of the same objects with isomorphisms as morphisms. We
have a functor

dR : pPfgpRq,isq Ñ PR

P ÞÑ pdetP, rankRpP qq,

where detP denotes the highest exterior power of P. Note that dR is compatible with

short exact sequences and base change in the sense that given an exact sequence 0 Ñ

P1 Ñ P2 Ñ P3 Ñ 0 the natural isomorphism

detP1 bdetP3 – detP2

induces an isomorphism

dRP1 ¨dRP3 – dRP2.

Moreover, for a morphism of rings R Ñ S we have dRpP qS “ dSpP bSq. This functor

can be extended to the category pCppRq,qisq of bounded complexes in PpRq with quasi-
isomorphisms as morphisms. On the level of objects this extension can be described as

follows: Let C‚ P CppRq then

dRpC‚
q :“

â

iPZ

dRpCi
q

´1i .

This functor is again compatible with exact sequences and if C‚ is acyclic, then the quasi
isomorphism 0 Ñ C‚ induces a trivialisation of dRpC‚q that we take as an identification.

One can show that dR factorises over pDb
perfpRq,qisq, the image of the category of bounded

complexes of finitely generated projective modules in the derived category with quasi
isomorphisms as morphisms. If a complex C‚ is cohomologically perfect meaning that

HipC‚q considered as a complex concentrated in degree 0 is in Db
perfpRq for all i, then we

have a canonical isomorphism

dRpC‚
q “

â

dRpHi
pC‚

qq
p´1q

i

,
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that we take as an identification. This extension is further compatible with duality and
base change in the following sense: There exist canonical isomorphisms

dRpRHomRpC‚,Rqq – dRpC‚
q

´1

and

dSpS b
L
R pC‚

qq – dRpC‚
qS .

7.2. Fundamental lines

Let M be a pϕL,ΓLq-module over RA, where A is an affinoid algebra over K. We assume

that M satisfies the following technical condition:

There exist L P PicpAq and δ “ δdetM P ΣanpAq such thatdetRA
M – LbARApδq,

(63)

where detM denotes the highest exterior power of M. Clearly detM is always a module

of rank 1 and the technical condition is asking detM to be of character type up to a twist

on the base. The full subcategory of pϕL,ΓLq-modules satisfying the above contains all
modules that arise as a base change from RL by [22, Proposition 1.9] and furthermore

contains all trianguline modules (even with L “ A). If M satisfies the above condition the

isomorphism class of L and the character δ are uniquely determined. Furthermore L can

be identified with the subset

LApMq :“ tx P detM | ϕLpxq “ δdetM pπLqx,γx “ δdetM pγqxu

by sending l P L to lbeδ P LbARApδq.

Definition 7.1. Let M be an L-analytic pϕL,ΓLq-module of rank rM over RA satisfying

(63). Write detpMq “ LbRApδdetM q. We define

Δ1,ApMq :“ dArΓL{UspKϕL,DpU,KqpMqq bArΓL{Us A,

using Remark (4.8), and

Δ2,ApMq :“

ˆ

tx P detM | ϕLpxq “ δdetM pπLqx,γx “ δdetM pγqxu, ´χArΓL{UspKϕ,DpU,KqpMqq

˙

,

i.e., the underlying line bundle of Δ2,A is L which has a canonical pϕL,ΓLq-action given

by δdetM,. We also write LpδdetM q if we wish to emphasize the action.

Remark 7.2. We have

tx P RKpδq | ϕLpxq “ δpπLqx,γx “ δpγqxu “ Rϕ“1,ΓL

K eδ “ Keδ – K

whence Δ2,KpRKpδqq “ pKeδ,1q – pK,1q using Remark 4.7.

Proposition 7.3. Δ1,ApMq and Δ2,ApMq are well-defined graded invertible modules and

ΔApMq :“ Δ1,ApMq ¨Δ2,ApMq

satisfies the following properties
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(i) For any continuous map of affinoid algebras A Ñ B induces a canonical isomor-

phism

ΔApMq bAB – ΔBpMb̂ABq.

(ii) ΔApMq is multiplicative in short exact sequences.

(iii) ΔApMq – ΔApM̃q˚ b pApχrM q,0q.

Proof. Compatibility with base change can be checked for Δi :“ Δi,A individually. For
Δ1 it follows from Theorem 4.6 and for Δ2 it is clear. The compatibility with short

exact sequences can also be checked individually for Δi. For i “ 2 it follows from the

corresponding statement for determinants and for i “ 1 it follows from the fact that a
short exact sequence of pϕL,Uq-modules induces a short exact sequence of the complexes

Kf,DpU,Kq. The quasi-isomorphism �pMq :Kϕ,ZpMq – Kϕ,ZpM̃q˚r´2s induced from (24)

by identifying ˜̃M – M gives an isomorphism Δ?,1pMq – Δ?,1pM̃q˚ while the isomorphism

ΔA,2pMq –ΔA,2pM̃q˚ bpApχrM q,0q arises as follows: First observe that M̃ satisfies (63), if
M does, and since M̃ “ ApχqbAM˚ one sees that detpM̃q – ApχrkpMqqbdetpM˚q. Hence

we see ΔA,2pM̃q “ΔA,2pM˚qbApχrq. A small calculation shows ΔA,2pM˚q “ΔA,2pMq˚,

hence the claim.

Definition 7.4. Let X be a rigid analytic space over K. Given a family of pϕL,ΓLq-

modules M over OX, i.e., a compatible collection of pϕL,ΓLq-modules MA over RA for
every affinoid SppAq Ď X, we define ΔXpMq as the global sections of the line-bundle

DXpMq defined by SppAq ÞÑ ΔApMAq. If X is quasi-Stein covered by an increasing

union Xn of affinoids we also have ΔXpMqr0s “ RΓpX,DXpMqq “ RlimpΔXn
pMXn

qq –

limΔXn
pMXn

qr0s by Theorem B for quasi-Stein spaces. We have analogous definitions

and statements for Δi,XpMqand Di,X,i “ 1,2 respectively. DX,Di,X are graded invertible

OX -modules by definition.

A word of caution is in order. A priori the Δi,XpMq are not necessarily graded invertible

OXpXq-modules because the global sections do not have to be finitely generated over OX .
In our applications (in section 8) we will have Δ2,X “ OXpXq and will be in a position

to apply the subsequent remark in order to conclude that Δ1,X is an invertible OXpXq-

module.

Remark 7.5. Let X “
Ť

Xn be a quasi-Stein space. Let C‚
n be a family of perfect

complexes of OXpXnq-modules together with quasi-isomorphisms OXpXn´1q bL
OXpXnq

C‚
n » C‚

n´1. Assume that there exists a perfect complex C‚ of OXpXq-modules (in the
ring-theoretic sense20) such that OXpXnq bL

OXpXq
C‚ » C‚

n.

Then we have dOXpXnqpC‚
nq – OXpXnq b dOXpXqpC‚q. Furthermore dOXpXqpC‚q is

coadmissible, i.e., dOXpXqpC‚q “ lim
ÐÝn

dOXpXnqpC‚
nq.

20Here one has to make a distinction between a perfect complex of OpXq-modules and a perfect
complex of sheaves of OX -modules, i.e., a complex whose restriction to each OXn

is perfect.
One can show that C is isomorphic to RlimCn. Hence this remark could be restated to
require RlimCn to be perfect.
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Proof. The proof is formal using that determinant functors commute with derived tensor
products and OXpXnq Ñ OXpXn´1q is flat together with the fact that dpC‚q is a rank

one projective module over OXpXq and hence coadmissible by [43, Corollary 3.4].

7.3. Statement

We expect that the results in section 4 extend to affinoids (where only stated or proven

over fields) and to all analytic pϕL,ΓLq-modules (where only stated for rank one or
trianguline ones), explicitly this refers to Remark 4.7 and Theorems 4.9, 4.10, 4.16. Hence

we state the conjecture below in this level of generality.

Conjecture 7.6. Choose a compatible system u “ punq of rπn
Ls-torsion points of the

Lubin-Tate group and a generator t1
0 of T

1
π. Let A be an affinoid algebra over K, a complete

field extension of L containing Lab. For each L-analytic pϕL,ΓLq-module M over RA

satisfying condition (63) there exists a unique trivialisation

εA,upMq : 1A
–

ÝÑ ΔApMq

satisfying the following axioms:

(i) For any affinoid algebra B over A we have

εA,upMq bA idB “ εB,upMb̂ABq

under the canonical isomorphism ΔApMq bAB – ΔBpMb̂ABq.

(ii) εA,u is multiplicative in short exact sequences.

(iii) For any a P oˆ
L we have

εA,a¨upMq “ δdetM paqεA,u.

(iv) εA,upMq is compatible with duality in the sense that

εA,upM̃q
˚

bhpχrM q “ p´1q
dimK H0

pMqΩ´rM
t1
0

εA,´upMq

under the natural isomorphisms 1A – 1A b1A and ΔpMq – ΔpM̃q˚ b pAprM q,0q,

where hpχrM q : AprM q Ñ A maps eχrM to 1.

(v) For L “ Qp, πL “ p and u “ pζpn ´ 1qn the trivialisation coincides with that of

Nakamura, in the sense of Proposition 8.7.

(vi) Let F {L be a finite subextension of K,M0 be a de Rham pϕL,ΓLq-module over RF

and M “ Kb̂FM0. Then

εK,upMq “ εdRF,upM0q.

Remark 7.7.

(i) The occurrence of the power of Ω in the compatibility with duality (iv) is a
conceptually new phenomenon in our conjecture, see also Proposition 7.14.

(ii) Due to the equivalence of categories stated in [7, Thm. 3.16] there is an analogous

conjecture for L-analytic pϕL,ΓLq-modules over the character variety, i.e., by
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replacing the usual Robba ring RK “RKpBq (attached to the open unit ball B) by

the Robba ring RKpXoLq of the character variety XoL attached to the group oL, see

[7, §2.4] or [46, §4.3.6]. In this situation, we expect that the conditions concerning
K can be weakened and perhaps the descent to L (or any finite extension of it)

instead of the huge field K should be feasible, compare with Thm. 4.3.23 in (loc.

cit.). Moreover, due to [46, Lem. 4.3.25] there should be no occurrence of Ω! We
will pursue this in future work.

(iii) The assumption that K contains yLab can be dropped in the case that L “ Qp

as the period ΩQp
can be taken to be any element in Zˆ

p . In order to specialise

our construction to Nakamura’s one has to make more specific choices. Fixing an

element γ PΓ, whose image in Γ{Γp´power-torsion is a topological generator implicitly

determines the period as ΩQp
“ log0pχcycpγqq´1. But this would not necessarily

be compatible with Nakamura’s variant of the de Rham isomorphism, since his

variant does not involve any period. Instead one should choose a γ such that

log0pχcycpγqq “ 1. This defect is due to the fact our variant of the exponential
map involves the period Ω as part of its definition and hence so does our de Rham

isomorphism. This is not a contradiction to the uniqueness of the ε-isomorphisms in

question. Indeed in the rank one case, we can see the ε-isomorphism is determined
by its behaviour at de Rham points. If ΩQp

‰ 1 then our variant asks for a different

behaviour at these de Rham points thus leading to a different result.

7.4. The de Rham case

In this section we explain how to attach a Weil-Deligne Representation to an L-analytic

de Rham pϕL,ΓLq-module over RL in order to define the de Rham epsilon-constants.
We denote by B? for ? P tcris,dR,stu Fontaine’s usual period rings. Without difficulty

this construction can be generalised to pϕL,ΓLq-modules over F bL RL for a finite

extension F with trivial action. In order to keep notation light we will assume without

loss of generality F “ L. We write Be,LT “ R̃r1{tLT sϕL“1. We will make use of the
equivalence of categories between L-analytic pϕL,ΓLq-modules and L-analytic B -pairs

originally suggested in [5, Remark 10.3] and detailed in [39, Theorem 5.5]. A priori

these results are only applicable to E -linear representations of GL, where E denotes
a Galois closure of L{Qp. If we start with an analytic pϕL,ΓLq-module M over RL then

by [39] we can attach to E bL M a B -pair (called Bid-pair in (loc. cit.)), i.e., a pair

consisting of a finite free E bL B`
dR-module W`

dR, id,E with a B`
dR-semi-linear (and E -

linear) GL-action and a finite free Be,LT,E :“ EbLBe,LT -module WLT
id,E with semi-linear

GL-action together with an isomorphism after base change to BdR. By Galois descent,

taking invariants with respect to the GpE{Lq-action (acting via the first tensor factor)
provides us with a B -pairW pMq :“ pW`

dRpMq,WepMqq over pB`
dR,Be,LT q. The ringBe,LT

can be viewed as a subring of Bcris,L. Indeed, since ϕptLT q “ πLtLT it suffices to consider

elements of R̃ satisfying ϕpxq “ πj
Lx for some j P Z, which by Frobenius regularisation

are already contained in R̃` (cf. [3, Proposition 3.2] in the cyclotomic case, and a similar

result holds for ramified Witt-vectors as well (cf. [49, Satz 3.19])). The ring R̃` is a subring

of Bcris,L. We call a B -pair pW`
dR,Weq de Rham if W`

dRr1{tLT s admits a GL-invariant
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basis. One can show, that this is equivalent to the corresponding pϕL,ΓLq-module being

de Rham (cf. [38, Section 3.2, Proposition 3.7] for a proof in the étale case). Note that
our notion of de Rham coincides with L-de Rham in loc. cit.). Consider for F {L finite

the vector space

DstpM|F q :“ pBst bBe
WepMqq

GF

over the maximal unramified subextension F 1 of F {L. We define DpstpMq as their colimit

over all F {L finite. By a standard argument (cf. proof of Theorem 2.13 Part (1) in [20]),
each F 1-vector space DstpM|F q is of dimension ď rkM and DpstpMq is hence an Lnr-

vector space of dimension ď rkM. We say that M is potentially semi-stable if this

dimension is precisely rkM or, equivalently, if there exists a finite extension F {L such

that DstpM|F q is an F 1-vector space of dimension rkM. The p-adic monodromy theorem
also holds for B -pairs in the cyclotomic case and there is an obvious L-analytic analogue

providing us with the following (see [38, Corollary 3.10] for a treatment in the étale case).

Remark 7.8. M is de Rham if and only if M is potentially semi-stable.

Note that DpstpMq naturally has a semi-linear GL-action and inherits from Bst,L “

Bst bL0
L an action of ϕq and the monodromy operator N satisfying Nϕq “ qϕqN.

We now explain how to modify this action in order to obtain an Lnr-linear representa-

tion of the Weil group WL. By local class field theory the maximal abelian extension Lab

of L is given by the composite LnrL8 and Lnr XL8 “ L. Consider the reciprocity map

recL : Lˆ
Ñ GalpLab

{Lq,

which by our convention sends πL to the geometric Frobenius on Lnr. This induces an

isomorphism Lˆ – W ab
L – ϕZ

L ˆΓL. We denote by ¯ :WL �W ab
L the canonical surjection

and define a linearised action of WL on DpstpMq by setting

ρlinpgqpxq :“ ϕvπprec´1
pḡqq

q pρsemi´linpgqpxqq,

where ρsemi´lin denotes the action we considered previously. For a P Lnr, we then have

ρlinpgqpaxq “ ϕvπprec´1
pḡqq

q

`

ρsemi´linpgqpaxq
˘

“ ϕvπpprec´1
pḡqq

q

`

ρsemi´linpgqpaqρsemi´linpgqpxq
˘

“ ϕvπprec´1
pḡqq

q

`

pϕ´1
L q

vπprec´1
pḡqq

paq
˘

¨ϕvπprec´1
pḡqq

q

`

ρsemi´linpgqpxq
˘

“ aρlinpgqpxq.

By passing to the base change DpstpMq bL L8 (with trivial action on L8) we are

finally able to define W pMq :“ pDpstpMq bL L8,ρlin,Nq which is an Lab-linear Weil-

Deligne representation (Note that since DpstpMq can be written as a base extension of

some DstpM|F q, the action of the inertia group IF is discrete and because IF is open in
WL the action of WL is discrete.)

Example 7.9. The linearized Weil-Deligne representation W :“ W pRKpδqq with δ “

δlcx
kis given by the character δW “ δlcδ

un
π´k
L

: Lˆ Ñ pLabqˆ via class field theory sending
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πL to the geometric Frobenius. In particular,

pδW q
|oˆ

L
“ δ

|oˆ
L

px´k
q

|oˆ
L
. (64)

Proof. For the convenience of the reader we give a proof using B -pairs. Let eδ be the

obvious basis of RLpδq and write δpπq “ δlcpπqπk “ πlα with α P oˆ
L . We can find a P

Lnr Ă R̃ such that ϕqpaq “ αa and hence y :“ 1
atlLT

b eδ P WepRLpδqq “ pR̃r1{tLT s bR

RLpδqqϕL“1. Note that GL acts diagonally on WepRLpδqq, where the action on RLpδq

is given via the quotient ΓL. Let F be a field extension of L such that δlc is trivial
when restricted to the image of GF in ΓL. Then the action of g P GF is given by gpyq “

a{gpaqχLT pgqk´ly and hence z :“ tl´k
LT a b y is a basis of pBst b WepRLpδqqqGF . Write

δ “ xkδun
πl´k
L

δunα ρ where ρ is a locally constant character with ρpπq “ 1 and ρpγq “ δlcpγq

for γ P ΓL. In this representation it is clear that the residual (non-linearised) action of
GL is given by gz “ ρpgqz and hence the linearised action is given by

ρpgqϕvπprec´1 gq
q pzq “ pπl´kαq

vπprec´1 gqρpgqz

“ δlcpπq
vπprec´1 gq

pπ´k
q
vπprec´1 gqρpgq “ δlcδ

un
π´kpgqz.

7.4.1. Equivariant de Rham epsilon constants. For a de Rham pϕL,ΓLq-module

M over RL we would like to define the epsilon constant of M to be the ε-constant

associated to W pMq

εpM,ψ,dxq :“ εLabpL,W pMq,ψ,dxq

defined in section 6 using the adjustment (58). In the cyclotomic case (take for simplicity

L “ K “ Qp), these ε-constants can be viewed as elements of Ln “ Qppζpnq. In our case

the constants are defined using p-power roots of unity which are “built” from the LT-

torsion points using the power series ηp ,́T q. The problem we run into is that, contrary
to the classical case, we can not assume that Ln contains the p-power roots of unity.

SupposeK contains Lab. Then it makes sense to view εpM,ψ,dxq as an element ofK, but

by our convention that K carries the trivial ΓL-action, we do not have γpεpM,ψu,dxqq “

εpM,ψγpuq,dxq, which we will need for technical reasons below in (67),in the form of

Remark 7.11. Roughly speaking we would like to define the ε-constants as elements of

Ln bLK with n large enough, such that the definition of the epsilon constants “involves
only” the πn

L-division points of the Lubin-Tate group. We make this concept precise via

the following equivariant construction.

Definition 7.10. Suppose the complete subfield K of Cp contains Lab and let W be

a Weil-Deligne representation of WL with coefficients in K. Building on the ε-constants
defined in section 6 with E “ K we define the ΓL-equivariant ε-constant

ε̃pW,u,dxq :“ pεKpL,W,ψτ̂puq,dxqqτ ,
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for lifts τ̂ of τ to ΓL, viewed as an element of21

ź

τ : LnÑK

K – Ln bLK Ď L8 bLK

via the canonical isomorphism, where n " 0 is large enough such that the ε-constant

can be defined in terms of characters of conductor ď n according to Deligne’s (inductive)
construction principle: In the rank one case, i.e., in the case of a locally constant character

δ : Lˆ Ñ Kˆ, one can take n ě apδq. In general, the definition of the ε-constant involves

multiple such characters defined over finite extensions of L (cf. [18, p. 536, Equation

4.2.1]) and one has to choose n greater than the supremum of all appearing conductors.

Remark 7.11. The ε-constant ε̃pW,u,dxq is well-defined, i.e. its definition above is
independent of the choices of the lifts τ̂ . Furthermore, with respect to the ΓL-action

on Ln bLK via the left tensor factor we have

γpε̃pW,u,dxqq “ ε̃pW,γpuq,dxq “ p1b δdetW pχLT pγqqqε̃pW,u,dxq.

Proof. Without loss of generality we can assume W is of rank one corresponding to

a locally constant character δ : Lˆ Ñ Kˆ due to Deligne’s construction principle. First

of all we note that ε̃ is well-defined since uapδq P Ln by assumption. Because the natural
isomorphism Ln bLK –

ś

τ : LnÑKK maps ub1 to pτpuqqτ , we can see that ε̃ is obtained

by replacing in (57) the elements ηpa,uapδqq by the series ηpa,T q evaluated at the element

puapδq b 1q, i.e., by
ř

iPN0
p1 b aiqpuapδq b 1qi, where ηpa,T q “

ř

aiT
i (this expression

converges with respect to the tensor product topology). The formula for the γ-action
can be read off from (57).

Definition 7.12. For a de Rham pϕL,ΓLq-module M over RL we define the epsilon

constant of M to be the ΓL-equivariant ε-constant associated to W pMq

ε̃pM,u,dxq :“ ε̃pW pMq,u,dxq.

We usually omit dx from the notation and write

ε̃pM,uq :“ ε̃pM,ψu,dxq.

Remark 7.13. Let dx be the self dual Haar measure with respect to ψu, then

ε̃pM, ´u,dxqε̃pM̃,u,dxq “ 1

Proof. In order to apply (60) we check that we have an isomorphism DpstpM̃q –

DpstpMq˚p|x|q. Using the usual functorialities it suffices to check that DpstpΩ
1q –

21If δ takes values in a finite extension F of L and W “ W pRF pδqq, then as an element of
ź

τ : LnÑK;σ : FÑK

K –
ź

τ : LnÑK

F bLK – F bLLn bLK Ď F bLL8 bLK

assuming F Ď K for the first isomorphism. Also the σ should be involved as W pMqσ in the
defining tuple then.
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Lnrp|x|q, which is a special case of Example 7.9. The proof of the other required equation

detp´ϕ|DstpMq{DcrispMqqdetp´ϕ|DstpM̃q{DcrispM̃qq “ 1

is then also standard, see e.g. [17, claim 5 in proof of Prop. 2.2.20].

We now describe how our construction relates to the étale and the cyclotomic case. The
comparison of ε-constants involves a number of choices and we will only give an informal

comparison of the constructions presented here and the ones from [36] - by which we

mean that we give a comparison up to constants that only depend on L{Qp. There are
two avenues to be considered. On the one hand, we can specialise our constructions to the

cyclotomic case L “ Qp, taking un “ ζpn ´1 and Ω “ 1. Because ζpn “ 1`un “ ηp1,punqq

in this case our construction specialises to Nakamura’s, more precisely, our ε̃ is equal
to εNa b 1 viewed as an element of L8 bQp

K, where εNa denotes the constant from

[36, Section 3C]. Indeed the elements ηpa,un b 1q “ ζapn b 1 appearing in 7.11 lie inside

Ln bQp
Qp.

On the other hand, we take the induction of an L-linear GL-representation V and treat
it as an L-linear representation of GQp

. For the moment let us assume V P RepLGL is

semi-stable and L-analytic and set X :“ IndL{Qp
V. Let Qp Ď L0 Ď L be the maximal

unramified subextension. We can decompose

pBst bQp
V q

GL –
ź

τ : L0ÑQp

pBst bL0,τ V q
GL

and have a similar decomposition for pBst bQp
Xq

GQp . The epsilon constants of the

induction (given suitable choices of additive characters) are related by explicit constants

independent of V (see (59)). Ignoring these, the ε-constants defined by Nakamura are
the product of the ε-constants of each component in the sense that he attaches to X a

tuple pWτ qτ of WQp
-representations to which he attaches a tuple pεpWτ qqτ (cf. [36, p.359]

for details) of constants living over Qppζp8 q bQp
L. In contrast we attach (informally

speaking) to the τ “ id component a constant εpWidq. As we can not assume that L8

contains the p-th roots of unity, an analogous construction involving L8 does not work

in the obvious sense and taking the base change to Lab with GL acting naturally on
Lab does not provide us with the Galois action needed to make the constructions in 7.11

work. By assuming Lab Ă K we can make sense of the elements ηpa,pun b1qq P Ln bLK,

which allow us to define ε̃pWidq with the desired technical properties now living over

Ln bLK “
ś

σPHomLpLn,Kq
K for n " 0 (note that the index set of the product is different

in comparison to Nakamura’s situation). By projecting to the σ “ id component we

can recover Nakamura’s εpWidq and our constant ˜εpWidq “ pεpWid,ψσ̂puq,dxqqσ should

be informally thought of as pσpεpWidqqqσ, which is not well-defined as σ does not act on
K but only on Ln.

The fact that V is semi-stable and L-analytic forces each non-identity component to

be potentially unramified (since they are semi-stable with Hodge-Tate weights 0). If they
are even unramified, all ε-constants at non-identity components would be 1 and both

methods give comparable ε-constants (more precisely, at σ “ id they would be the same

up to explicit constants independent of V ). If the action on the non-identity components
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is only potentially unramified, we cannot assume that the ε-constants at the non-identity
embeddings are 1. In particular these embeddings contribute to the ε-constant attached

to V by Nakamura in a way that can not be captured by only considering the identity

embedding.

7.4.2. The de Rham epsilon-isomorphism. For each de Rham pϕ,ΓLq-module M

over RK which arises as a base change of a pϕL,ΓLq-module M0 over RF for some finite
extension F {L, and for each generator u of Tπ we are going to define a trivialization

εdRF,upM0q : 1K
–

ÝÑ ΔKpMq (65)

as product of three terms

εdRF,upM0q :“ ΓpMq ¨ΘpMq ¨ΘdR,upM0q

where

ΘpMq : 1
–

ÝÑ ΔK,1pMqdKpDdRpMqq,

ΘdR,upM0q : dKpDdRpMqq
–

ÝÑ ΔK,2pMq,

ΓpMq P Kˆ.

To keep notation light and consistent with the previous subsection we will, without loss

of generality, restrict ourselves to the case L “ F. Firstly, we define ΓpMq, which depends
only on the Hodge–Tate weights of M. For r P Z let

nprq “ dimK gr´rDdRpMq,

so nprq is the multiplicity of r as a Hodge–Tate weight of M. We adopt the convention in

this paper that the Hodge–Tate weight of the cyclotomic character is 1. We define

Γ˚
prq :“

#

pr´1q! if r ą 0,
p´1q

r

p´rq! if r ď 0,

the leading coefficient of the Taylor series of Γpsq at s “ r. Then we set

ΓpMq :“
ź

rPZ

pΩrΓ˚
prqq

´nprq.22

Secondly, ΘpMq is obtained by applying the determinant functor to the following exact

sequence

0 �� H0
ϕ,Zn

pMqΓL �� DcrispMq �� DcrispMq ‘ tM �� H1
ϕ,Zn

pMqΓL ��

�� DcrispM̃q˚ ‘DdRpMq0 �� DcrispM̃q˚ �� H2
ϕ,Zn

pMqΓL �� 0, (66)

which arises from joining the bottom exact sequence of (46) with the dual of the same

sequence applied to M̃ by local duality x ,́´yM in 5.18 and using Remark 5.13, upon

22Γ˚
pkq in [36] has been replaced by ΩkΓ˚

pkq in our setting
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(i) using the tautological exact sequence 0 �� DdRpMq0 �� DdRpMq ��

tM �� 0 as well as de Rham duality in the form

DdRpMq
0 –

ÝÑ t˚

M̃
, x ÞÑ tȳ ÞÑ ry,xsdR,M̃u,

and

(ii) identifying each time the two instances of DcrispM̃q˚ and DcrispMq, respectively,

by the identity.

Thirdly - here comes the reason why we use a model M0 - ΘdR,upM0q :“ f´1
M0,u

is

defined by the analogue of [36, Lem. 3.4] which - using Remark 7.11 and (64) - induces

an isomorphism fM0,u : ΔK,2pMq
–

ÝÑ dKpDdRpMqq from the map (taking into account

Remark 3.21)

LKpMq Ñ Ddif,npdetRK
Mq “ KnpptLT qq b

ιn,Rpnq
K

pdetRK
Mq

pnq (67)

x ÞÑ
`

ε̃pM0,uq
´1

¨
1

thM

LT

˘

bϕn
pxq

for sufficiently large n such that the equivariant constant ε̃pW pM0q,u,dxq from Definition

7.10 lies in Ln bK Ď KnpptLT qq, where hM denotes the Hodge-Tate weight of detM. One

easily checks independence of the choice of a model M0 - the reason why we use M0 in
the notation is to indicate that we need a model to define these objects. Note that (67)

depends on u in two ways. On the one hand via ε̃ and on the other hand due to the

explicit appearance of tLT which, as pointed out in 3.11, depends on the choice of u. An
analogous computation to [36, Remark 3.5] shows that fM0,au “ δdetRK

M paq´1fM0,u for

a P oˆ
L .

Proposition 7.14 (Properties (ii) and (iv) for εdRL,upM0q).

(i) For any exact sequence 0 �� M1
�� M2

�� M3
�� 0 , we have

εdRL,upM2,0q “ εdRL,upM1,0q bεdRL,upM3,0q

under the canonical isomorphism ΔKpM2q – ΔKpM1q bΔKpM3q.

(ii) The following diagram of isomorphisms commutes

ΔKpMq
can �� ΔKpM̃q˚ b pKprM q,0q

εdRL,upM̃0q
˚

bhpχrM q

��
1K

εdRL,´upM0q

��

p´1q
dimK H0pMqΩ´rM can�� 1K b1K,

where hpχrq : pKpχrq,0q Ñ 1K sends er to 1.

Proof. Analogous to [36, Lem. 3.7], but with some differences. Due to the period Ω in

the definition of ΓpMq we now obtain

ΓpMqΓpM̃q “ Ω´rM p´1q
hM`dimK tM (68)
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instead of (27) in (loc. cit.). By definition, the second part of the long exact sequence

(66) for M̃ is given by the commutativity of the following diagram with exact rows

0 �� H1
pM̃q{H1

pM̃qf

�1

{f pM̃q

��

�� DcrispMq
˚ À

DdRpM̃q
0

��

�� DcrispMq
˚

��

�� H2
ϕ,Zn

pMq

�2pM̃q

��

�� 0

0 �� H1
pMq

˚
f

pexpf,M

À

expM q˚
�� DcrispMq

˚ À

t˚
M

�� DcrispMq
˚ �� H0

pMq
˚ �� 0

(69)

where we have identified M –
˜̃M and abbreviated Hi

ϕ,Zn
pNqΓL by HipNq. Moreover, the

maps �1
{f pM̃q, �2pM̃q and similarly �1

f pM̃q : H1pM̃qf Ñ pH1pMq{H1pMqf q˚ are induced

from the complex isomorphism Kϕ,ZpM̃q – Kϕ,ZpMq˚r´2s from (24). Taking duals gives
the following commutative diagram with exact rows

0 �� H0
pMq

�2pM̃q˚

��

�� DcrispMq

��

�� DcrispMq
À

tM

��

expf,M

À

expM �� H1
pMqf

�1

{f pM̃q˚

��

�� 0

0 �� H2
pM̃q

˚ �� DcrispMq �� DcrispMq
À

pDdRpM̃q
0

q
˚ �� pH1

pM̃q{H1
pM̃qf q

˚ �� 0
(70)

Upon noting that �2pM̃q˚ “ �0pMq while �1pM̃q˚ “ ´�1pMq, whence also �1
{f pM̃q˚ “

´�1
f pMq, we obtain the modified commutative diagram with exact rows

0 �� H0
pMq

´�0pMq

��

�� DcrispMq

´ id

��

�� DcrispMq
À

tM

´ id
À

´can

��

expf,M

À

expM �� H1
pMqf

�1
f

pMq

��

�� 0

0 �� H2
pM̃q

˚ �� DcrispMq �� DcrispMq
À

pDdRpM̃q
0

q
˚ �� pH1

pM̃q{H1
pM̃qf q

˚ �� 0
(71)

Combining this diagram with the analogue of diagram (69) for M instead of M̃ we obtain

the commutative diagram

1K

p´1q
dimK tM `dimK H0pMq

��

ΘM �� ΔK,1pMq bdKpDdRpMqq

�pMqbcan

��
1K ΔK,1pM̃q˚ bdKpDdRpM̃qq˚.

Θ˚
M̃		

(72)

Finally, one has the commutative diagram

dKpDdRpMqq

p´1q
hM can

��

ΘdR,´upM0q �� ΔK,2pMq

can

��
dKpDdRpM̃qq˚ b1K ΔK,2pM̃q˚ b pKpχrM q,0q,

ΘdR,upM̃0q
˚

bhpχrM q		

(73)
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because of Remark 7.13 and since changing u to ´u requires the change tLT to ´tLT

(compare with [36, Rem. 3.5] which applies analogously here) in the definition of fM0,u

above. Then (ii) follows from (68),(72) and (73) while the proof of (i) is literally the same

as in (loc. cit.).

Remark 7.15. As in [36, Rem. 3.5] one shows property (iii) for εdRL,upM0q using

Remark 7.11:

εdRL,aupM0q “ δdetRK
pMqpaqεdRL,upM0q

for all a P oˆ
L .

8. Epsilon-isomorphisms for (Lubin-Tate deformations of) rank one modules

In order to construct the Epsilon-isomorphism for rank one modules M in ManpKq we
shall construct it on the level of the deformation DfmpMq of M (introduced in §4.2)
and descend the results to M. As this deformation lives over the character variety XΓL

(base changed to K ) of the locally L-analytic group ΓL, we can use density arguments to

deduce many of its properties just from its de Rham points.

Definition 8.1. Using that the complexes C‚
n :“ KΨ,DpΓL,KqpDfmnpMqq are perfect by

Theorem 4.6 (1) we can apply our definition

Δ1,Xn
pDfmnpMqq :“ dDrn pΓL,KqpKΨ,DpΓL,KqpDfmnpMqqq,

which defines a (graded) line-bundle on XΓL
by (2) of the same theorem, with global

sections

Δ1,XΓL
pDfmpMqq “ lim

ÐÝ
n

Δ1,Xn
pDfmnpMqq.

From the proof of Theorem 4.10 we know that for the derived limit C‚ and for every n,

OXΓL
pXnq b

L
OXΓL

pXΓL
q C

‚
– C‚

n

in DpOXΓL
pXnqq. Hence, by Definition 7.4, Remark 7.5 and again Theorem 4.10 together

with Remark 4.11 we obtain

Δ1,XΓL
pDfmpMqq – dDpΓL,KqpRΓΨ,DpΓL,KqpXΓL

,DfmpMqqq – dDpΓL,KqpTΨpMqq.

(74)

Furthermore,

Δ2,XΓL
pDfmpMqq “ lim

ÐÝ
n

Δ2,Xn
pDfmnpMqq – lim

ÐÝ
n

pOXΓL
pXnq,1q “ pDpΓL,Kq,1q. (75)

We survey some preliminary results that allow us to construct an isomorphism

Δ2,XΓL
pDfmpMqq – dDpΓL,KqpTψpMqq

´1.

Let δ P Σan. Using pR`
KpδqqΨ“0 “ pR`

KqΨ“0pδq combined with Lemma 4.19 and since

ϕpeδq differs from eδ only by a scalar in Kˆ, we can take ηp1,Zqeδ as a DpΓL,Kq-basis
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of pR`
KpδqqΨ“0, which gives rise to the Mellin isomorphism

Mδ :DpΓL,Kq – pR`
Kpδqq

Ψ“0, λ ÞÑ λpηp1,Zqeδq. (76)

It turns out that for technical reasons (more precisely, in order to obtain the
commutative diagram (99) below), we have to renormalize the Mellin isomorphism by

inserting the operator σ´1 P ΓL with χLTpσ´1q “ ´1 :

Mδ ˝σ´1 :DpΓL,Kq – pR`
Kpδqq

Ψ“0,λ ÞÑ λpσ´1pηp1,Zqeδqq. (77)

Remark 8.2.

(i) The complexes TΨpLApoLqpχ´1δqq – TΨpRKpδq{RKpδq`q, TΨpRKpδqq and

TΨpR`
Kpδqq, are all perfect complexes of DpΓL,Kq-modules. Indeed, by Lemma

4.20, the cohomology groups of TΨpLApoLqpχ´1δqq are finite-dimensional K -vector

spaces, whence perfect as DpΓL,Kq-modules by [51, Lem. 3.7] (with r “ 0 and using

the Fourier-isomorphism). Then [48, Tag 066U] implies that TΨpLApoLqpχ´1δqq

belongs to Db
perfpDpΓL,Kqq. Since TΨpRKpδqq is in Db

perfpDpΓL,Kqq by Theorem

4.9, so is TΨpR`
Kpδqq as the third complex in an obvious exact triangle with the

previous ones. The same holds for TΨpDN pδqq and TΨpR`
Lpδq{DN pδqq for similar

reasons.

(ii) Since over affinoids A the analogous conclusion of [51, Lem. 3.7] - i.e., that a

DpΓL,Aq-module, which is finitely generated as an A-module, is perfect - is not

available, we are not sure whether the construction below also carries over to

families directly. It certainly does, if RApδq P ManpAq satisfies the conditions of
Remark 4.23.

Lemma 8.3. Let δ P Σan and let M “ RKpδq be the associated pϕL,ΓLq-module of rank

one. We denote by M` the submodule R`
Kpδq. We have the following isomorphisms in

PDpΓL,Kq :

(i) dDpΓL,KqpTΨpMqq – dDpΓL,KqpTΨpM`qq induced by the canonical inclusion M` Ă

M and the trivialisation of dDpΓL,KqpTΨpM{M`qq from Lemma 4.20.

(ii) dDpΓL,KqpTΨpM`qq
–

ÝÑ dDpΓL,KqprM` Ψ
ÝÑ M`sq induced by p1 ´ ϕL, idq and the

trivialization of dDpΓL,KqpTΨpDN pδqqq.

(iii) pDpΓL,Kq,1q – pdDpΓL,KqrM` Ψ
ÝÑ M`sq´1 induced by identifying kerpΨq with

DpΓL,Kq via Mδ ˝σ´1.

Chaining these together gives an isomorphism dDpΓL,KqpTΨpMqq´1 – pDpΓL,Kqpδq,1q.

Proof. The first statement follows since the short exact sequence 0 Ñ M` Ñ M Ñ

M{M` Ñ 0 induces a short exact sequence of complexes. For the second statement we
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use that by [22, Lem. 5.1] we have a commutative diagram with exact rows

0 �� pR`
KpδqqΨ“1

1´ϕ –

��

�� R`
Kpδq

1´ϕ –

��

Ψ´1 �� R`
Kpδq �� 0

0 �� R`
KpδqΨ“0 �� R`

Kpδq
Ψ �� R`

Kpδq �� 0,

which induces a quasi-isomorphism between the complexes, if δpπLq ‰ π´i
L for all i P N.

Otherwise, kernel and cokernel of R`
Kpδq

1´ϕ
ÝÝÝÑ R`

Kpδq are isomorphic to KtiLT and can be

trivialized by each other when taking determinants (formally this is achieved by replacing

R`
Kpδq by R`

Kpδq{DN pδq and then trivializing the determinant of TΨpDN pδqq as in [36,

(40),(44) in §4.1]). For the third statement we first remark that the complex M` Ψ
ÝÑ

M` (concentrated in degrees 1,2) is cohomologically perfect by Lemma 4.19 - using
pR`

KpδqqΨ“0 “ pR`
KqΨ“0qpδq - because on the one hand Ψ is surjective and on the other

hand its kernel is free over DpΓL,Kq by (77). Therefore the determinant of M` Ψ
ÝÑ M`

is equal to pDpΓL,Kq,1q´1.

From Lemma 8.3 we obtain finally an isomorphism (cf. [36, Def. 4.1])

Θpδq : dDpΓL,KqpTΨpRKpδqqq
´1

– dDpΓL,KqpDpΓL,Kqq – Δ2,XΓL
pDfmpRKpδqqq

which in turn induces an isomorphism over K

εDpΓL,Kq,upDfmpRKpδqq : 1DpΓL,Kq
can

ÝÝÑ dDpΓL,KqpTΨpRKpδqqqdDpΓL,KqpTΨpRKpδqqq
´1

idbΘpδq
ÝÝÝÝÝÝÑ dDpΓL,KqpTΨpRKpδqqqΔ2,XΓL

pDfmpRKpδqqq

“
ÝÑ ΔXΓL

pDfmpRKpδqqq. (78)

Note that the map (77) depends implicitly on u. If we consider instead of RL the
isomorphic subring RLpZuq of rRL, as pointed out in Remark 3.11, then for a “ χLT pγaq P

oˆ
L we have Zau “ raspZuq and thus we get a commutative diagram

DpΓL,Kq

δ
γ

´1
a

¨

��

Mδ,u �� pR`
KpδqqΨ“0

δpaq
´1

¨

��
DpΓL,Kq

Mδ,au�� pR`
KpδqqΨ“0.

(79)

Indeed, we have

Mδ,aupδγ´1
a
λq “ λ

ˆ

δγ´1
a

`

ηp1,Zauq
˘

δγ´1
a
eδ

˙

“ λ

ˆ

ηpa´1,raspZuqqδpaq
´1eδ

˙

“ δpaq
´1

¨

ˆ

λ
`

ηp1,Zuqeδ
˘

˙

.
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Concerning the descent, we have to distinguish the following two ways.

Remark 8.4. Let δ : ΓL Ñ Kˆ be an L-analytic character. Mapping a Dirac distribution
γ to δpγqeδ induces a surjection of DpΓL,Kq-modules

pδ : DpΓL,Kq Ñ Keδ.

Alternatively we may equip DpΓL,Kq with the ΓL-action γη “ rγ´1sη, denoting the

resulting ΓL-module by DpΓL,Kqι, and map γ to δpγ´1qeδ to obtain a surjection of
DpΓL,Kq-modules

fδ :DpΓL,Kq
ι

Ñ Keδ.

Proof. Since δ is analytic Kpδq “Keδ comes equipped with a DpΓL,Kq-module structure

extending the KrΓLs-module structure. The map pδ is surjective because 1 is mapped

to a K -basis eδ and DpΓL,Kq-linear by construction. The second statement follows
analogously since the inverted action is also L-analytic.

Now, for the descent we observe that, if fδ0 : DpΓL,Kq Ñ K arises from a character
δ0 : o

ˆ
L Ď Lˆ Ñ Kˆ interpreted as character of ΓL, we have the following:

Lemma 8.5. The isomorphism (74) induces the canonical isomorphism

spδ0 : ΔXΓL
pDfmpRKpδqqq bDpΓL,Kq,fδ0

K – ΔKpRKpδδ0qq

taking the normalisation from Remark 4.11 into account, compare with [36, (34), p. 370].

Proof. We show this isomorphism for each part of Δ separately:

Δ1,XΓL
pDfmpMqq bDpΓL,Kq,fδ0

K – dKrΓL{UspTψpMpδ0qq b
L
DpΓL,Kq DpΓL{Uqq bKrΓL{Us K

– dKrΓL{UspTψpMpδ0qq b
L
DpUq Kq bKrΓL{Us K

– dKrΓL{UspKΨL,ZpMpδ0qqq bKrΓL{Us K

– dKrΓL{UspKϕL,ZpMpδ0qqq bKrΓL{Us K “ Δ1,KpMpδ0qq

(80)

and

Δ2,XΓL
pDfmpMqq bDpΓL,Kq,fδ0

K – Δ2,KpMq bK DpΓL,Kq bDpΓL,Kq,fδ0
K (81)

– Δ2,KpMpδ0qq “ pKeδδ0,1q

using Remark 7.2.

With these preparations we are now able to state the main result of this article.

Theorem 8.6 (Local ε-conjecture for Lubin-Tate deformations of rank one modules).

Let F 1{L be a finite subextension of K and M be a rank one analytic pϕL,ΓLq-module over

RF 1 and denote by MK the completed base change Mb̂F 1K. Then the isomorphism

εDpΓL,Kq,upDfmpMKqq : 1DpΓL,Kq
–

ÝÑ ΔXΓL
pDfmpMKqq
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induces for every L-analytic character ϑ : ΓL Ñ Fˆ with finite intermediate extension
F 1 Ď F Ď K such that MKpϑq is de Rham the following commutative diagram

1DpΓL,Kq bDpΓL,Kq,fϑ K

εDpΓL,Kq,upDfmpMKqqbidK

��

can �� 1K

εdRF,upRF pδϑqq

��
ΔXΓL

pDfmpMKqq bDpΓL,Kq,fϑ K
spϑ �� ΔKpMKpϑqq,

(82)

where the notation fϑ has been defined in Remark 8.4 and the specialisation isomorphism
spϑ is explained in Lemma 8.5 above. Moreover, εDpΓL,Kq,upDfmpMKqq is uniquely

determined by this property.

The uniqueness follows from the considerations in Appendix A while the specialisation

property will be proved in subsection 8.4 below.

Note that the isomorphism εDpΓL,KqpDfmpRKpδqq does not literally fit into Conjec-
ture 7.6, because DpΓL,Kq is not an affinoid algebra over K. But for any morphism of

rigid analytic spaces f :SppAq ÑXΓ with an affinoid algebra A (e.g.Dn) over K it induces

the isomorphism

εApf˚DfmpRKpδqqpSppAqqq :“ εDpΓL,KqpDfmpRKpδqq bDpΓL,Kq Aq :

1A
–

ÝÑ ΔApf˚DfmpRKpδqqpSppAqqq

which provides instances of the conjectured type. Note that for the inclusion f :SppDnq ãÑ

XΓ we obtain

f˚DfmpRKpδqqpSppDnqq – DfmnpRKpδqq.

8.1. Property (v)

Specialization to the case considered by Nakamura requires some special care, because

we used a different definition of ε-constants. As discussed in 7.7 the assumption that K

contains Lab can be dropped since L8 contains the p-power roots of unity. We can thus
even assume K “ Qp in the construction of the de Rham ε-constants. Similarly we can

take Ω “ 1 and hence do not need any special assumptions on K in order to make use of

p-adic Fourier theory.

Proposition 8.7. Assume L “ Qp, assume πL “ p. take un “ ζpn ´ 1 for a compatible

system of p-power roots of unity and choose a γ P ΓQp
, which is a topological generator of

the torsion-free part, such that log0pχcycpγqq “ 1, and take ΩQp
“ 1. Then, if one assumes

K “ Qp, our construction agrees with the one in [36].

Proof. Note that by a density argument and by property (vi) it suffices to see that the

constructions in the de Rham case coincide. The condition of L-analyticity is automatic,

if L “ Qp. We remark that the complex K‚
ϕ,Zp´q considered by us specialises to a variant

of the usual Herr-complex as we can take Z “ γ´1, but there is a small difference to [36,

Definition 2.10]. The order of ϕ´ 1 and γ ´ 1 is exchanged (which poses no problem),

Nakamura uses a topological generator γNa of Γ{Δ, with Δ “ Γp´power-torsion while we
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use a generator of the free part. In the case p “ 2 the terms of Nakamura’s complex are
MΔ. In this case our choice of γ is a valid choice for the variant in (loc.cit.) while in the

case p ‰ 2 we can arrange that γp´1
Na “ γ. In both cases the torsion subgroup Δ1 Ď Γ is a

split subgroup and taking Δ1-invariants is exact in characteristic 0. Let U “ xγy Ď Γ. For
p “ 2 we have Δ “ Δ1 and plugging in the isomorphism MΔ – M{Δ and Δ – Γ{U we

see that our Qp bQprΔs Kϕ,ZpMq is canonically isomorphic to the complex considered in

(loc.cit.). For p ‰ 2 we can consider instead the natural map of complexes

rM
γNa´1

ÝÝÝÝÑ M s Ñ rM
γ´1

ÝÝÝÑ M s

given by m ÞÑ
1

p´1

ř

gPΔ1 gm in both degrees, which induces a quasi-isomorphism onto the
Δ1-(co)invariants of the right-hand side and induces a corresponding quasi-isomorphism

of the Herr-complexes by taking ϕ´1-cones. We can thus conclude that the fundamental

lines are canonically isomorphic to the ones considered by Nakamura. Similarly the
exponential maps are the same. Because πL “ p “ q we see that the character χ is just

χcyc and the duality pairing x ,́´yM̃ from section 4.3 is the pairing used by Nakamura.

In (66) we use x ,́´yM which by the same reasoning corresponds to the pairing used by

Nakamura, namely the duality pairing for M0 “ M̃ . The assumptions on γ and Ω avoid
the problem discussed in 7.7 (ii) concerning normalisation factors and the appearance of

Ω in the Γ-factor. Finally, the series ηp1,Zq is just 1`Z and we can view ηp1,pun b 1qq

appearing in the construction of the equivariant ε-constants as an element of L8, in fact
we have ηp1,un b1q “ ζpn under the isomorphism L8 bQp

Qp – L8. Combining all of the

above shows that our ε-constants constructed in the de Rham case agree with those in

Nakamura’s work.

8.2. Property (i)

For all f : A Ñ A1, such that we are able to construct the ε-isomorphism as above for

A and A1, the base change property (i) with respect to f : A Ñ A1 obviously holds by

construction.

8.3. Property (iii)

We can rephrase the diagram (79) to the following commutative diagram for any a P oˆ
L

DpΓL,Kqpδq

ra´1
s

��

Mδ,au �� pR`
KpδqqΨ“0

id

��
DpΓL,Kqpδq

Mδ,u �� pR`
KpδqqΨ“0

,

where ras acts on DpΓL,Kqpδq as δ´1
γa

¨ δpaq (here δγa
denotes the dirac distribution

attached to γa P ΓL with χLT pγaq “ a). Note that the action on N :“ DfmpRKpδqq with
respect to the basis 1b eδ is given precisely by the character δ : ΓL Ñ DpΓL,Kqˆ;γ ÞÑ

pδγq´1δpχLT pγqq and hence property (iii) follows from the above diagram by specialising

along DpΓL,Kqpδq Ñ Kpδq.

https://doi.org/10.1017/S147474802500012X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802500012X


ε-Isomorphisms for rank one pϕ,Γq-modules over Lubin-Tate Robba rings 77

8.4. Descent

For δ P ΣanpF q with F a finite extension of L, we consider the decomposition δ “ δunδ0
as in section 3.4 and define on the basis of (78)

εK,upRpδqq : 1K
–

ÝÑ ΔKpRpδqq

as εDpΓL,KqpDfmpRKpδunqq bDpΓL,Kq,fδ0
Kq followed by the isomorphism from Lemma

8.5. In order to make this definition more explicit we have to understand the isomorphism
Θ̄pδq :“ Θpδunq bDpΓL,Kq,fδ0

L, which we will consider as an isomorphism

Θ̄pδq :
2

â

i“0

dKrΓL{UspH
i
ΨL,ZpRKpδqqq

p´1q
i`1

bKrΓL{Us K – pKeδ,1q

by using (81) and the inverse of the natural isomorphism

dDpΓL,KqpTψpRLpδqqq bDpΓL,Kq,fδ0
K – dKrΓL{UspKΨL,ZpMpδ0qqq bKrΓL{Us K

–

2
â

i“0

dKrΓL{UspH
i
ΨL,ZpRKpδqqq

p´1q
i

bKrΓL{Us K

induced from (80) using properties of the determinant functor from section 7.1.

From the exact sequences (29), (31), (32) we derive the following exact sequences and

isomorphisms:

0 ÑH0
Ψ,ZpR`

Kpδqq Ñ H0
Ψ,ZpRKpδqq Ñ H0

Ψ,ZpLApoLqpχ´1δqq Ñ (83)

H1
ZpH0

ΨpR`
Kpδqqq Ñ H1

ZpH0
ΨpRKpδqqq Ñ H1

ZpH0
ΨpLApoLqpχ´1δqqq Ñ 0,

H2
Ψ,ZpR`

Kpδqq “ H0
ZpH1

ΨpR`
Kpδqqq “ 0 (84)

H1
Ψ,ZpR`

Kpδqq – H1
ZpH0

ΨpR`
Kpδqqq – R`

Kpδq
Ψ“1

{Z, (85)

H0
ZpH1

ΨpRKpδqqq – H0
ZpH1

ΨpLApoLqpχ´1δqqq (86)

H2
Ψ,ZpRKpδqq – H2

Ψ,ZpLApoLqpχ´1δqq, (87)

0 �� H1
ZpH0

ΨpRKpδqqq �� H1
Ψ,ZpRKpδqq �� H0

ZpH1
ΨpRKpδqqq �� 0. (88)

For the descent it is useful to recall that the determinant functor d? commutes with

taking the derived tensor product ´ bL
DpΓL,Kq,fδ0

K. E.g. the additivity on short exact

sequences above turns into the additivity on the associated long exact sequences of

cohomology groups below. Finally, the determinant functor commutes with attached
spectral sequences by [55].

8.5. Verification of the conditions (iv), (vi).

In this subsection, we prove the condition (iv) using density arguments in the process of
verifying the condition (vi). Indeed, it suffices to prove (vi) as the duality statement for

de Rham characters was shown in 7.14 and by Zariski density of the de Rham characters

(see Corollary A.4) the validity of property (iv) holds in general once we establish (vi),
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i.e., the interpolation property in the de Rham case. We follow the strategy of Nakamura
and consider first a generic L-analytic de Rham character of weight k. The case k ď 0 boils

down to Proposition 8.11. The case k ě 1 is treated in Proposition 8.14. The remaining

so-called exceptional case is treated in Section 8.5.3.

8.5.1. Twisting. We define the operator B : RK Ñ RK,f ÞÑ
1

log1
LT

df
dZ “

df
dtLT

, and the

residuum map Res : RK Ñ K,f ÞÑ respfdtLT q with resp
ř

iPZ aiZ
idZq “ a´1. Extending

theses maps coefficientwise, i.e., applying it to f in feδ and using [22, Lem. 2.11, 2.12]

we obtain an exact sequence23

0 �� Kpδq �� RKpδq
B �� RKpxδq

Res �� Kpδ|x|´1q �� 0. (89)

It is well-known that the partial operator B : RK Ñ RK is related to twisting, see e.g.

[46, §4.3.9]:24

DpΓL,Kq

TwχLT

��

M �� pR`
KqψL“0

1
Ω B–

��
DpΓL,Kq

M �� pR`
KqψL“0.

(90)

Here, for a locally L-analytic character ρ : ΓL Ñ Kˆ we denote by

Twρ :DpG,Kq
–

ÝÝÑ DpG,Kq ,

the isomorphism which on Dirac distributions satisfies Twρpδgq “ ρpgqδg.

Using for dDpΓL,KqTΨpKpδ1qq, δ1 “ δ,δ|x|´1, the trivialization by identity, the operator

B induces via the above exact sequence the isomorphism

B : Δ1,XΓL
pDfmpRKpδqqq

–
ÝÑ Δ1,XΓL

pDfmpRKpxδqqq,

which also descends to an isomorphism

B : Δ1,KpRKpδqq
–

ÝÑ Δ1,KpRKpxδqq.

Moreover, we have isomorphisms

B : Δ2,XΓL
pDfmpRKpδqqq

–
ÝÑ Δ2,XΓL

pDfmpRKpxδqqq,

and

B : Δ2,KpRKpδqq
–

ÝÑ Δ2,KpRKpxδqq.

by sending feδ to ´1
Ω fexδ. Altogether we obtain an isomorphism

B : ΔXΓL
pDfmpRKpδqqq

–
ÝÑ ΔXΓL

pDfmpRKpxδqqq,

23This sequence already exists over L instead of K!
24Here Ω is required!
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which also descends to an isomorphism

B : ΔKpRKpδqq
–

ÝÑ ΔKpRKpxδqq.

Using diagram (90) and the definition of εDpΓL,KqpDfmpRKpδqq and εLpRKpδqq respec-

tively, we conclude the following

Proposition 8.8. If δ ‰ 1,|x|, then there are canonical equalities

B ˝ εDpΓL,KqpDfmpRKpδqq “ εDpΓL,KqpDfmpRKpxδqq and B ˝ εLpRKpδqq “ εLpRKpxδqq.

Proof. Since the second statement follows by descent from the first one, we only have to

consider the case of the deformation following the construction in Lemma 8.3 step by step.
Regarding 8.3(i) we observe that the operator B restricts to an operator R`

Kpδq ÑR`
Kpxδq

while it induces the operator LApoLqpχ´1δq Ñ LApoLqpχ´1xδq,φeχ´1δ ÞÑ Ωxφeχ´1xδ,

which can easily be derived from Remark 3.12 (v) combined with the exactness of (89).

The compatibility with 1´ϕL in 8.3(ii) is a consequence of Remark 3.12 (i). Finally,
the compatibility of B with Mδ ˝σ´1 in 8.3(iii) follows from diagram (90) together with

the σ´1 in the definition of (77) using 3.12 (ii). Combining both yields the factor ´Ω

which cancels against the factor in the definition of B|Δ2
. One can check that the twisting

construction is compatible with the various trivializations involved.

Proposition 8.9. Let δ P ΣanpF q with F {L finite such that RF pδq is a de Rham pϕ,ΓLq-
module with Hodge-Tate weight different form zero. Then we have the equality

B ˝εdRF,upRF pδqq “ εdRF,upRF pxδqq.

Proof. The proof is analogous to that of [36, 4.14] upon noting that Γ˚pkq has to be

replaced by ΩkΓ˚pkq.

Since εdR and ε are compatible with respect to B by the above propositions, it can be

used to transport the validity of the Conjecture between characters δx and δ.

8.5.2. Generic case. This subsection has been inspired by [36, 4B1] and [54]. In this
subsection U “ Γn and Z “ Zn for an appropriate sufficiently large n " 0, which might be

adapted to the specific situation. This is possible because due to our normalisations the

constructions and the factorization of the descent over KrΓL{Γns are independent of n,

see Lemma 8.5, (80), Definition 5.11 and Remark 4.11.

Lemma 8.10. For δ P ΣgenpF q we have

Hi
Ψ,ZpLApoLqpχ´1δqq “ Hi

Ψ,ZpPolďN poLqq“ Hi
Ψ,ZpDN pδqq “ 0, (91)

H1
ZpH0

ΨpLApoLqpχ´1δqqq “ H0
ZpH1

ΨpLApoLqpχ´1δqqq “ 0

for all i and N ě 0, and

Hi
Ψ,ZpR`

Kpδqq “ Hi
Ψ,ZpRKpδqq “ 0 (92)

for i ‰ 1, and

H1
Ψ,ZpR`

Kpδqq – H1
ZpH0

ΨpR`
Kpδqqq – H1

Ψ,ZpRKpδqq. (93)
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Proof. The first claim follows from (34),(36) and Lemma 4.20. The second follows from

Lemma 4.5 (combined with Remark 4.21) and 4.22 (there for ΓL instead of U, but applying

the result to all twists by characters of the finite group ΓL{U also implies the statement
concerning U ) combined with (83) and (84). The last assertion follows from the previous

ones combined with (88),(86),(85).

By construction according to Lemma 8.3 and using Lemma 8.10 we see that Θ̄pδq arises -

upon taking determinants and descending further by ´bL
KrΓL{Us

K - by the composite of

(i) (the inverse of) the isomorphism H1
ZpH0

ΨpR`
Kpδqqq – H1

Ψ,ZpRKpδqq together with
the trivializations of dDpΓL,KqpTΨpLApoLqpχ´1δqqq and dDpΓL,KqpTΨpPolďN poLq

pχ´1δqqq,

(ii) H1
ZpH0

ΨpR`
Kpδqqq – H1

ZpR`
KpδqΨ“0q induced by 1´ϕ, together with the triviali-

sation of kernel and cokernel of R`
Kpδq

1´ϕ
ÝÝÝÑ R`

Kpδq - each isomorphic to KtiLT -

respectively with the trivialization of dDpΓL,KqpTΨpDN pδqqq and

(iii) H1
ZpR`

KpδqΨ“0q
CTrpZnq

ÝÝÝÝÝÑ pR`
KpδqΨ“0qU – DpΓL,KqU – KrΓL{U s up to choosing

basis elements and using the Mellin transform Mδ ˝σ´1.

Altogether - up to the isomorphism H1
ZpH0

ΨpR`
Kpδqqq – H1

Ψ,ZpRKpδqq,rxs ÞÑ rp0,xqs -

this amounts to

H1
ZpH0

ΨpR`
Kpδqqq

1´ϕ
ÝÝÝÑ H1

ZpR`
Kpδq

Ψ“0
q – DpΓL,KqUeδ – KrΓL{U seδ. (94)

For the remainder of the section we assume in addition that δ is de Rham. We have to

compare (94) with

H1
ZpH0

ΨpR`
Kpδqqq – H1

Ψ,ZpRKpδqq

exp
,̊pnq

RK pδq˚
ÝÝÝÝÝÝÝÑ D

pnq

dR pRKpδqq. (95)

By the commutativity of the upper square in the (second) diagram of Lemma 8.12 one

immediately sees that a class rAμeδs is mapped under (94) to prΓn
pTwδ´1pResoˆ

L
pμqqqeδ

while under (95) to ιnpAμeδq|tLT “0 “ θ ˝ ιnpAμeδq by Definition 5.11 combined with

Lemma 5.10. Recall that θ was defined above Definition 3.13. Consider the KrΓL{Γns-
linear map

Σ :KrΓL{Γns – D
pnq

dR pRKpδqq, (96)

whose ρ-component, for ρ running through the characters of Gn :“ ΓL{Γn, is given as the
K -linear map

eρΣ :K – Keρ Ñ eρD
pnq

dR pRKpδqq – DdRpRKpδρ´1
qq,1 ÞÑ Cpδρ´1

q
1

tkLT

eδρ´1, (97)

upon noting that DdRpRKpδ1qq “ pL8 bL K 1
tkLT

eδ1 qΓL . Here eρ :“ 1
|Gn|

ř

gPGn
ρpg´1qg P

KrGns denotes the idempotent attached to ρ satisfying geρ “ ρpgqeρ for all g P Gn, while
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for an analytic character δ1 : Lˆ Ñ pF 1qˆ (of weight k ď 0) we set

Cpδ1
q :“

p´Ωqk

p´kq!

#

ε̃pRKpδ1q,uq´1, if apδ1q ‰ 0;
detp1´q´1ϕ´1

|DcrispRKpδ1
qqq

detp1´ϕ|DcrispRKpδ1qqq
, otherwise

(98)

in Ln bLK. Unravelling the definition of εdRL,u and using Proposition 5.16 one easily sees

that part (vi) of Conjecture 7.6 is equivalent, for k ď 0, to the next

Proposition 8.11 (Explicit reciprocity formula). Let δ “ δlcx
k be de Rham. For k ď 0,

the following diagram is commutative:25

pR`
Kpδqq

Ψ“1

x ÞÑrp0,CTrpZnq´1xqs

��

CTrpZnq´1ιn



�
��

��
��

��
��

��
��

��

q´1
q

θ˝ιn

�����
����

����
����

����
����

����
����

�
1´ϕ �� pR`

Kpδqq
Ψ“0 DpΓL,Kq

Mδ˝σ´1

–
		

prΓn

��
H1

Ψ,Zn
pRKpδqq
�� ��

exp ,̊pnq

��
can �� H1

Zn
pDdif q H0

Zn
pDdif q “ D

pnq
dR – Ln bL DdR

–

g
pnq
RK pδq

		 KrΓL{Us,
Σ		

(99)

i.e., a class rAμeδs P H1
Zn

pH0
ΨpR`

KpδqqqΓL – H1
Ψ,Zn

pRKpδqqΓL, is mapped under exp˚ to

Cpδqpδ´1pμqq
1

tkLT

eδ “ Cpδq

ż

oˆ
L

δpxq
´1μpxq

1

tkLT

eδ.

The left hand triangle in (99) is induced by the commutative diagrams

R`
Kpδq� �

��

ιn �� Ddif pRKpδqq “ K8pptLT qqeδ

Rpnq

K pδq
ιn �� KnpptLT qqeδ

��
(100)

and

pR`
KpδqqΨ“1{Zn

–

��

ιn �� Ddif pRKpδqq{Zn

��
H1

Ψ,Zn
pRKpδqq

can �� H1
Zn

pDdif pRKpδqq.

(101)

The middle triangle is commutative by Lemma 5.10 upon recalling that

CgpZnqCTrpZnq “
q

q´1

25The factor CTrpZnq
´1 in the left vertical map takes (21), i.e., (iii) above into account.
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by (20), while the commutativity of the right upper triangle of diagram (99) follows for

k “ 0 from the (lower rectangle of the) following lemma (applied to each ρ-component)

which explains how ε-constants show up naturally in the descent procedure (cf. with
[2, Lem. 4.9/Cor. 4.10] and [36, Prop. 4.11] in the cyclotomic situation):

Lemma 8.12. Let δ be a locally constant character. Then the following diagram is
commutative:26

pDpoL,KqeδqΨ“1

Ap´qeδ

��

Res
o

ˆ
L

p´qeδ

�� DpΓL,Kqeδ

Mp´qeδ –

��
pR`

KpδqqΨ“1

q´1

q

1

rLn :Ls TrKn{K˝θ˝ιn

��

p1´ϕq˝Ψ“1´ϕ �� pR`
KpδqqΨ“0 DpΓL,Kq

δp´1qTwδp´qeδ

–

�����������������

p1p´q

��

Mδ˝σ´1

–
		

H0pΓL,Ln bLKeδq K.
Cpδqeδ		

Proof. The commutativity of the upper rectangle in this diagram is an immediate
consequence of Lemma 4.19, that of the triangle is immediate from the definitions, while

that for the lower part is obviously equivalent to the commutativity of the outer diagram

pDpoL,KqeδqΨ“1

q´1
q

1
rLn:Ls TrKn{K˝θ˝ιnpAp´qeδq

��

Res
o

ˆ
L

p´qeδ

�� DpΓL,Kqeδ

pδ´1 p´qeδ

��
Ln bLKeδ Keδ,

δp´1qCpδq		

where pδpμq :“
ş

oˆ
L
δpxqμpxq denotes the evaluation at a character δ. In order to check

this, assume p ‰ 2 (the case p “ 2 can be dealt with similarly as in the proof of [36, Pro.
4.11]) and first assume that n :“ apδq ě 1. Then we have

TrKn{K ˝θ ˝ ιnpAμeδq “
ÿ

iPpoL{πn
L

qˆ

σi pθ ˝ ιnpAμeδqq

“
ÿ

iPpoL{πn
L

qˆ

σi

`

ιnpAμeδq|tLT “0

˘

“
ÿ

iPpoL{πn
L

qˆ

σi

`

Aμpun b1qϕ´n
peδq

˘

in Ln bKeδ

“

ˆ

ÿ

iPpoL{πn
L

qˆ

δpiqAμpσiτpunq b1q

˙

τ

ϕ´n
peδq in

ź

τ

Keδ

“

ˆ

1

δpπLqn

ÿ

iPpoL{πn
L

qˆ

δpiq

ż

oL

ηpx,σiτpunqqμpxq

˙

τ

eδ

“

ˆ

1

δpπLqn

ÿ

iPpoL{πn
L

qˆ

δpiq

ˆ
ż

oL

ηpxi,τpunqqμpxq

˙

τ

eδ

˙

26Here, the notation of a map fp´qeδ means that deδ or d is sent to fpdqeδ.
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“

ˆ

1

δpπLqn

ÿ

iPpoL{πn
L

qˆ

δpiq
ÿ

jPoL{πn
L

ηpji,τpunqq

ż

j`πn
L
oL

μpxq

˙

τ

eδ

“

ˆ

1

δpπLqn

ÿ

jPoL{πn
L

ÿ

iPpoL{πn
L

qˆ

δpiqηpji,τpunqq

ż

j`πn
L
oL

μpxq

˙

τ

eδ

p˚q
“

ˆ

1

δpπLqn

ÿ

jPpoL{πn
L

qˆ

ÿ

iPpoL{πn
L

qˆ

δpiqηpji,τpunqq

ż

j`πn
L
oL

μpxq

˙

τ

eδ

“

ˆ

1

δpπLqn

ÿ

jPpoL{πn
L

qˆ

ÿ

i1PpoL{πn
L

qˆ

δpi1j´1
qηpi1,τpunqq

ż

j`πn
L
oL

μpxq

˙

τ

eδ

“

ˆ

1

δpπLqn

¨

˝

ÿ

iPpoL{πn
L

qˆ

δpiqηpi,τpunqq

˛

‚

ÿ

jPpoL{πn
L

qˆ

δpj´1
q

ż

j`πn
L
oL

μpxq

˙

τ

eδ

“

ˆ

q´npψuqεKpL,Kpδ´1
q,ψτ̂u,dxq

ż

oˆ
L

δpxq
´1μpxq

˙

τ

eδ

“

ˆ

q´npψuqεKpL,Kpδ´1
q,ψτ̂u,dxqpδ´1pRes

oˆ
L
μq

˙

τ

eδ

“

ˆ

qapδqεKpL,δ´1
| ´ |,ψpxqτ̂u,dxqpδ´1pRes

oˆ
L
μq

˙

τ

eδ

“

ˆ

δp´1qqapδq`npψτ̂uq

εKpL,δ,ψτ̂u,dxq
pδ´1pRes

oˆ
L
μq

˙

τ

eδ.

In the two last equalities we used (61) and (62). Moreover, the equation p˚q requires part

(i) of the next lemma. Finally, by Remark 6.2 we have npψuq “ 0, whence the result in this
case as rKn :Ks “ qn´1pq´1q upon comparing with (98), Example 7.9 and Definition 7.10.

Now we consider the case apδq “ 0 and obtain

TrK1{K ˝θ ˝ ι1pAμeδq “
ÿ

iPpoL{πLqˆ

σi pθ ˝ ι1pAμeδqq

“
ÿ

iPpoL{πLqˆ

σi

`

ι1pAμeδq|tLT “0

˘

“
ÿ

iPpoL{πLqˆ

σi

`

Aμpu1 b1qϕ´1
peδq

˘

“

¨

˝

1

δpπLq

ÿ

iPpoL{πLqˆ

ż

oL

ηpx,σiτpu1qqμpxq

˛

‚

τ

eδ

“

¨

˝

1

δpπLq

ÿ

iPpoL{πLqˆ

ż

oL

ηpxi,τpu1qqμpxq

˛

‚

τ

eδ

“

¨

˝

1

δpπLq

ÿ

iPpoL{πLqˆ

ÿ

jPoL{πL

ηpji,τpu1qq

ż

j`πLoL

μpxq

˛

‚

τ

eδ
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“

¨

˝

1

δpπLq

ÿ

jPoL{πL

ÿ

iPpoL{πLqˆ

ηpji,τpu1qq

ż

j`πLoL

μpxq

˛

‚

τ

eδ

p˚q
“

˜

1

δpπLq

˜

pq´1q

ż

πLoL

μpxq ´

ż

oˆ
L

μpxq

¸¸

τ

eδ

“
1

δpπLq

ˆ

pq´1q
δpπLq

1´ δpπLq
´1

˙
ż

oˆ
L

μpxqeδ

“ q
1´

1
qδpπLq

1´ δpπLq
pδ´1pResoˆ

L
μqeδ,

where the fact that δpiq “ 1 for all i P oˆ
L by assumption is used in the fourth and last

equality, while part (ii) from the next Lemma is the justification for the equality p˚q.
The second last equality can be derived from the observation that the condition Aμeδ P

R`
KpδqΨ“1 implies that ΨpAμq “ δpπLqAμ by the product formula, whence

ż

πLoL

μpxq “

ż

oL

Ψpμqpxq “ δpπLq

ż

oL

μpxq “ δpπLq

˜

ż

oˆ
L

μpxq `

ż

πLoL

μpxq

¸

.

It follows that
ş

πLoL
μpxq “

δpπLq

1´δpπLq

ş

oˆ
L
μpxq.

Lemma 8.13. Assuming n “ apδq ě 1 we have for all j P oL{πn
L

(i)
ř

iPpoL{πn
Lqˆ δpiqηpij,unq “ 0 if πL|j,

(ii)
ř

iPpoL{πLqˆ ηpji,u1q “

"

q´1, if πL|j;

´1, otherwise.

Proof. If πL divides j, then ηpji,u1q “ 1 for all i and both statements (for n“ 1) follow by
a character sum argument (Note that the assumption n ě 1 asserts that δ is not trivial).

Otherwise the claim (ii) follows from the character formula
ř

oL{πL
ηpi,u1q “ 0 while for

(i) we may assume n ě 2. We first show

ÿ

iPpoL{πn
Lqˆ,i”r mod j1

δpiq “ 0 (102)

for every r P poL{πn
Lqˆ and every proper divisor j1 | πn

L. By shifting it suffices to consider

r “ 1. In this case we are looking at
ÿ

iPH

δpiq,

where H “ kerpoL{πn
Lqˆ Ñ poL{pj1qqˆ. This character sum can only be different from zero

if δ is trivial on the subgroup H, contradicting the minimality of n. Without loss of

generality assume that vπL
pjq ď n, whence πn

L{j belongs to oL. Now let R be a system of
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representatives of poL{pπn
L{jqqˆ inside poL{πn

Lqˆ and rewrite

ÿ

iPpoL{πn
Lqˆ

δpiqηpij,unq “
ÿ

rPR

¨

˝ηpjr,unq

¨

˝

ÿ

i,i”r mod πn
L{j

δpiq

˛

‚

˛

‚“ 0

by (102) applied to j1 “ πn
L{j, using that ηpji,unq “ ηpjr,unq if i ” r mod πn

L{j.

Proposition 8.11 for k ă 0 we will be reduced to the case k “ 0 by a twisting argument

based on the previous subsection 8.5.1. Similarly the cases k ą 1 of the following

proposition will also be reduced to the case k “ 1. But first we have to slightly modify
our notation. Consider the KrΓL{Γns-linear map

Σ1 :KrΓL{Γns – D
pnq

dR pRKpδqq, (103)

whose ρ-component, for ρ running through the characters of Gn :“ ΓL{Γn, is given as the
K -linear map

eρΣ
1 :K – Keρ Ñ eρD

pnq

dR pRKpδqq – DdRpRKpδρ´1
qq,1 ÞÑ C1

pδρ´1
q

1

tkLT

eδρ´1 (104)

with

C1
pδ1

q :“ Ωk
pk´1q!

#

ε̃pRKpδ1q,uq´1, if apδ1q ‰ 0;
detp1´q´1ϕ´1

|DcrispRKpδ1
qqq

detp1´ϕ|DcrispRKpδ1qqq
, otherwise,

(105)

in Ln bLK.

Proposition 8.14 (Explicit reciprocity formula). Let δ “ δlcx
k be de Rham. For k ě 1,

the following diagram is commutative:

pR`
Kpδqq

Ψ“1

x ÞÑrp0,CTrpZnq´1xqs

��

1´ϕ �� pR`
Kpδqq

Ψ“0 DpΓL,Kq
Mδ˝σ´1

–
		

prΓn

��
H1

Ψ,Zn
pRKpδqq D

pnq

dR pRKpδqq – Ln bDdRpRKpδqq
exppnq

		 KrΓL{U s,
Σ1

		

(106)

i.e., a class rAμeδs P H1
Zn

pH0
ΨpR`

KpδqqqΓL – H1
Ψ,Zn

pRKpδqqΓL, is mapped under exp´1
RKpδq

to

C1
pδqpδ´1pμqq

1

tkLT

eδ “ C1
pδq

ż

oˆ
L

δpxq
´1μpxq

1

tkLT

eδ.
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Proof. As mentioned earlier - by the twisting technique - we only have to show the case
k “ 1 (i.e. δ “ δ̃x). We will show the commutativity of the following diagram

H1
Ψ,Zn

pRKpδ̃qq

B

��

exp
,̊pnq

RK pδ̃´1x|x|q�� Dpnq

dR pRKpδ̃qq “ pL8 bLKeδ̃qΓn

aeδ̃ ÞÑ a
tLT

eδ

��
H1

Ψ,Zn
pRKpδqq D

pnq

dR pRKpδqq “ pL8 bLKeδqΓn

expRK pδq		

on the image of pR`
Kpδ̃qqΨ“1 in H1

Ψ,Zn
pRKpδ̃qq, which together with the diagram (90)

implies the desired formula by comparing the cases k “ 1 and k “ 0. To this end assume

exp
,̊pnq

RKpδ̃´1x|x|q
pr0,feδ̃sq “ αeδ̃

with feδ̃ P pR`
Kpδ̃qqΨ“1. Then it follows from definition 5.11 in combination with

Lemma 5.10 that

CgpZnq
´1

rιnpfeδ̃qs “ rαeδ̃s P H1
Zn

pD`
difpRKpδ̃qq

for sufficiently large n ě 1, i.e., there exists yn P D`
difpRKpδ̃qq such that

CgpZnq
´1ιnpfeδ̃q ´αeδ̃ “ Znyn. (107)

By Remark 4.3 the element ∇ P LiepΓnq is divisible by Zn in DpΓn,Kq and the quotient
∇
Zn

corresponds to Ω
πn
L

logLT pZq

Z under the Fourier-LT-isomorphism, which takes the value
Ω
πn
L

“ CgpZnq at Z “ 0 (cf. (51)).

We wish to apply the Ψ-version of Proposition 5.9 (1) for exp
pnq

RKpδq
with x̃ “

∇
Zn

`

f
tLT

eδ
˘

and x “
α

tLT
eδ, which would tell us that

exp
pnq

RKpδq
p
α

tLT
eδq “ rpΨ´1q

∇
Zn

` f

tLT
eδ

˘

,Zn
∇
Zn

` f

tLT
eδ

˘

s

“ r
∇
Zn

pΨ´1q
` f

tLT
eδ

˘

,∇
` f

tLT
eδ

˘

s

“ r0,Bpfqeδs,

whence the claim. Here, for the last equality we used the formula (iv) of Remark 3.12.

∇
`

f
1

tLT
eδ

˘

“
`

p∇`ωχ´1
LT δqf

˘ 1

tLT
eδ “ tLT Bpfq

1

tLT
eδ “ Bpfqeδ

noting that RKpδ̃q
–

ÝÑ
1

tLT
RKpδq,feδ̃ ÞÑ

f
tLT

eδ, is an isomorphism of pϕ,ΓLq-modules and

that the Hodge-Tate weight of ωχ´1
LT δ vanishes.

Thus it remains to verify the assumption of Proposition 5.9 (1), i.e., ιmpx̃q ´ x P

D`
dif,mpRKpδqq – tLTD

`
dif,mpRKpδ̃qq for all m ě n.
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From (107) and Remark 3.12 (iii) we obtain the equality

CgpZnq
´1ιn

` ∇
Zn

pfeδ̃q
˘

“ CgpZnq
´1αeδ̃ `∇pynq P CgpZnq

´1αeδ̃ ` tLTD
`
dif,mpRKpδ̃qq.

(108)

Using that p1´ϕqpfeδ̃q “ Znβ for some β P RKpδ̃qΨ“0 by Lemma 4.4, we conclude for
any m ě n`1,

ιm
` ∇
Zn

pfeδ̃q
˘

´ ιm´1

` ∇
Zn

pfeδ̃q
˘

“ ιm
`

p1´ϕq
∇
Zn

pfeδ̃q
˘

“ ιm
` ∇
Zn

pp1´ϕqfeδ̃q
˘

“ ιm
` ∇
Zn

pZnβq
˘

“ ιmp∇pβqq P tLTD
`
dif,mpRKpδ̃qq

In particular, we obtain

ιm
` ∇
Zn

pfeδ̃q
˘

´ ιn
` ∇
Zn

pfeδ̃q
˘

P tLTD
`
dif,mpRKpδ̃qq

for any m ě n by induction. This finishes the proof.

By an analogous density argument (using the results from Appendix A) as in [36, Cor.

4.17] the Propositions 8.11 and 8.14 imply that εKpRKpδqq : 1K
–

ÝÑ ΔKpRKpδqq satisfies

conditions (iii), (iv) of Conjecture 7.6 for any analytic character δ, i.e., for any rank one

analytic pϕ,ΓLq-module.

8.5.3. Exceptional case. This subsection has been inspired by [36, 4B2] and [54,
§2.5].
By observing that the character x0 is dual to χ “ x|x| with respect to the pairing

in Theorem 4.16 and upon applying compatibility with this duality 7.14 as well as

with twisting according to Propositions 8.8 and 8.9 one easily reduces the verification
of condition (vi) in the exceptional case, i.e., δ being of the form x´i or xiχ “ xi`1|x| for

i P N (recall 0 P N), to the case of δ “ χ “ x|x|.

First we are going to describe Θ̄pδq. To this aim note that the natural inclusion Kz0 “

Polď0poLq ãÑ LApoLq, which is a splitting of the projection sending φ to φp0q, induces a

quasi-isomorphism

KΨ,ZpKz0q ãÑ KΨ,ZpLApoLqq (109)

by Lemma 4.20.

The long exact Hi
Ψ,DpΓL,Kq

-sequence attached to (29) together with (84), (109) induces

for dimension reasons (compare with Lemma 4.22 (v)) an isomorphism

α1 :H
1
Ψ,DpΓL,KqpRKpχqq – H1

Ψ,DpΓL,KqpLApoLqq – H1
Ψ,DpΓL,KqpKz0q – Kz0 ‘Kz0,

(110)

https://doi.org/10.1017/S147474802500012X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802500012X


88 M. Malcic et al.

which - induced by the evaluation at 0 of the Colmez transform given by (30) - sends

rf1eχ,f2eχs to
`

Respf1pZqgLT pZqdZqz0,Respf2pZqgLT pZqdZqz0
˘

(111)

as well as

α2 :H
2
Ψ,DpΓL,KqpRKpχqq – H2

Ψ,DpΓL,KqpLApoLqq – H2
Ψ,DpΓL,KqpKz0q – Kz0, (112)

which sends rfeχs to

RespfpZqgLT pZqdZqz0. (113)

Finally, again as part of the long exact Hi
Ψ,DpΓL,Kq

-sequence attached to (29), we have
an isomorphism

α0 : pKz0 –qH0
Ψ,DpΓL,KqpKz0q – H1

Ψ,DpΓL,KqpLApoLqq – H1
Ψ,DpΓL,KqpR`

Kpχqq

– H1
DpΓL,KqpH0

ΨpR`
Kpχqqq. (114)

But note that in contrast to the generic case the canonical map

H1
Ψ,DpΓL,KqpR`

Kpδqq – H1
DpΓL,KqpH0

ΨpR`
Kpδqqq Ñ H1

DpΓL,KqpH0
ΨpR`

Kpδqqq

ãÑ H1
Ψ,DpΓL,KqpRKpδqq (115)

is the zero map, which can be seen by using (83), (88) and counting dimensions. More-
over, we have H0

Ψ,DpΓL,Kq
pR`

Kpχqq “ H0
Ψ,DpΓL,Kq

pRKpχqq “ 0 “ H1
DpUq

pH1
ΨpR`

Kpδqqq “

H2
Ψ,DpΓL,Kq

pR`
Kpχqqby Lemma 4.22 (v) and (84) as well as H0

Ψ,DpΓL,Kq
pLApoLqq –

H0
Ψ,DpΓL,Kq

pKx0q – Kx0 (cf. (34).

Altogether it follows that the isomorphism

Θ̄pχq :
2

â

i“0

dKrΓL{UspH
i
ΨL,ZpRKpχqqq

p´1q
i`1

bKrΓL{Us K – pKeχ,1q

coincides with the composite

2
â

i“1

dKpHi
ΨL,DpΓL,KqpRKpχqqq

p´1q
i`1

α
ÝÑ

2
â

i“0

dKpHi
ΨL,DpΓL,KqpKx0

qq
p´1q

i`1

bdKpH1
DpΓL,KqpH0

ΨpR`
Kpχqqqq

βbid
ÝÝÝÑ dKpH1

DpΓL,KqpH0
ΨpR`

Kpχqqqq
�

ÝÑ pKeχ,1q, (116)

where α is induced by αi, for i “ 0,1,2, and β is the canonical isomorphism

2
â

i“0

dKpHi
ΨL,DpΓL,KqpKx0

qq
p´1q

i`1

– 1K (117)

which stems from the base change of the trivialisation of dDpΓL,KqpTΨpLApoLqqq from (i)

of Lemma 8.3. Finally, � is induced from (94), i.e., by
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(i) H1
ZpH0

ΨpR`
Kpχqqq – H1

ZpR`
KpχqΨ“0q induced by 1´ϕ, and

(ii) H1
ZpR`

KpχqΨ“0q
CTrpZnq

ÝÝÝÝÝÑ pR`
KpδqΨ“0qU – DpΓL,KqU – KrΓL{U seχ using pMχ ˝

σ´1q´1.

Consider the basis f̃0 :“ z0,pf̃1,1 :“ pz0,0q,f̃1,2 :“ p0,z0qq and f̃2 “ z0 ofH0
Ψ,DpΓL,Kq

pKx0q,

H1
Ψ,DpΓL,Kq

pKx0q and H2
Ψ,DpΓL,Kq

pKx0q, respectively. Then, analogously to [36, Lem.

4.19] one easily checks that

βpf̃˚
0 b pf̃1,1 ^ f̃1,2q b f̃˚

2 q “ 1. (118)

where f̃˚
i denotes the dual basis of f̃i for i “ 0,2. So it remains to study the effect of �.

In order to calculate the effect of α0 consider the Coleman power series g :“ gιpuq,upT q27

in the notation of [45, Theorem 2.2], where we consider

ιpuq “ pun mod u1qn P lim
ÐÝ
n

oLn
{u1oLn

– lim
ÐÝ

n,Norm

oLn

as an element of lim
ÐÝn

Lˆ
n , the group of units of the corresponding field of norms EL (cf.

[30, Lem. 1.4]).

Remark 8.15. The element Bg
g

(i) belongs to RΨ“
πL
q

K and

(ii) satisfies Resp
Bg
g dtLT q “ 1.

Proof. By the last sentence of section 2 of [45] the term Bg
g belongs to RΨ“

πL
q

K . By the

explicit reciprocity law Prop. 6.3 in (loc. cit.) we obtain28

Resp
Bg

g
dtLT q “ Resp

dg

g
q “ Bϕp1qprecEL

pιpuqq
´1

q “ 1. (119)

Indeed, under the reciprocity map recEL
the inverse of the uniformiser ιpuq is sent to the

Frobenius (lift) ϕq of A, whence the cocycle Bϕp1q, which is given by sending h P H to
ha´a for some a P A with ϕqpaq ´a “ 1, sends recEL

pιpuqq to 1 tautologically.

The following Lemma should be compared to [36, Lem. 4.20] and [54, Lem. 2.9].

27For L “ Qp,πL “ p odd and LT “ pGm one has gpZq “ Z as N pZq “ Z in that case. We

do not know whether
ś

aPLT1
pa`LT Zq “ p´1q

v2ppqϕpZq holds in general? If so, this would

have simplified the proof of [45, Lem. 2.5]. Moreover, it would simplify the argument here
considerably as the use of the reciprocity law is quite a heavy argument. The statement
is true in the case that ϕpZq is a monic polynomial by the following argument, which was
explained to us by Laurent Berger: Observe that the monic degree q polynomial hpT q :“
ϕpT q ´ϕpZq P QuotpoCp

�Z�qrT s vanishes precisely at the a`LT Z,a P LT1 and hence hpT q “
ś

pT ´ pa`LT Zqq. Comparing the constant coefficients yields the claim.
28Note the opposite normalisation of the reciprocity map in (loc. cit.).
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Lemma 8.16. The isomorphism

H0
Ψ,DpΓL,KqpKx0

q
α0

ÝÑ H1
DpΓL,KqpH0

ΨpR`
Kpχqqq

�
ÝÑ Keχ

sends f̃0 to ´Ω q´1
q pZplogpgpT qqqq

|T“0 eχ.

Proof. By Remark 8.15 we obtain an element Bg
g eχ P RKpχqΨ“1 which lifts f̃0 under the

Coleman transform (30). Thus α0pf̃0q is represented by

Z

ˆ

Bg

g
eχ

˙

“ ZpB logpgqeχq “ B pZ loggqeχ

by (90). It is mapped into H1
DpΓL,Kq

pR`
KpχqΨ“0q to the class of

p1´ϕqZ

ˆ

Bg

g
eχ

˙

“ Zp1´ϕqpB logpgqeχq P R`
Kpχq

Ψ“0

“ Z

ˆ

Bp1´
ϕ

q
qplogpgqqeχ

˙

“

ˆ

TwχLT
pZqBp1´

ϕ

q
qplogpgqq

˙

eχ

“

ˆ

BZp1´
ϕ

q
qplogpgqq

˙

eχ

“ B

ˆ

p1´
ϕ

q
qZplogpgqqe|x|

˙

.

Now we use the commutative diagram

K

´Ω

��

DpΓL,Kq

´Ω

��

p1		
M|x| �� Rr

Kp|x|qΨ“0

B

��
K DpΓL,Kq

p1		 Mχ �� Rr
KpχqΨ“0

to conclude by observing that the evaluation at 1 corresponds to setting T “ 0 and that
´

p1´
ϕ
q qZplogpgpT qqq

¯

|T“0
“

q´1
q pZplogpgpT qqqq

|T“0.

Remark 8.17. The map v ÞÑ p1´
ϕ
q qplogpgv,upT qqq generalizes Coleman’s map as used

in Kato’s proof of the classical rank one case, cf. [54, (2.5)].

Lemma 8.18. With the notation in the proof of Lemma 8.16 we have

pZnplogpgpT qqqq
|T“0 “ L1

Zn
p1q “ CgpZnq.
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Proof. Note that g P ToLrrT ss. Writing g “
ř

iě1 aiT
i we see that for any γ P Γn we have

ppγ ´1q logpgpT qqq|T“0 “ logp
gprχLT pγqspT qq

gpT q
q|T“0

“ logp

˜

ř

iě1 ai
prχLT pγqspT qq

i

T
ř

iě1 aiT
i´1

¸

|T“0

q

“ logp
a1χLT pγq

a1
q “ logpχLT pγqq.

It follows that for elements λ “
ř

i aipγi ´ 1q in the K -span S of γ ´ 1,γ P Γnzt1u, in
DpΓn,Kq we have

pλ logpgpT qqq|T“0 “
ÿ

i

ai logpχLT pγiqq “ λplogpχLT qq “ L1
λp1q,

because
ř

i aipγi ´ 1q “
ř

i aiγi ´ p
ř

i aiq1 and logpχLT p1qq “ 0. Since Zn belongs to the
closure of S the claim follows by continuity.

Now we define a basis pf1,1,f1,2q ofH1
ΨL,DpΓL,Kq

pRKpχqq and f2 ofH
2
ΨL,DpΓL,Kq

pRKpχqq

via29

α1pf1,iq “ f̃1,i for i “ 1,2 and α2pf2q “ f̃2. (120)

Combining (116), (118) and (120) with Lemmata 8.16, 8.18 we obtain

Corollary 8.19. Θ̄pχqppf1,1 ^f1,2q bf˚
2 q “ ´Ω q´1

q CgpZnqCTrpZnqeχ “ ´Ω eχ.

Now we shall compare this to the de Rham ε-isomorphism, i.e., mainly to the map

ΘpRKpχqq, because

ΓpRKpχqq “ Ω´1 (121)

and ΘF,dR,upRF pχqq : dKpDdRpRpχqqq
–

ÝÑ ΔK,2pRKpχqq corresponds to the isomorphism

LKpRKpχqq “ Keχ
–

ÝÑ DdRpRKpχqq “ K
1

tLT
eχ,aeχ ÞÑ

a

tLT
eχ (122)

as ε̃pRKpχq,uq “ 1 due to χ being crystalline.

By the long exact sequence (66) the map ΘpRKpχqq is induced from the following
isomorphisms and exact sequences

DcrispRKpχqq
1´ϕL

ÝÝÝÝÑ DcrispRKpχqq,i.e., K
1

tLT
eχ

1´ 1
q

ÝÝÝÑ K
1

tLT
eχ, (123)

DdRpRKpχqq
expRK pχq

ÝÝÝÝÝÝÑ H1
ϕ,Zn

pRKpχqq
ΓL

f

Υ1
f

ÝÝÑ
–

H1
Ψ,Zn

pRKpχqq
ΓL

f (124)

29Nakamura adds here the factor ˘
p

pp´1q logpχcycpγqq
in front of the αi!
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(with Υ1
f induced by Υ1 in Remark 4.18)

H1
Ψ,Zn

pRKpχqq
ΓL{H1

Ψ,Zn
pRKpχqq

ΓL

f

x̄ ÞÑty ÞÑxpΥ1
q

´1
pxq,yyRpχqu

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pH1
ϕ,Zn

pRKq
ΓL

f q
˚

pexpf,RK
q

˚

ÝÝÝÝÝÝÝÝÑ DcrispRKq
˚ (125)

and

DcrispRKq
˚

– H2
Ψ,Zn

pRKpχqq
ΓL

x̄ ÞÑty ÞÑxpΥ1
q

´1
pxq,yyRpχqu

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pH0
ϕ,Zn

pRKq
ΓLq

˚, (126)

which is dual to the natural isomorphism H0
ϕ,Zn

pRKqΓL – DcrispRKq,1 ÞÑ d0 :“ 1 P

K “ DcrispRKq. We define basis e0 and pe1,1,e1,2q of H0
ϕ,Zn

pRKqΓL and H1
ϕ,Zn

pRKqΓL,

respectively, as follows:30

e0 :“ 1 P RK, e1,1 :“ rp1,0qs, e1,2 :“ rp0,1qs.

Lemma 8.20.

(i) expf,RK
pd0q “ e1,1

(ii) Υ1
f ˝ expRKpχqpt´1

LT eχq “
q´1
q f1,1

(iii) Using the pairing

tt ,́´uuRKpχq : H
i
Ψ,Zn

pRKpχqq ˆH2´i
ϕ,Zn

pRKq Ñ K

from Remark 4.18 we have

ttf1,2,e1,1uuRKpχq “ 1, ttf1,1,e1,1uuRKpχq “ 0,

ttf1,2,e1,2uuRKpχq “ 0, ttf1,1,e1,2uuRKpχq “ 1,

ttf2,e0uuRKpχq “ ´1.

(iv) pexpf,RK
q˚pxpΥ1q´1pf1,2q,´yRpχqq “ d˚

0 PDcrispRKq˚, where the pairing x ,́´yRpχq

had been introduced in Theorem 4.16.

Proof. (i) follows from Proposition 5.9(ii) by taking x̃ “ 1. For (ii) we apply Proposition
5.9 (i) with x̃ “

f
tLT

eχ P RKpχqr
1

tLT
s, where f lies in R`

K such that fpunq “
1
πn
L

for any

n ě 0. The existence of such f follows from the analogue of (42) over the ring R`
K

R`
K{tLT –

ź

ně0

Lpunq,f̄ ÞÑ pfpunqqně0.

Moreover, x̃ satisfies

ιnpx̃q ´ x̃ P D`
dif,npRKpχqq

30In order to normalize e1,2, i.e., to make it independent of the choice of Zn, one would need
the factor CTrpZnq from (20), but for our calculations this is not needed. Since in our choice
for the generalized Herr complex the order of the operators Z and ϕ´ 1 (or Ψ´ 1) is the
opposite compared to Nakamura’s version, our indexing of the basis elements differs from
Nakamura’s!

https://doi.org/10.1017/S147474802500012X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802500012X


ε-Isomorphisms for rank one pϕ,Γq-modules over Lubin-Tate Robba rings 93

for all n ě 1, because

ιnp
f

tLT
eχq ” πn

L

fpunq

tLT
eχ “

1

tLT
eχmodD`

dif,npRKpχqq

by Remark 3.14. Therefore the conditions of Proposition 5.9(i) are satisfied and hence we

conclude that

expRKpχqpt´1
LTeχq “ rpϕ´1qpx̃q,Znpx̃qs P H1

ϕ,Zn
pRKpχqq

and

Υ1
f ˝ expRKpχqpt´1

LT eχq “ r´Ψpϕ´1qpx̃q,Znpx̃qs P H1
Ψ,Zn

pRKpχqq.

Hence it suffices to show that

Res

ˆ

Znf

tLT
d logLT

˙

“ 0 (127)

and

ResZ

˜

p
ϕ
q ´1qf

tLT
d logLT

¸

“ ´
q´1

q
, (128)

because ´Ψpϕ´1qp
f

tLT
eχq “ ´

q
πL

Ψ

ˆ

p
ϕ
q ´1qf

tLT

˙

eχ and

ResZ

˜

Ψ

ˆ

p
ϕ
q ´1qf

tLT

˙

d logLT

¸

“
πL

q
ResZ

˜

p
ϕ
q ´1qf

tLT
d logLT

¸

by [46, Lem. 4.5.1 (iv)]. For (127) one shows first the analogous statement for γ ´ 1,

γ P ΓL, instead of Zn by similar arguments and then concludes by continuity. For (128)
we calculate

ResZ

˜

p
ϕ
q ´1qf

tLT
d logLT

¸

“ RestLT

˜

p
ϕ
q ´1qf

tLT
dtLT

¸

“ RestLT

˜

ϕ
q pfq

tLT
dtLT

¸

´RestLT

ˆ

f

tLT
dtLT

˙

“

ˆ

ϕpfq

q

˙

|tLT “0

´ pfq
|tLT “0

“

ˆ

ϕpfq

q

˙

|Z“0

´ pfq
|Z“0

“
1´ q

q
fp0q “ ´

q´1

q
,

where for the first equation the reasoning is as follows: since fp0q ‰ 0 the expression on
the left-hand side has a simple pole at Z “ 0. The residue formula for simple poles gives

us ResZ

´

p
ϕ
q ´1qf

tLT
gLT dZ

¯

“

´

p
ϕ
q ´1qfpZq

gLT pZq
gLT pZq

¯

|Z“0
“ RestLT

´

p
ϕ
q ´1qf

tLT
dtLT

¯

.
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(iii) follows by direct computation using the formulae of Remark 4.18:

ttf1,2,e1,1uuRKpχq “ ´Resppλι1qp
Bg

g
eχqq “ ´p1pλι

qResp
Bg

g
pλd logLtqq “ 1

upon noting that f1,2 “ rp0, Bg
g eχqs by the proof and with notation of Lemma 8.16.

Take f1,1 “ rpλ1eχ,λ2eχqs. Then

ttf1,1,e1,1uuRKpχq “ ´Resppλι1qpλ2eχqq “ ´p1pλι
qRespλ2d logLT q “ 0

and, for λ satisfying r´1spZnq “ Zι
n “ λZn,

ttf1,1,e1,2uuRKpχq “ Resp1pλ1eχqq “ Respλ1d logLT q “ 1

by definition of f1,1. Finally, writing f2 “ λ3eχ we have

ttf2,e0uuRKpχq “Resp1pλf2qq “ Resppλι1qpf2qq “ p1pλι
qRespλ3d logLT q “ ´1

(iv) follows from (i) and (iii) using (28), i.e., xpΥ1q´1pf1,2q,´yRpχq “ ttf1,2,´uuRKpχq.

Combining the previous lemma with (123), (124), (125), (126) we obtain

Corollary 8.21. ΘpRKpχqqppf1,1 ^f1,2q bf˚
2 q “ ´

1
tLT

eχ P K 1
tLT

eχ “ DdRpRKpχqq.

Together with Corollary 8.19 and (121),(122) this proves property (vi) for the
exceptional case.

Appendix A. Density Argument

When verifying that εK,upMq satisfies a given property we frequently require a density

argument. This is formally justified as follows: We reinterpret a given property as a

commutative diagram in the category of graded line bundles (hence involving only
isomorphisms). E.g. for the property (iii) of Conjecture 7.6 one takes the diagram

1K

id

��

εK,upMq�� ΔpMq

δdetM paq

��
1K

εK,a¨upMq�� ΔpMq.

The commutativity of this diagram for a given property P can be reinterpreted as the
automorphism P pMq of 1K, which is obtained by going around the diagram, taking the

constant value 1. In this section we will construct a (reduced) rigid analytic space Tan
over the normal hull E of L, whose K 1-points parameterise L-analytic pϕL,ΓLq-modules

attached to characters δ : L Ñ K 1ˆ such that the map M ÞÑ P pMq is a map of rigid
analytic spaces

Tan Ñ Gan
m .

This is the same thing as a a global section of Oˆ
Tan

. Since Tan is reduced the vanishing

of a global section (in our case M ÞÑ P pMq ´1) can be checked on a Zariski dense subset
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(essentially by definition as we will see below). Let W (resp. T ) be the rigid spaces

representing the functors

WpXq “ Homctspoˆ
L,ΓpX,OXq

ˆ
q

resp.

T pXq “ HomctspLˆ,ΓpX,OXq
ˆ

q.

For the representability of the first functor see [10, Lemma 2]. The representability of the
second functor can be seen by fixing a uniformiser, which provides us with an isomorphism

T – Gm ˆW and we denote by Wan the subspace of locally L-analytic characters inside

W, where by convention we call a character locally analytic if the composite with
the restriction map to OpY q is L-analytic for any affinoid Y Ă X (this makes sense

because OpY q is a Banach space). Similarly we define Tan. Since oˆ
L is open in Lˆ, we

conclude that a character δ P T is L-analytic if and only if its projection to W is L-
analytic. Analogously we get an isomorphism (depending on the choice of uniformiser)

Tan – Gm ˆWan. The representability of Wan is shown in [19, Proposition 6.4.5]. Recall

that a character is locally L-analytic if and only if its differential at 1 is L-linear. A

character δ : oˆ
L Ñ ΓpX,Oˆ

Xq (with X affinoid over a Galois closure E of L) can be written
(locally around 1) as

δpxq “
ÿ

nPNΣ

anpx´1q
n,

with some an PΓpX,OXq, where Σ is the set of Qp-homomorphisms σ : LÑE and px´1qn

is defined as
ś

σPΣσpx´ 1qnσ where n “ pnσqσ. The partial derivative at x “ 1 in the

direction of σ P Σ, i.e., the coefficient aeσ of the power series at the σ-unit-vector is called

the σ-part of the generalised Hodge-Tate weight of δ.

Remark A.1. A character δ P W is L-analytic if and only if aeσ “ 0 for every σ ‰ id .

Proof. This is essentially [5, Remark 2.7]. Note that a character is L-analytic if and

only if 1 is an L-analytic vector for the corresponding representation. (Loc. cit.) uses the
logarithm as a chart around 1 P oˆ

L rather than the map x ÞÑx´1. Since logGm
pT q “T `. . .

the coefficients in total degree 1 are unaffected by the change of charts. This means that

our aeσ agrees with ∇σp1q in (loc. cit.).

Recall (cf. [1, Chapter 3]) that a subset Z of a rigid analytic space X is called Zariski-
dense if the only reduced analytic subset containing Z is Xred. For a reduced Stein space

this is equivalent to requiring that an analytic function vanishing along Z is identically

zero. An illustrating example is the set pN Ă Br0,1q. It is Zariski dense because a function
vanishing on pN has infinitely many zeroes inside the affinoids Br0,rs and thus vanishes

identically along an admissible cover. For n " 0 the group U “ Γn of n-units is an open

subgroup of oˆ
L isomorphic to oL. Recall that by [42] the corresponding character variety

X :“ XΓn
is a smooth one-dimensional quasi-Stein space. For such spaces it is known (cf.

[7, Section 1.1]) that the divisor of an analytic function has finite support in every affinoid

subdomain and a similar argument as before shows, that a set having infinite intersection

https://doi.org/10.1017/S147474802500012X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802500012X


96 M. Malcic et al.

with infinitely many members of a given increasing family of affinoids pXmqmPN covering

X is automatically Zariski dense. Note that we have a canonical restriction map

Wan Ñ X,

which is finite and flat.

Theorem A.2. If e ă p´1 then the set Wint “ txd | d P Nu is Zariski dense in Wan. If

e ě p´1 we have that the set tχ P Wan | χ|U “ xdu is Zariski dense in Wan.

Proof. We first consider the restriction of xd to the subgroup Γn as above. Recall that

X is covered by the neighbourhoods Xprq consisting of characters taking values inside

the disc |z ´ 1| ď r Using the fact that for any element of x P oˆ
L we know that xq´1

is a 1-unit and xpq´1qpN

for N " 0 is close to 1 we conclude that xpq´1qpm

for m ě N

are an infinite family of distinct points inside Xprq for N " 0. If epL{Qpq ă p´1 we can
decompose oˆ

L – κˆ ˆp1`πLoLq. This allows us to cover Wan by sets of the form ωjXprq,

with ω the composition of the projection mod π and the Teichmüller character. Since

the powers of x intersect every ωj-component infinitely many times we can conclude
from the preceding reasoning, that Wint is Zariski-dense. In the general case we consider

the finite flat restriction map. Passing to affinoids we first observe that Zariski density

inside an affinoid SppAq in the sense above is equivalent to Zariski density in the scheme
SpecpAq since affinoids are Jacobson. Furthermore, because affinoids are noetherian, we

can conclude that the restriction of the map ρ : Wan ÑX to a suitable family of affinoids is

finitely presented and flat (in the ring-theoretic sense) and hence (universally) open with

respect to the Zariski topology. The claim follows from the preceding density statement
because openness implies that the preimage of a dense subset of X is dense inside Wan.

Arguing as in the first part, we can show that the image of Wint inside X is dense and

hence also ρ´1pρpWintqq “ tχ P Wan | χ|U “ xdu.

Remark A.3. Let F 1{L be a finite subextension of K and fix some δ PΣanpF 1q. The map
M ÞÑ P pMq (for a given property P) corresponds to a unique section of ΓpWan,OWan

qˆ,

where we identify Wan with the space of analytic twists of δ.

Proof. We will explain the argument for property (iii). The other properties are treated
similarly. We consider the isomorphism

εDpΓL,Kq,upDfmpMKqq : 1DpΓL,Kq
–

ÝÑ ΔXΓL
pDfmpMKqq

from Theorem 8.6. The validity of property (iii) amounts to the commutativity of the

diagram

1DpΓL,Kq

id

��

εDpΓL,Kq,u�� ΔXΓL
pDfmpMKqq

δdetDfmpMqpaq

��
1DpΓL,Kq

εDpΓL,Kq,au�� ΔXΓL
pDfmpMKqq.

Since all arrows are isomorphisms, going around the diagram clockwise (starting at

1DpΓL,Kq) amounts to an automorphism of DpΓL,Kq, or in other words, an invertible
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global section of XΓL
. The isomorphism ΓL – oˆ

L induces an isomorphism XΓL
– Wan.

Hence we get an invertible global section P of Wan. This allows us to interpret the validity
of property (iii) for every twist MKpδq with δ P Wan as the section P of Wan constructed

above specialising to 1 at every such δ.

Corollary A.4. The set

S :“ tpλ,δ0q P TanpK 1
q “ GmpK 1

q ˆWanpK 1
q | K 1

{K finite,δλδ0 generic and pδ0q|U de Rham u

is Zariski dense.

Proof. Note that the set of de Rham characters contains the set of characters which

restrict to a power of x on U and is hence dense in Wan. As a conclusion the analogously

defined set without the genericity condition is dense. For every d there is precisely one λ
such that δλx

d is non-generic. It is not difficult to see that the set S remains dense.

To restrict some considerations to pϕL,ΓLq-modules arising as a base change from a
finite extension of L we introduce the following notion.

Definition A.5. A character ρ : oˆ
L Ñ Cp is called classical, if its image is contained in

Qp. Analogously a character Lˆ Ñ Cp is called classical, if it takes values in Qp.

Remark A.6.

(i) The image of a classical character ρ : oˆ
L Ñ Cp is contained in some finite extension

F of Qp.

(ii) A character is classical if and only if its restriction to some open subgroup U takes

values inside Qp.

Proof. Since oˆ
L is topologically finitely generated we can see that the image of some

set of topological generators is contained inside Fˆ for a suitable finite extension F of

Qp. Moreover, by compactness of oˆ
L , its image is contained inside the maximal compact

subgroup oˆ
F Ď Fˆ. Now suppose ρpUq Ă F for some open subgroup U Ă oˆ

L . Let γ P oˆ
L,

then γroˆ
L :Us P U and hence ρpγq is algebraic over F. Setting F 1 “ F pρpγq,γ P Rq for a

system of representatives R Ă oˆ
L of oˆ

L{U we can see that the image of ρ is contained
in F 1.

Lemma A.7. Let δ : Lˆ Ñ Kˆ be a de Rham (L-analytic) character, i.e., such that
RKpδq is de Rham in the sense of section 5.4. Then δpoˆ

Lq Ă Qp.

Proof. Let n " 0. Note that Ddif,npRKpδqq embeds ΓL-equivariantly into
ś

jPZpLn bL

KtjLT pδqq and the latter is Γn-equivariantly isomorphic to
ś

jPZp
śrLn:Ls

l“1 KtjLT pδqq. The de

Rham condition hence forces that δ agrees with χj
LT for some (unique) j when restricted

to Γn. As a consequence the restriction δ|
o

ˆ
L

is classical.

Remark A.8. The proof of the previous Lemma shows that any de Rham L-analytic

character δ : Lˆ Ñ Kˆ is of the form

δ “ δlcx
k
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for some k PZ and some locally constant character δlc :L
ˆ ÑKˆ. Vice versa any character

of this form is obviously de Rham L-analytic.

Corollary A.9. Using the notation from A.4 the subset S1 of S consisting of classical
points is Zariski dense.

Proof. This follows from the following easy observations: The set of characters whose

restriction to U is of the form xd is classical and the subset of Gm defined by Qp
ˆ
both

are Zariski dense.
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