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Abstract Inspired by Nakamura’s work [36] on e-isomorphisms for (¢,I")-modules over (relative) Robba
rings with respect to the cyclotomic theory, we formulate an analogous conjecture for L-analytic Lubin-
Tate (¢, )-modules over (relative) Robba rings for any finite extension L of Qp. In contrast to Kato’s
and Nakamura’s setting, our conjecture involves L-analytic cohomology instead of continuous cohomology
within the generalized Herr complex. Similarly, we restrict to the identity components of D.,;s and Dyg,
respectively. For rank one modules of the above type or slightly more generally for trianguline ones, we
construct e-isomorphisms for their Lubin-Tate deformations satisfying the desired interpolation property.
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1. Introduction

In [36] Nakamura generalized Kato’s p-adic local e-conjecture [27, 23] to the framework
of (¢,I')-modules over the Robba ring (over Q,-affinoid algebras) and proved the
essential parts of it for rigid analytic families of trianguline (¢,I')-modules. The technical
foundations for this had been laid by the work of Kedlaya, Pottharst and Xiao [28]
who had established the fundamental theorems concerning their cohomology (finiteness,
base change property, Tate duality, Euler-Poincaré formula) and Nakamura’s work [35],
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in which he generalized the theory of Bloch-Kato exponential maps and Perrin-Riou’s
exponential maps in that framework.

Recently there has been much progress concerning (¢r,,I'y,)-modules over Lubin-Tate
extensions [21, 30, 6, 22, 45, 46]. In particular, the results by Steingart [50, 51] regarding
such (¢r,I'r)-modules over families (finiteness, base change property, Euler-Poincaré
formula, perfectness of Iwasawa cohomology) make it possible to study a version of
Nakamura’s approach for L-analytic trianguline modules.

Let LcC,, be a finite extension of Q, and Ly a Lubin-Tate extension of L with Galois
group I'y, = Gal(Ly /L) corresponding to a uniformiser 7y, of the ring of integers oy, of
L. A continuous representation of G on a finite dimensional L-vector space V is called
L-analytic, if the semi-linear representation C, ®q, V = ]_[U: LC, Cp®r,0 V is trivial
at the components where o # id. By a theorem of Berger the category of L-analytic
representations is equivalent to the category of étale L-analytic (¢r,I'r)-modules over
the Robba ring Ry (cf. [5]). Analyticity means here, that the action of the Lie group
I';, is differentiable and the action of Lie(T'y) is (not only @Q,-, but even) L-bilinear.
For analytic (¢r,I'r)-modules one can define analytic cohomology (see Section 4 for a
precise definition). Finiteness of analytic cohomology allows us to attach to a family
M of analytic (¢r,I'r)-modules over A a graded invertible line bundle A4(M) over A
which is essentially the determinant of the analytic cohomology of M. Note that, for an
L-analytic étale (¢r,,I'r,)-module attached to some L-analytic Galois representation V' of
G, with coefficients in L, these analytic cohomology groups in general do not coincide
with the Galois cohomology groups H!(L,V) of V for i > 0. Nonetheless they behave
similarly to Galois cohomology and allow us to study certain invariants of V' “at the
identity component”. If M is the (¢r,I'r)-module attached to an L-analytic de Rham
representation V, then one can also attach an e-constant to the “identity component” of
Dpsi(V), ice., the Gr-smooth vectors in By ®r, V' (which injects into the full By;®q, V).
This can be generalised to the non-étale case as well (see Section 7.4 for details). The
content of the analytic variant of the e-conjecture is a trivialisation of A4(M) which
interpolates these e-constants at the de Rham points, i.e., the points € Sp(A) where the
specialisation M, is de Rham.

We formulate the following conjecture in a more general setting (and indicate in
Remark 7.7 (ii) how to formulate a version of this conjecture for L-analytic (¢r,I')-
modules over the character variety X,, in the sense of Schneider-Teitelbaum).

Conjecture (See Conjecture 7.6). Choose a compatible system u = (uy,,) of [7}]-torsion
points of the Lubin-Tate group and a generator ¢, of the Tate module of its Cartier dual.
Let K be a complete field extension of L containing L*®, and A an affinoid algebra over
K. For each L-analytic (¢r,I'r)-module M over R4 satistying condition (63) there exists
a unique trivialisation

satisfying the following axioms:
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(i) For any affinoid algebra B over A we have
€A,u(M) ®aidp = EB,u(]\4®AB)
under the canonical isomorphism A4 (M)®4 B~ Ap(M®aB).

(ii) €4, is multiplicative in short exact sequences.

(iii) For any a € o] we have
EA,a-u(M) = 5dctM(a)5A,u-

(iv) €4.u(M) is compatible with duality in the sense that for the dual module M (see
section 4.3) we have

EA,U(M)*®h<XrM) _ (_1>dimK HO(M)Q;)TMEA),U(M)

under the natural isomorphisms 14 =1, ®14 and A(M) = A(M)*® (A(rar),0),
where h(x"™): A(rar) — A maps ey to 1 and rps denotes the rank of M over
Ri.

(v) For L =Q,, mr, =p and u = ({p» — 1), the trivialisation coincides with that of
Nakamura, in the sense of Proposition 8.7.

(vi) Let F'/L be a finite subextension of K, My be a de Rham (¢,I')-module over R
and M = K&®pM,. Then

ex.u(M) =5, (Mo),

where the isomorphism E;l;{%u(Mo) ‘1 = Ag(M) is called the de Rham e-
isomorphism which is defined in (65) unconditionally using a generalized Bloch—
Kato exponential and dual exponential map as well as the e-constant associated
to My in section 7.4.

While in the cyclotomic setting the e-constants depend on the choice of a norm
compatible system of p-power roots of unity, in the Lubin-Tate setting this is replaced
by a compatible system of 7y-power torsion points of the Lubin-Tate formal group, see
Remarks 6.1, 6.3 for a comparison of both. We also fix a generator ¢, of the Tate module
of the Cartier dual of the Lubin Tate group which determines a certain period € € C,
(cf. [43]). We prove parts of this conjecture for L-analytic trianguline (¢r,,I'z,)-modules.
More precisely, we construct the e-isomorphism for the Lubin-Tate deformation of a rank
one, de Rham L-analytic (¢, )-module M over some finite extension F' of L

enry),u(DIM(K®FM)) : 1p(r,) = Ax,, (DEm(K®rM)),

see Theorem 8.6. This lives over the rigid analytic character variety Xr, over L. The
Cp-points of this variety correspond to locally L-analytic characters I'y — CJ. We refer
to subsection 4.2 for the precise definition of the Lubin-Tate deformation Dfm(N) of
a (¢r,I'r)-module N over Rg. Heuristically one can think of it as the base changed
(pr,I'r)-module D(I'z, K)®x N over the relative Robba ring D(I'z, K)®x Rk . But due
to the complicated behaviour of completed tensor products over LF-spaces which are not
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Fréchet, it requires a more technical treatment. The correct point of view, which is used for
the cyclotomic setting in earlier articles of Pottharst (but apparently neither consequently
pursued nor carefully explained in [28, Def. 4.4.7, Thm. 4.4.8] unfortunately), consists of
viewing this deformation as a sheaf of (¢r,I')-modules over Xr, , which is not affinoid and
hence does not strictly speaking fit into the above Conjecture. Instead, the isomorphism
€p(ry),u 18 a trivialisation of a line bundle over Xr, which restricts to an isomorphism of
the conjectured type on each affinoid subdomain.

Philosophically, the L-analytic theory over Lubin-Tate extensions is one-dimensional
and thus very similar to the cyclotomic case in the sense that I'y is - although
[L : Qp]-dimensional over Q, - one-dimensional as p-adic Lie group over L. Nevertheless,
technically we have had to overcome serious difficulties. We are going to describe these
differences compared to Nakamura’s work in the following.

In the cyclotomic setting, Herr-complexes are formed with respect to the two operators
@ and y—1 for a topological generator v of the torsion-free part of I'; moreover, one can
directly go over to the complex consisting of the fixed part under the torsion subgroup A
of . In the Lubin-Tate setting (with L # Q) there is no intrinsic counterpart of v as one
needs at least [L : Q,] elements to generate the (torsion-free part of) I';, topologically. So
instead we make use of Fourier theory and the Lubin-Tate isomorphism & la Schneider
and Teitelbaum [43]

D(T,,K)~0O(Xr,) =~ 0O(B)

over a huge field extension K of L, over which the character variety Xr,, for the subgroup
of n-th higher units I',, =~ oy, of I', can be identified with the open unit disk B for n
sufficiently big. Via this isomorphism we can now choose 3,, € D(I',,, K) corresponding to
the choice of a coordinate of B. The generalized Herr-complex in the Lubin-Tate setting
can thus be formed using the two operators ¢r and 3,. Unfortunately, in contrast to
A cTq,, the remaining quotient I',/T',, in general cannot be identified with a subgroup
of Ty, whence we cannot take I'y /T, -invariants as before, but have to circumvent this
problem.

An important step for our approach consists of establishing the analogue of local Tate
duality for analytic cohomology, see subsection 4.3. In contrast to [36] we find an intrinsic
way to normalize our trace map without any comparison to Galois cohomology (which is
not available anyway as we indicated); nevertheless for L = Q, our choice coincides with
that of Nakamura (for an appropriate choice of period §2).

Another price we have to pay is the fact that even the minimal choice for K is no
longer spherically complete, which means that the functional analysis requires some
additional care. For the explicit descent calculation Lemma 8.16 we make use of the
explicit reciprocity law from [45].

Contrary to the cyclotomic case, it seems difficult to establish integral results in the
analytic case. On the one hand the “dualizing character” x used to establish Tate duality
has Frobenius action given by £ and hence does not make sense integrally (unless
L =Q,), on the other hand the period 2 is not a unit (unless L = Q). The L-analytic
distribution algebra D(I'y,L) contains the ring Ax,. ~of power-bounded functions on the
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character variety. It is not known whether Ax. = or[I'r]. Paradoxically, the Iwasawa
algebra or[I'r][1/p] is dense inside both the d-dimensional Q,-analytic distribution
algebra and the 1-dimensional L-analytic distribution algebra making it unclear how
to descend to integral results even under the assumption Ax,. =or [TL]-

The structure of the paper is as follows: In section 3 we introduce (analytic) (¢r,T'1)-
modules. In section 4 we introduce and study analytic cohomology of analytic (¢r,I')-
modules and recall the main results of [50] while providing some generalisations suited to
our needs. Furthermore, we develop an analogue of Tate duality for analytic cohomology.
In section 5 we develop an analogue of the Bloch-Kato (dual) exponential map for
analytic cohomology. We recall classical e-constants in section 6 and state the conjecture
in Section 7. Section 8 is dedicated to proving the main result. In the Appendix we adapt
Nakamura’s density argument to the Lubin-Tate setting.

2. Notation

We denote by N the natural numbers including O.

Let Q, < L < C, be a field of finite degree d over Qp, or the ring of integers of L,
71, € o, a fixed prime element, kz, = or /7oy, the residue field, ¢ := |kr| and e the absolute
ramification index of L. We always use the absolute value | | on C, which is normalized by
|7| = ¢t This choice of normalisation is consistent with [15] and [46]. We normalize the
reciprocity map of local class field theory such that 7y, is sent to the geometric Frobenius.

We fix a Lubin-Tate formal or-module LT = LTy, over oy, corresponding to the prime
element 7;. We always identify LT with the open unit disk around zero, which gives
us a global coordinate Z on LT. The op-action then is given by formal power series
[a](Z) € o,[[Z]]. For simplicity the formal group law will be denoted by + 7.

o(X+rTY)

The power series - is a unit in or[[Z]] and we let gr7(Z) denote

|(XY)=(Z70)
its inverse. Then gr7(Z)dZ is, up to scalars, the unique invariant differential form on LT

([24] §5.8). We also let
log,r(Z)=2Z+... (1)

denote the unique formal power series in L[[Z]] whose formal derivative is grr. This
log; 1 is the logarithm of LT in the sense of [32, §8.6] and converges on the maximal ideal
in oc, (by §8.6, Lemma 3 (i) ibid.). By exp, :=logr7 in L[[Z]] we denote the inverse
power series of log; 7, i.e., satisfying log; roexp;r(Z) = exp;rolog;r(Z) = Z.!

In particular, grrdZ = dlog; . The invariant derivation 0in, corresponding to the form
dlog;r is determined by

f’dZ = df = 6inv(f)d10gLT = ainv(f)gLTdZ

and hence is given by

O (f) = 91" (2)

Lexpp converges on D := {z € Cpluvx, () > q_%} and induces on D the inverse of log;
respecting the valuation, see [32, §8.6, Lem. 4]
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For any a € oy, we have

log;r([a](Z)) =a-logr  and hence  agrr(Z) = grr([al(2))-[a]'(Z)  (3)

([32] 8.6 Lemma 2).

Let T; be the Tate module of LT. Then T is a free or-module of rank one and we
choose a generator u = (un)neny Where ug =0, uy # 0 and, for all n, we have u, € mc,
as well as [rr](un+1) = tp. Then the action of Gy := Gal(L/L) on Ty is given by a
continuous character xyrr: G — oz. Let T denote the Tate module of the p-divisible

group Cartier dual to LT with period y € ZE, which again is a free op-module of
rank one and where t{, is a generator. The Galois action on T =~ T*(1) is given by the
continuous character 7 := xcye -Xzilp, where Xy is the cyclotomic character. As mentioned
in [8, §1] and [42, §3] it follows from the work of Tate on p-divisible groups that we have
natural or-linear isomorphisms

T7lr = Homocp (LT, Gm) = HomZp (TmZp(l)) = HomZp,cts (TTr ®o,, L/OL,/J,(p)), (4)

where the last isomorphism is induced by Pontryagin duality and the adjunction between
Hom and ®. According to the proof of [8, Lem. 13| the above composite sends at,
to the map sending u® % to ny (a,un), where, for x € o, we define ny (v,7) :=
exp (Qyzlog,r(Z)) € 1+ Zo~[[Z]]; when the choice of #; is clear from the context,
we often omit this index from Qy, or ny (v,2).

Our constructions will depend crucially on the choices of u and t{, which determine the

period Q = Qti) . By (4) these two choices automatically determine a system

77(1»T)|T:un = eXP(QIOgLT(T))IT:un

of compatible p-power roots of unity.? In the cyclotomic case where LT = G,, it suffices
to fix a choice of compatible p-power roots of unity because one can then take the identity
as a canonical generator t(, of T, = Hom(G,,G,,).

For n > 0 we let L,,/L denote the extension (in C,) generated by the m}-torsion points
of LT, and we put Lo, :=J,, L. The extension L, /L is Galois. We let I'z, := Gal(Le /L)
and Hp, := Gal(L/Ly). The Lubin-Tate character x 7 induces an isomorphism I'f, = o .
Note that by [7, Rem. 1.17] we have Np g, ©XLT = Xeye if and only if Ny g, (71) e p”.

Note that we have homomorphisms or — 1+ Zo~[[Z]], z — n(z,Z), and LT —

G, Z — n(x,7Z), respectively. For a 7 -torsion point a (whence p™-torsion with m = [2]
being the smallest integer greater or equal to 2) we thus obtain a character o —
Zp[Cpm ™,z — n(z,a), of finite order. In particular n(z,u,) belongs to y,m for any x € of,.

If y eI, we have yn(z,Z) = n(xrr(v)2,Z), while p(n(z,2)) = n(rL2,2).

Remark 2.1. Since for o in G, one has o(2) = Q7 (o) by [46, Lem. 4.1.24], it follows
that “n(x,Z) = n(x7(0),Z) = n(x,[7(0)](Z)), if we let act G, on the coefficients only,
and o(1(5,2)) = n(z7(0 ), [xer(@)(2)) = 15 [xepe0))(2)), if we let act Gy, on the

2E.g. if L =Qp and LT is the special group corresponding to pX + X? and = 1, then n(1,T)
is the Artin-Hasse exponential exp(X + X?/p+...).
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coefficients and on the variable. In particular, o(n(z,u,)) = n(z7(0),[xrr(0)](un)) =
(2, [Xeye(0)](wn)) = N(2Xeye(0),un) = n(2,u,)Xeve(?) Moreover, for a fixed choice (,n of
a primitive p"th root of unity, there is a unique homomorphism g, : oy, — Z/p"Z such
that the following diagram is commutative

Z/p"Z
o,
n(_)un)
or, Mpr s

ie., n(wu,) = (n™ ™) One easily checks that By, (Xcye(0)Z) = Xeye(0) - Bu,, (€).

Henceforth we use the same notation as in [45]. In particular, the ring endomorphisms
induced by sending Z to [7.](Z) are called ¢ where applicable; e.g. for the ring 7,
defined to be the m-adic completion of or[[Z]][Z~ ], or %y, := </ [7; '] which denotes
the field of fractions of ;. Recall that we also have introduced the unique additive
endomorphism v, of &, (and then &) which satisfies

proyr = 71'51 ~Tr%L/¢L(%:L).
Moreover, the projection formula

V(e (fi)f2) = five(fe)  forany fie Zr

as well as the formula
Vropr = 4 a
L

hold. An étale (pr,I'r)-module M comes with a Frobenius operator ¢,; and an induced
operator denoted by 1.

For a perfectoid field extension F of L in the sense of [41, Section 1.4] let
op» 1= limop/por with the transition maps being given by the Frobenius ¢(a) = a”.
We may also identify op» with liI_HOF/WLOF with the transition maps being given by
the ¢-Frobenius ¢4(a) = a?. We recall that I//; and C, are perfectoid and that ocy is
a complete valuation ring with residue field F,, and its field of fractions C; =1mC, is
algebraically closed of characteristic p (cf. [41, Lemma 1.4.6,Proposition 1.4.7 and Lemma
1.4.10, Proposition 1.4.12]). Let mey denote the maximal ideal in ocs - The g-Frobenius
g4 first extends by functoriality to the rings of the Witt vectors W(OC; )< W(C;) and
then or-linearly to W(OC;)L = W(OC;)®OLO o SW(Ch)p = W(CZ)®OLO or,, where Lg
is the maximal unramified subextension of L. The Galois group G, obviously acts on C;
and W((C';,) L by automorphisms commuting with ¢,. This G'r-action is continuous for
the weak topology on W((CE,)L (cf. [41] Lemma 1.5.3).

Sometimes we omit the index ¢,L, or M from the Frobenius operator, but we always
write ¢, when dealing with the p-Frobenius.

Evaluation of the global coordinate Z of LT at mp-power torsion points induces
a map (not a homomorphism of abelian groups) ¢ : T, — o - Namely, if ¢ =
(2n)n=1 € T with [7](2p41) = 2, and [71](21) = 0, then 2!, = 2z, mod 71, and hence
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t(t) :== (2, mod 7p), € ocs, - As before we fix an op-generator u of T and put w, := ¢t(u).
Then there exists a (unique) lift Z, € W(OC?))L of w,, satisfying (cf. [45, Lem. 4.1])

(i) if v’ = au with a € o} denotes another generator of Ty, then Z,, = [a](Z,) is the
corresponding lift;

(i) ¢q(Zu) = [7L](Zu);
(iil) 0(Zy) = [xrr(0)](Zy) for any o € G

By sending Z to Z, € W(O@; )L we obtain an Gp-equivariant, Frobenius compatible
embedding of rings

oL[Z]— W (o 1. (5)

Let K < C, be a complete subfield containing L, and €2, i.e., the minimal choice is the
c/oinpletion of the extension Ly, () of Ly; by an observation of Colmez the completion
L would be a possible choice, where we write L*® = L™ Lo, and L™ for the maximal
abelian and for the maximal unramified extension of L, respectively. If L # Q,,, such K
cannot be discretely valued even if we replace Lo, by L, see [42, Lem. 3.9]. Following
Colmez we define K, := L, ®; K = H(OL/TFE)X K, where the latter identification is given
by mapping [®r, k to (04(1) - k)ae(oy, /x7)x» and have the maps

TI‘KTL/K: H K — K, (la)a,e(oL/Trz)>< — Z la-

(OL/ﬂ'z’)x aE(OL/TrZ)><

Note that we have v,(£2) = ﬁ - ﬁ W~

For any ring R, let Dgi’rbf] (R) (respectively Dgerf(R), D_.;(R)) denote the triangulated
subcategory of the derived category D(R) of (cochain) complexes of R-modules consisting
of the complexes of R-modules which are quasi-isomorphic to complexes of finitely
generated projective R-modules concentrated in degrees [a,b] (respectively bounded
degrees, degrees bounded above).

Furthermore, if R is a commutative ring, X an R-module and ¢t € R a non-zerodivisor,
we write X; := X[1] for the localisation at the multiplicatively closed set {1,¢,¢2,...}.

For a locally L-analytic group G and a complete field F' < C, containing L we
write D(G,F) for the locally L-analytic distribution algebra with coefficients in F'; if
the coefficients are clear from the context we often abbreviate this as D(G). Dirac
distributions associated with group elements g € G are denoted by d, or [g].

and, for n > 1,r, :=vp(uy) =

3. (¢r1,I'r)-Modules over the Robba ring

For the entire section, fix a complete intermediate field F' of the extension C,/L.

3.1. Definition of the Robba ring R

For any interval I < (0,00) that is either compact or of the form (0,r], r > 0, we define

REL = Z:ak-Zk|akeF7 lim vp(ag)+kt=o0 foralltel ;.
keZ lk|—o0
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We always assume that the boundary points of I are in the value group of vg, so that
RL is the ring of rigid analytic functions on the annulus

{xe F|vp(z)el}.
Furthermore, for r > 0, let
r 0,r
= ’Rg, I

i.e. the ring of rigid analytic functions on the annulus with outer radius 1 and inner radius

depending on r. For any s € (0,7], one has RE;S’T] C R, and jo,r] is a Banach algebra

over F' with the norm

_ . . _ k [S,T]
Vs, () = tg[l:I}] <]1€161£(’UF(G]€) +kt)> ,  where f = éakZ eERE .

Thus R% =(o—s STRE;?’T] is a Fréchet space. There are natural inclusions R}, € R% for
s < r. Now the Robba ring over F in the variable Z is defined by

RF = U R%
r>0

We endow Rp with the locally convex direct limit topology of the R%, making it an
LF-space.
Moreover, let

R} :=RrnF[[Z]].

This is the ring of power series with coefficients in F' that are convergent on the open
unit disk. In particular, we have R} < R’ for all r > 0. For a complete field extension
F c F' < C, we have

F'®r . Rr ~Rp

(see. [7, Corollary 2.1.8]). Their proof also shows F'®p R% = Rh..
Inside Ry, we have the subring RS’; of bounded elements, i.c., those Laurent series
[ =%z arZ* where the coefficients aj are bounded in F. It is well-known that Ry =

(RY%)*. Furthermore, the map f — || f||1 := supj|ax| defines a multiplicative norm on RY,,
see [7, §1.3].

3.2. Frobenius and I'j-action on R

On Rp, we define a Frobenius ¢ and a commuting I"p-action by

er(2):=[r](Z) and  4(Z):=[xer(7)](Z) for yel'L

on the variable and trivial actions on the coefficients. For r > 0, the Frobenius ¢ and
each v e I'g, restrict to maps

P: R’I;—VR;,/Q and v: RE — Rp.
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For r small enough, there is a left inverse
v R — Ry

—1
YL

of ¢, given by ¥ =

OTYR}/"/%(R;)’ see [22, §2]. We have ¥ = "Ly

3.3. (¢r,I'r)-Modules
Definition 3.1. A p;-module over Ry is a finitely generated free Rp-module M.

equipped with a continuous®, ¢ -semilinear endomorphism ;;, such that the induced
R p-linear map

Rr®Rp, o M —> M, f®xr— f-on(x)

is an isomorphism. Note that in the above tensor product, R is viewed as a left-module
over itself in the usual way and as a right module via ¢y,.
We will often simply write ¢ instead of ¢);.

Proposition 3.2. Let M be a @1 -module over Rp. Then there exists an r(M) >0 such
that, for each 0 <r <r(M), there exists a unique finitely generated free R'.-submodule
M"™ < M satisfying the following properties:

(i) M =RrQ®pry M".
(ii) @ar induces an isomorphism R;/q ®Rry, o M"— R;ﬂ/q ®ry, M".
In particular, for 0 <s <r <r(M), one has
M*® =RE®r, M".
Proof. See Thm. 1.3.3 in [4]. O

Remark 3.3. Let M be a ¢r-module over Rp. Then for 0 < s < r < r(M) and
7€ {s,[s,r],@} we write

M? = R7F ®R7~(1W) MT(M)
F

Composing the canonical map M"™ — R;/q ®Ry, 0, M, m— 1®@m with the isomor-

phism RTF/q ®Rr, o M" = M9 from Prop. 3.2(ii) above, we obtain ¢ -semilinear maps

o: M" — M1,
There is also an operator
\I/MZ Mr/q%qu®R;7<pL M"— M"
given by f®m — U(f)-m.

3where M is, of course, endowed with the product topology from Rp.
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Definition 3.4. A (¢1,I'1)-module over Rp is a ¢r-module M over Rp which carries
a continuous, semilinear action of I';, that commutes with ¢5;. We shall write (R )
for the category of (¢r,,I'r)-modules over Rp.

Remark 3.5. If M is a (¢r,I')-module over R and 0 < r < r(M), then from the
uniqueness in Prop. 3.2 it follows that v(M") = M" for all yeI'r.

Definition 3.6.

1
e(g—1)gn~1"

(ii) Let M be a (¢r,I'z)-module over Rp. For any n such that r,, < r(M), define
MM = M.

(i) For n > 1 we put 7, := vp(uy,) =

Observe that for the Frobenius we then have ¢: M) — M ™+ for n » 0.

Let M be a (¢r,I'r)-module over Rp. After fixing a basis of M, consider the matrix
P e GL,(RF) representing (. Then we have det(P) € Ry = (R%)* and may thus take
the norm ||det(P)|; introduced at the end of Subsection 3.1. Define the degree deg(M)
of M as the number satisfying ||det(P)|; = ¢~ 9¢M); one checks that this is independent
of the initial choice of basis of M, see [7, §3.3] for details. Furthermore, the slope of M
is defined as p(M) := deg(M)/rk(M).

Definition 3.7. A (¢r,I'r)-module M over Rp is called étale, if it has degree 0 and
every (¢r,I'r)-submodule has slope = 0.

Definition 3.8. For an affinoid algebra A over F' we define RY := AQpREL (with the
projective tensor product topology) and similarly R”, and R 4. We can extend A-linearly
the actions of ¢y, and I'r,. By a (¢,,I'1 )-module over R 4 we mean a R 4-module M which
arises as a base change of a projective R’;-module M" for some r » 0, together with a
continuous R’;-semilinear action of I';, on M" and a ¢ -semilinear map ¢pr: M"™ — M r/a,
which commutes with I';,. We can analogously extend the definition of W.

If F is not spherically complete, we do not know if there exist non-free, projective
(¢r,I'r)-modules over Rp. In all cases considered by us, we will only need free modules.
According to [7] Prop. 2.25 the I'p-action on a (¢r,I'p)-module M is differentiable so
that the derived action of the Lie algebra Lie(o}) on M is available.

Definition 3.9. A (¢r,I't)-module M over R € {Rp, R4} is called L-analytic, if the
derived action Lie(T'y) x M — M is L-bilinear, i.e., if the induced action Lie(T'z) —
End(M) of the Lie algebra Lie(T's) of 'z, is L-linear (and not just Q,-linear). We shall
write MM (R) for the category of L-analytic (¢r,I'r)-modules over R.

In the case R = R, we write MM (R ) for the category of étale, L-analytic (¢r,I'r)-
modules over Rp.

For the relation with L-analytic continuous Galois representations Repy™ (G L) of G, on
finite dimensional vector spaces V, which are analytic, i.e., satisfying that, if D%%(V) =

(V®q, Bar)C*, the filtration on D%%(V)m is trivial for each maximal ideal m of L®q, L
which does not correspond to the identity id : L. — L, Berger’s theorem is crucial.
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Theorem 3.10. There is an equivalences of categories
Rep(GL) «— M (Ry)
vV — DL (V).

rig

Proof. Thm. D in [5] O

The embedding or[Z] — W(C;)L in (5) depends by construction on the choice of w.
Any other choice does not change the image of the embedding o [Z] — W (C},) 1, because
Zou = a)(Z,) for a € of by property (i) above (5). As explained in [47, §8] the image
Z, of the variable Z already lies in W(L’,)z, so that we actually have an embedding
oL[[Z]] = W(L%,) . Similarly, as in [29, Def. 4.3.1] for the cyclotomic situation one shows
that the latter embedding extends to a I' - and ¢ -equivariant topological monomorphism
R — R into the perfect Robba ring, see [47, §5] for a definition and [57, Konstruktion
1.3.27] for a proof in the Lubin-Tate setting.

Remark 3.11. In order to trace the choice of u in our constructions, we should view
R, as a subring of R, via the embedding induced by Z — Z, and define (pr,I'L)-
modules over this (isomorphic) subring. We will ignore this dependence for the most part
by working with a fixed Z = Z,,. This “hidden” dependence on wu is only relevant if an
element of a (yr,I's,)-module is explicitly defined in terms of power series in the variable
Z, see e.g. (77), (79), (30).

3.4. Rank one modules and characters

Let A be an affinoid algebra over F. To each continuous character 6: L* — A* we can
attach a (pr,I'r)-module of rank one R 4(d) := Raes by setting o (es) = d(rr)es and
~v(es) =0(xrr(7))es for yeT'r. We say a module is of character type if it arises in this
way. A (pr,I'r)-module of character type is L-analytic (in the sense of Definition 3.9) if
and only if § is locally L-analytic (or equivalently (5‘02 is locally L-analytic). Over Rp

any rank one module is of character type (cf. [22, Proposition 1.9]). We write ¥ = X(A)
for the set of continuous characters 6 : L* — A*. We denote by ., := ¥4,(A4) the
set of locally L-analytic characters 6: L* — A*. Consider the following characters o7,
X = x|z|,64" : L* — L* for ce L* given by

rr(re) =1, 5LT|O,§ = ldo;v
L .

x(mr) = ?7 Xlox = ldoz )

6" () = ¢, (6:™)

In particular, x = 0%} érr. Then drr corresponds via class field theory to the character

x =1.

|0L

xrr: G — of . Let :5: L* — L* be any continuous character; setting dg := 3™ (WL)(S we
may always decompose d = 657 | do satisfying 5|Of = (50)‘02 and 0p(7r) =1. If |6(7p)| =1,
the character § corresponds to a Galois character ys via local class field theory. Then
DI (L(xs)) = R.(6) and we call § étale.

g
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Later, for descent calculations we will have to select out the sets of special characters
¥y := {27 i e N} and X5 := {z'x|i € N} from the generic ones Xy, 1= Lo, \(1 U X2).

Note that we have two t-operators. While 1 satisfies the identity o = %id and
makes sense even integrally, ¥ denotes the left inverse of ¢, i.e., satisfying Yo =id. In
particular, we have 1) = I W. Note that ¢(es) = %(5—1(71'[/)65.

If 6 € ¥,,(K) and a € of such that log(a) # 0, then one defines the weight of § as
ws :=log(d(a))/log(a) (which is independent of a). We shall say that ¢ is de Rham, if
the attached (pr,I'r)-module Rk (d) is de Rham in the sense that will be introduced in
subsection 5.4 below. As shown in the Appendix A, Remark A.8, § is de Rham if and
only if there exist some locally constant character 0y and k(= ws) € Z, such that

§ = 82" (or equivalently § = 51.6%.. for some other 8. ,
LT

see also [46, Rem. 3.2.3/4] for the étale case.
We fix some notation for the remainder of the article. Consider the differential

operator 0 := Oipy = - acting on Ry. (This differs from [15] by a constant.)

1
log’, +(Z)
Let V € Lie(I'r,) = L be the element corresponding to 1€ L.

Remark 3.12. We obtain the following properties (cf. [15, 1.2.4]):

(i) o =mrpod.
(i) 0oy = xrr(v)v00.
(iii) Vf =tprdf for fe Ri.
(iv) V(fes) = (Vf+wsf)es for § € Xyp.
(v) on(z,T) = Qun(z,T)

3.5. The modules D\ (M)
We set trr =logr(Z) € L[[Z]], so that

SD(tLT):ﬂ—L'tLT and 'Y(tLT):XLT('Y)'tLT for allvel"L

by (3). For n > 1, we set

[77"1(Z) = tn + 17 expLTdf—zT) e L[[Z]]

Then [77](un +L7 expLT(f;—ZT)) = Z, which is how Colmez justifies this notation in
[15, 1.4.2]. Note that the constant term of [7;"](Z) is equal to u, and hence is non-
zero, so [ "](Z) is a unit in L, [[Z]].

Furthermore, let 0 : K, [[t;7]] — K, denote the K,-linear map sending t;r to 0, i.e.,
the reduction modulo t;7. This is the completed base change to K of the restriction of
0 : B;R i (Cp to Ln[[tLT]] - Ln

In the following, let F' be a complete non-Archimedean field containing L.
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Definition 3.13. The group I';, acts diagonally on
F,=L,®.F

(trivially on the right factor and naturally on the left), and we extend this to an action
on F,[[Z]] via its usual action on Z.* Now define

Ly = LglF) : R;;:L d Fn[[tLT]] = Fn[[Z]]a
S a2t o Y anlfm"(2),

keZ keZ
where on the right-hand side aj denotes (by abuse of notation) the image under the
canonical embedding F'— L, ®; F and [ "](Z) is viewed as a power series over L, ®r,
F' via the embedding L, — L,,®, F.

Remark 3.14.

(i) The map ¢, is well-defined.

ii) For the power series t;r = lo Z) e Rt we have
(ii) gLT F

trr
Ln(tLT) = ﬁ

(iii) ¢y, is injective for every n.°

Proof. To see that ¢, is well-defined for F' = L first recall that by [14, Prop. 8.10], the
ring B contains a period ¢y, for the Lubin-Tate character, i.e. we have g(t1) = xr7(9)tL
for all g € G, and ¢y, differs from the usual ¢ by a unit. Thus L, [[trr]] embeds into B;’R
via tpp — tr, and we endow it with the subspace topology, making it a closed subspace
of Blz. It hence suffices to show that ¢, (f) converges in Bl;. A series of the form
z=3,, P"zK] € W(OC;)[l/p] converges in B, if and only if 6(z) converges in C,
(which is the case precisely when k + v(xzy) — oo for k — o0). As in [12, Prop. II1.2.1 (i)],
the condition = = Y., , ax Z¥ with ay, € oy, and vy(ay) +k-r, — o for k — —oo implies
that ¢,,(z) converges in Bjj;. Even though the coefficients of an element z € R}" are not
bounded, they do satisfy the same growth condition, which ensures the convergence of
tn(x). The case of general F is obtained via completed base change R} = F®p R}" —
Fulltrr]] = FOL xLulltrr]]-
For the second point we compute

trr

() = Tog (155" 1(2)) = o) + oz oo (27 )
— ¥ L

_trr
—.
TL
=0

4Note that Fn[[tzr]] = Fu[[Z]] because the map Fn[[Z]]/Z* — Fu[[Z]]/Z",Z —> trr is an
isomorphism for all k, a consequence of 1 being an element of Z + Z2L[[Z]].

SThe injectivity of tn, in the cyclotomic case is [3, Proposition 2.11, Proposition 2.25], but the
map .y, is defined in terms of Witt vectors. The argument given by us is in a similar spirit as
(loc.cit.).
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For the injectivity of ¢, we can assume F = L because completed base change F&®jp, »—
preserves injectivity by [19, 1.1.26]. Consider 0: L,[trr] — L, the reduction modulo
trr such that 0o, (f) = f(un). If ¢, (f) =0 then f(u,) =0 and hence f is divisible by
Qn(Z):= [[TFLM Because i, (trr) #0and Q, |trr =Z] ] % we conclude tn(Qn) #

ar(Z)" u=l mp,
0 and hence ¢,,(f/Q,) = 0. Inductively Q¥ | f for every k > 0. The choice of n ensures
that @, € R}" is a non-unit. By considering the image of f in the noetherian domain
R[LT"’T"] under the inclusion R}" < R[LT"’T"] we conclude f =0 by Krull’s Intersection
Theorem. ]

The map ¢, commutes with the action of I'y,. Writing Tr =idp ®5T1"L
the commutative diagrams

wi1/Ln WE obtain

L

Ry —— Fu[ltrr]]

| |

Ryt 2 B ([tr]]
and

Ry —=— Fu[[ter]]

T

Ry =5 Foalltor]]-

Definition 3.15. Let M be a (¢r,I')-module over Rp. Viewing F,[[trr]] as an R}2-
module via ¢, we define the F,[[trr]]- and F,((¢tz7))-modules

D, (M) := Fu[[trr]]®rre M™  and  Dygign(M) :=Dg, (M)y,,,

respectively, where (—);,, means localising an F,[[t;r]]-module at the multiplicative
subset generated by t;p. Furthermore, DZ{iﬂ (M) carries the diagonal action of I';,, which
also extends to Dgit,(M). Under the isomorphism ¢* (M ™) = R+ R, r7n MM ~
M("“), the map ¢: M®) - ppin+D) corresponds to the canonical map cany n1: M®
©*(M™); 2 — 1®zx. The above diagrams then induce the diagrams (see [36, §2.B] for
details)

MO DG ()

J/) \[cann,nﬂ

p(nt1) tntty Dg;?nH(M)

where the map can,, ,+1 is given by f(t)®x — f(t)®p(x) 2 f(t) ®can, n+1(r) = f(1)®
1®z, and ¢, by m+— 1®m, as well as, for n > 1,
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M) s D, (M)

‘| ]

MU S D, (M)

with transitions maps f(t)®x — Tr(f(t))®v(x) on the right hand side. Finally, we define
D (M) := lim D), (M)
n»0

with can,, »41 as transition maps.

As in [36], we have D3 (M) ®p, [1t,77) Fatal[tr]] = D, 1 (M) and hence

D (M) =D (M) @, (1100 (| Fulltz]))

m=n

for n>» 0.

Remark 3.16. Since M (™ is a free module over Rgf), say of rank d, we have Da’if,n(M) o~
Fu[[tzr]]®. The Fréchet-space-structure on F,[[tzr]] = lim F, [[trr]]/(t] ) (with base
field F, where each factor is a finite-dimensional F-vector space endowed with it’s
canonical topology) thus induces one on Dgif,n(M ), which is of course independent of the
choice of the isomorphism above. Furthermore, Dajf,, (M) = lim, Djif,n(M) -t7X becomes
an LF-space over F in this way. Finally, the modules D}, (M) and Dg;¢(M) are also LF-

spaces® over F.

Later on it will be crucial to form the cohomology groups H! 5(Dj(M)) from

Section 4. For this we need a D(T'p,F)-module-structure on Dgf)(M), which we get
from Proposition 3.18 below after showing that the action is pro-L-analytic. Let us first
recall this notion.

Definition 3.17. Let G be an L-analytic group (the main example to have in mind is
G=Tp).

(a) Let V be a Banach space over F equipped with a continuous linear G-action. We
say that a vector v e V is locally L-analytic if there exists an open subgroup
I',, € G together with a chart ¢: T';, > 7or, (for some n > 0) such that the orbit
map of v restricted to I';, is given by a power series

Y(v) = Z E('V)kvk

k=0

where vy, € V' is a sequence of vectors satisfying n7¥vy, — 0 for k — o0. We say that
the action of G is locally L-analytic if all v €V are locally L-analytic.

6Note that this topology is not the norm topology on Ly because a strict LF-space is complete.
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(b) Let W = li_n}m Wy, be an LF-space over F, with Fréchet spaces W,, = kinn Won
and Banach spaces Wy, ,,, such that G acts linearly and continuously on W. We
say that a vector w e W is pro- L-analytic if its orbit map G — W factors over
some W,, and the induced maps G — W), ,, are locally L-analytic for all n. We
denote by W1=P4 the subset of pro-L-analytic vectors of W. We say the action is
pro-L-analytic if WX, = Ty

Proposition 3.18. Let W be an LF-space over F carrying a pro-L-analytic action of T'r,.
Then this action extends uniquely to a separately continuous action of D(I'r,F) on W.

Proof. This follows from the proof of [46, Proposition 4.3.10]. U

Lemma 3.19. Let B be a Fréchet I'p-ring over F and W a finitely generated free B-
module with a compatible T -action. Assume there is a basis A := (e, ...,eq) for W such
that the map

I'y — GLa(B), v +— Mata(7)
is pro-L-analytic. WE—pa = @?:1 Bl=ra.c..

Proof. This is proven for F' = L = Q, in [5, Prop. 2.4] and the identical proof applies for
general F' and L. O

Proposition 3.20. For an L-analytic (pr,T'r)-module M over R, the T'p-action on the
LF-spaces D} (M) and Dgi¢(M) is pro-L-analytic.

Proof. We start with D}, (M) = lim D ,,(M). By definition, it suffices to check that
the I'p-action on the Fréchet space D:{if,n(M ) is pro-L-analytic for n » 0.
We wish to apply Lemma 3.19 with B := F,,[[t,r]] and W := Djif (M) = B®g, M®).
’ F
Choose any Rgl)—module basis x1,...,xq of M. Then A:= (1Qx1,...,1Qx4) is a basis
of the free B-module W, and the map v +—— Matg (7) is given by the composite

', —> GLg(R) -2 GL4(B)

where the first map is pro-L-analytic because M is pro-L-analytic by assumption.
Moreover, since ¢, is a continuous homomorphism of F-algebras, we conclude that 3.19
is applicable. Thus we obtain

d
Wwi—pa — @ BL-pa, <1®ajj) = Fn[[tLT]]L_pa ®R;n) M™,

Jj=1

Finally, from [38, Prop. 2.6 2.] it follows that F},[[tz7]]*~P* = F,,[[tr7]], which completes
the proof for D, (M).
Moving on to Dgi¢ (M), we write Da;¢(M) = lim | kD$f,n(M)‘tZ§’ as a direct limit of

Fréchet spaces. By what we have just shown, one can express D:{if (M) for n>» 0 as
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inverse limit Djif,n(M )= liglr B, , for certain F-Banach spaces B, , on which I'y acts
L-analytically. So for any k£ one has

_k . _k
Dgif,n(M) tpp =lUmBy - tr 7,

r

where by B,,,ﬂutzfﬂ we denote the I'r-module B,, . whose I'z-action is twisted by ng
Since the inversion in I'y is an L-analytic map, we see that the twisted action b+—
xzr (v %) -v(b) on B, , is again L-analytic. Thus ', acts pro- L-analytically on Djifm(M) :
tz? for n» 0 and k£ > 1, so the claim follows. O

Note that Dgi¢(M) depends on the coefficient field of R p. For a complete field extension
F'/F and an L-analytic (¢r,,I'r)-module M over Rp one checks that F’®F7iM is an
L-analytic (¢r,[';)-module over Rps. Here ®F7i denotes the inductive tensor product
topology.

Remark 3.21. Let F'/F be a complete field extension and let M be an L-analytic
(¢r,I'r)-module over R . The natural maps

F'®p Dait(M) — Daig(M®p ; F")
and
F'®p i:Dait.n(M) — Dyt ( MRp i F')
are 'z -equivariant isomorphisms.

Proof. The completed inductive tensor product commutes with strict locally convex
inductive limits by [19, Theorem 1.1.30] together with the argument in the proof of
[7, 2.1.7(i)]. Hence the first statement follows from the second. For Fréchet spaces
inductive and projective tensor products agree and commute with projective limits (of
Hausdorff spaces) with dense transition maps (cf. [7, 2.1.4] and [40, 17.6]). This allows
us to first reduce to the corresponding statement for D;’if)n(M Ytk since Dair (M) =
lim D} (M)t;F and by 3.16 we have D (M) = lim Df, (M)/(t; ), hence we
even have surjective transition maps which allow us to reduce to the corresponding
statement for Da’if,n(M )/(th ) (assuming for simplicity ko = 0, the general case being
treated analogously). Since each Dy, . (M)/ (tk ;) is finite dimensional over F, we may
omit the completion and see that

F'®p D ,(M)/(t}7) = Dis ,(M®p. i F")/(th,r)

is an isomorphism of finite dimensional F’-vector spaces, which follows from the fact that
any basis of M) gives rise on the one hand to a F,[[tr7]] basis of D} (M) and on

the other hand to a basis of F'®M ™ and thus to a F}[[t,r]] basis of Df; , (F'®M).
Note that F,[[trr]]/(ter)* ®F F' = F![[trr]]/(tr)* by a dimension argument. O
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Lemma 3.22. Let V be a F-Banach space and let G be a group acting on V via continuous
F-linear maps. Let W be an F-Banach space of countable type endowed with the trivial
G-action. Then

(VOW)E = VEQW

Proof. Assume without loss of generality, that W is infinite dimensional (the finite
dimensional case being simpler). By [37, Corollary 2.3.9] W is isomorphic to c¢o(F), the
space of zero sequences in F' indexed by N. We obtain a G-equivariant isomorphism
VW = ¢(V) by first identifying co(F) (resp. (co(V))) with the completion of @), F
(resp. @,,cy V) and using the G-equivariant isomorphism (P, F)®rV =@, .V and
passing to completions. Note that g € G acts via continuous automorphisms with respect
to the product topology and hence extends to an automorphism of the completions with g
acting on a sequence (v1,vs,...) via g(v1,ve,...) = (gv1,gv2,...). It is clear that any such
sequence is G-invariant if and only if each component is G-invariant. O

Corollary 3.23. Let F'/F be a complete field extension contained in C, and let M be
an L-analytic (pr,T'1)-module over Rp. We have

DY (M) ®p . F' = D{ (M&p, )"~

Proof. Like in the proof of 3.21 we reduce to the corresponding statement for the Banach
spaces Ddifﬁn(M)+tZ§U/Ddif’n(M)+tlz}ko. The field F’ is of countable type over F since
F'nQ, is dense in F’ by [26, Theorem 1] (and of at most countable dimension over
Q,) and hence also F(F' nQ),) is a dense F-subspace of at most countable F-dimension.
Because the action on F’ is trivial, we can deduce the result from 3.22. O

4. (Analytic) Cohomology groups

For the moment let F' be any field extension of L and G be any L-analytic group (of
dimension one); we shall reserve the letter U for a (sub)group isomorphic to or. If K is
big enough such that D(U) := D(U,K) =~ R}, =: R" then we denote by 3 € D(U) the
element corresponding to the variable Z € R*. Let V be any (abstract) D(G, F)-module.
We define cohomology groups Hg o (V) for & € {9} and & € {D(G,F),3,Lie(G),V}
as follows: By RHomp ) (F,V) we denote any (bounded) complex of F-vector spaces
whose cohomology gives Ext7, ) (F,V) (extensions as abstract D(G)-modules). Let f be
any endomorphism of V' which commutes with the D(G)-action inducing an operator on
RHom p()(F,V) and we denote by

—id
K, pia)(V) = cone (RHomp(c) (F,V) =% RHomp(e) (F,V) ) [-1]
the induced mapping fibre. For U =~ oy, and K being big enough

0—DU) —>DU) ——= K —=0

is a projective resolution of the trivial representation K and we can choose V v

(functorially) for RHom p ) (K, V). In this context we shall also use the notation Ky 35(V')
for K¢ pwy (V). Note that
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—id
Ky 3(V) = cone (V®H]D(G) K179 V®Hb(G) K) [—2]

as RHomp(g) (K, V) = V®H5(G) K[—1]. Analogous isomorphisms exist for K p(g)(V) for
any G of dimension one, since in our context taking G/U-invariants and -coinvariants
coincide and form exact functors by Maschke’s theorem.

Following [31] we write D®(G) for the algebra of locally constant distributions, i.e., the
quotient of D(G) by the ideal generated by Lie(G) < D(G). We then obtain isomorphisms
by [44, p. 306]

Ext} ) (D7 (G),V) = H*(Lie(G),V), (6)

where the latter denotes Lie algebra cohomology. Since the reference does not cover
coefficient fields such as our K, which is not spherically complete, we would like to briefly
justify this isomorphism: For Lie(G) = LV we have a strict exact sequence of Hausdorff
locally convex vector spaces over L

0— D(G,L) —Y— D(G,L) — 2~ D*(G,L) — 0 (7)

by [44, §3], i.e., a resolution of D®(G, L) by free D(G, L)-modules. Moreover, it arises by
base change D(G,L)®u, (Lie(c)) — from the following resolution of L by free Ur (Lie(G))-
modules, where the latter denotes the enveloping algebra of Lie(G) :

0 — UL (Lie(G)) —Y— UL (Lie(G)) Z—= L —=0 (8)

see [44, Rem. 1.1]. Base change K&®p,— of (7) leads to the strict exact sequence of Hausdorff
locally convex K-vector spaces

v pr

0 — K®.D(G,L) K& D(G,L) K&D*(G,L) —0 9)
by [46, Lem. 4.3.6]. Since K&, D(G,L) =~ D(G,K) by the proof of [46, Lem. 4.1.2], we
also obtain K®;D*(G,L) ~ D*(G,K), i.e., this sequence is the analogue of (7) for K
replacing L and visibly it arises again by base change D(G,K)®u, (Lie(q)) — from the
analogue of (8)

v

0 — Uk (Lie(G)) Uk (Lie(G)) 2 K—>0. (10)

Since Hompq, k) (D(G, K),V) = Homy, (nie(a)) (Ux (Lie(G),V) the isomorphism (6) fol-
lows.
If RHomp gy (D*(G),V) denotes any (bounded) complex of K-vector spaces having
the groups (6) as cohomology, we again write
—id
K 1ie()(V) i= cone (RHomp(g) (D*(G),V) =% RHomp(q) (D*(G),V) ) [~1]

for the induced mapping fibre.
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Assume V € Lie(U) = K corresponds to 1. Then V Y,V is a valid (functorial) choice
for RHom p (/) (D*(U),V) and we shall also use the notation Ky ¢ (V) instead.
Finally, we set

Hy a(V):=1*(Kaa(V)).
Note that we have isomorphisms (see proof of [31, Thm. 4.8] or [56, §10.8.2])
RHom pes () (K, RHom p(g) (D™ (G),V)) = RHom p (¢ (K, V)
and, for Gy € G any L-analytic normal subgroup, (see [56, Exc. 10.8.5])
RHom p G/, (K,RHomp g, (K,V)) = RHomp () (K, V)
in the derived category, therefore inducing the spectral sequences

Exths gy (K Ext], o) (D*(G),V)) = Exti, (K,V)

and

HY(G/Go,Ext), . \(K,V)) = Ext}7. (K,V).

(o ( D(@)

They both degenerate by the projectivity of K as D®(G)- and D(G/Gy) = K[G/Gy]-
module (cf. the proof of [31, Thm. 4.10] for the first claim over L, from which the
general case again follows by complete base change to K, and using Maschke’s theorem
for the second claim). Moreover, note that Hom pe (K, W) = W&, for any D*(G,K)-
module W, because the Dirac measures ¢, € D®(G,K) induce the elements §, —1 in
the augmentation ideal, which is the kernel of D*(G,K) — K and which is a finitely
generated ideal by Cor. 4.6 of (loc. cit.) plus complete (exact) base change; using this,
the above spectral sequences induce the isomorphisms

H'(Lie(G),V)% = Ext ) (K, V) (11)
and
H(G/Go,Ext], g, (K, V) = Ext], ) (K,V). (12)

Remark 4.1. In [15] the pro-L-locally analytic cohomology groups H¢, (A%, M) for the
L-analytic semi-group A" =~ I'y x {¢?} with M being specified below are defined. By
[53, 3.7.6] they are isomorphic to the cohomology groups prL’FL’an(M) which arise as
follows: Following [15, §5] we write C,, (G, M) for the locally L-analytic cochain complex
of an L-analytic group G with coefficients in M and H{ (G,M) := h*(C:,(G,M)) for
locally L-analytic group cohomology. More precisely, let M =lim lim M [:s] with Banach
spaces MU"*] be an LF space with a pro-L-analytic action of G (cf. Definition 3.17). If
Maps; s —an (G, MI751) denotes the space of locally L-analytic maps from G to M5l
then

C;Ln(G,M) = h—H}LiLnMapslocL—an(GnaM[r’S])

S T
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is the space of locally L-analytic functions (locally with values in @T MUl for some
s and such that the composite with the projection onto M5! is locally L-analytic for
all 7). Then H! (M) := hi(Ky, ¢.an(M)) is the cohomology of the mapping fibre

eorL,G,an
Ko, can(M) of C2,,(G,¢r) and analogously for ¢ instead of ¢r. By [50, Corollary 4.2.6]

we have natural isomorphisms

Hén(G’M) = EXt’LD(G) (K7M) (13)
and hence, for & € {p,1},

H.iv.,G,an(M) = H;.,D(G) (M). (14)

For n» 0 we have that 1+ 7} or, is isomorphic to 77 or, via log,. In particular, we have
the chain of isomorphisms

| “n
£y, : T, XL—T>1+7TL0L£>77L0L—L>0L (15)

which yields
D(T,,K) =~ D(o,K) =~ 'R;}, (16)

the last isomorphism being the Fourier isomorphism. Since I';, is clopen in I'; every locally
analytic function on I, is the restriction of a locally analytic function on I'y. Hence, by
considering the restriction of functions from I';, to I',, and taking its dual, we obtain an
injective map D(T',,K) — D(T',K).

Definition 4.2. For n » 0 such that T, = Gal(Ly/L,) = or we denote by
3,eDI,,K) =~ R;r( the element corresponding to Z € R}'( If the precise choice of n
is not relevant, we frequently write (U,3) instead of (I'y,3y).

Remark 4.3. Let n » 0 such that I';, @ or,. Under the natural inclusions D(T';,41,K) S
D(T'y,K) and Lie(I'r) = Lie(T',,) < D(I'y,,K) we have:

(1) 3n+1

= [71](3x) in the ring D(I',,, K).
(i) V= 210

g7 (3,) in D(T',, K). In particular, V is divisible by 3.
Proof. For (i) see [50, Definition 1.2.10]. For (i) see (the proof of) [46, Remark 4.4.8]. O

Lemma 4.4. Let A be K-affinoid and let M € M** (R 4). Then:
(i) For re (0,1) large enough the action of 3 on (M"™)¥=C is invertible.
(ii) The action of 3 on M¥=" is invertible.
(iii) Analogous results hold for M (resp. M") replaced by My, .. (resp. M{, ).
Proof. The case A = K is originally treated in [46, Theorem 4.3.21]. For (i) in the general
case see [50, Theorem 2.4.5]. The second point follows by passing to the colimit. The third

point also follows by passing to the colimit, where for mt; ;. € M tz% one extends 1 by
setting 1 (mt %) := whp(m)t % (cf. [46, Lemma 4.5.23] for details in the case A= K). O
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Lemma 4.5.
(i) Hg o(V) =0 fori=#0,12.
(i) Hy (M) = H3 0oy (M)S for M in MM*"(R).”
(iil) H®

e.0(@) (M) = Hy 1) (M) for M in man(R).%

»D(G)

Proof. Part (i) holds due to the length of the total complex. (ii) follows immediately from
(11) upon considering one of the spectral sequences attached to the double complexes
arising from the defining mapping fibres. By (12), (iii) is reduced to the case H? 5(M) =
Hy 5(M), which is a consequence of Lemma 4.4. O

4.1. Finiteness of analytic Cohomology

Theorem 4.6. Let A, B be K-affinoid and let M be an L-analytic (¢r,T'1)-module over
Ra. Let f: A— B be a morphism of K-affinoid algebras. Then:

(1) Ky, 3(M)eD2(4).

perf
(2) The natural morphism K, 3(M)®% B — K, 3(M®aB) is a quasi-isomorphism.

Proof. See [50, Theorem 3.3.12]. O

For a commutative ring R and an object C' € D*(R) whose cohomology groups are
of finite rank over R, we denote by xg(C) = >},(—1)'rank H(C)) the Euler-Poincaré-
characteristic of C. Recall that a (¢r,I'r)-module is called trianguline if it can be
written as a successive extension of rank one modules of character type in the sense of
section 3.4.

Remark 4.7. Let A/K be affinoid and let M be a trianguline L-analytic (¢r,,I'1,)-module
over R 4. Then the Euler-Poincaré Formula holds, i.e.,

X(M) = x(Kyp,3,(M)) = ) (~1)'tkr, (H, 5, (M)) = [T : Dultkr , (M).

Proof. Without loss of generality we may assume that M = R 4(J) is an L-analytic
module of character type (attached to an A-valued locally L-analytic character : L* —
A*). Then the case A = K is treated in [51, Remark 6.3]. The validity of the formula
can be checked at each maximal ideal of A. Note that R4 (d)/m is a (¢r,'z)-module
of character type over Ry for some finite extension K'/K for each m € Max(A) by the
Nullstellensatz and the claim hence follows from the previous case. O

We will require a slight generalization of 4.6. Recall that K, 3(M) is (up to shift) quasi
isomorphic to the cone of 1 —¢ on RHompy, ky(K,M). As a consequence of [51, Lemma
2.5] K admits a finite projective resolution consisting of finitely generated projective
D(T', K)-modules. In particular the complex computing RHomp ¢, k) (K, M) (and hence

"In [15, Thm. 5.6] the analogous statement for HZ., (A", M) and H%, (A*,M), as defined in
(loc. cit.), is claimed referring to [22, Thm. 4.2], but this only covers ¢ = 0,1.

8Cf. [15, Thm. 5.5] and [6, Cor. 2.2.3] for related statements in cohomological degrees 0,1.
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also K, 3(M)) can be represented by a complex of A[I';,/U]-modules the terms of which
are all of the form Hompy, k) (P, M), where P is the restriction of scalars of a projective
D(I'z,K)-module with I'y, acting via (vf)(z) =v(f(y'z)) and 4 acting by multiplication
on M.

Remark 4.8. In the situation of 4.6, if we view K, 3(M) as an object in D(A[l'1/U])
we have

K, 5(M) e DA, /0)).

perf

Proof. The finiteness of the cohomology groups over A already implies that K, 3(M)
belongs to D +(A[I'1,/U]). Choosing a complex of bounded above projective A[I'y/U]-
modules representing K, 3(M), truncating and using [28, Lemma 4.1.3], we can conclude
that the complex in question is quasi isomorphic to a bounded complex of finitely
generated projectives outside of perhaps degree 0, where the module is finitely generated
over A[T'1, /U] and its underlying A-module is flat. But then it is projective as an A-module
and by [51, Lemma 2.5] also projective as an A[I'r,/U]-module, hence the claim. O

4.2. Perfectness of analytic Iwasawa cohomology and the Lubin-Tate
deformation

For M any (¢r,I'r)-module over any basis consider the complex

v—1
—_

To (M) :=[M M]

concentrated in degrees 1 and 2, whose cohomology we call (analytic) Iwasawa cohomology
due to Fontaine’s classical result, which relates these groups in the étale case to usual
Iwasawa cohomology defined in terms of Galois cohomology. We set D := D(I'1,K). The
following result [51, Thm. 4.8] will be central for the whole article:

Theorem 4.9. For M € M (K) trianguline, Ty (M) is a perfect complex of D-modules,

i.e., belongs to Dgcrf(D).

For the rest of this subsection we assume that M € 9" (K) is trianguline.

Later for our approach it will be important to interpret Iwasawa cohomology as
analytic cohomology of a deformation Dfm(M) of M via generalized Herr complexes.
This deformation lives over the character variety Xr, (base changed to K) of the locally
L-analytic group I'y ([42]) and will allow to use density arguments to deduce many
properties of the Epsilon-isomorphism for rank one modules just from properties over its
de Rham points.

We pick an affinoid cover X,, = Sp(D,,) of Xr, with D, := K[I'L] ®k[v) Dr, (U,K)
for a decreasing sequence r,, such that each D, (U,K) corresponds to the ring of rigid
analytic functions on the annulus [rj,00] via the Fourier isomorphism for D(U,K).
Over the space Xr, we have the sheaf of Robba rings Rx, given by mapping X, to
RO%FL (x,,) and Dfm(M) should be thought of as a (¢r,I'z)-module (sheaf) over Ry,

(but unfortunately, Schneider’s and Teitelbaum’s formalism of coadmissible modules does
not apply here as Ry, (Xr, ) does not form a Fréchet-Stein algebra in any obvious sense):
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For an L-analytic (¢,I'r)-module M over Ry, we define
Dfm(M)(X,) := Dfm, (M) := Ox,, (X)®LM,
where I';, acts diagonally, on the left factor via the inversion and on M via its given

action. For each n this is a (¢,I'y)-module M over Ro, (x,) by [51, Prop. 3.2].
L

As definition for the generalized Herr complex for the sheaf Dfm (M), philosophically,
we would like to take the complex in D(D(I'y,K))? defined as total derived sheaf
cohomology of the complex of sheaves

K‘I’,D(FL,K) (Dfm(M)) = R(Dfm(M)) ®%(FL,K),diag K (” = K‘I’73(Dfm(M)) ®Hk[FL/U],diag K”)y

where for the last (quasi-)isomorphism in quotation marks we used implicitly the free
resolution

0—> DT, K)

D', K)

K[Tp/U] —0 (17)

which induces an isomorphism 7'\1,(Dfm(M))®%<FL’KMiaLg K[I'L/U] = Ky,3(Dfm(M)).

But strictly speaking one needs a resolution of D(I'p,K) ®k K[I'L/U]-modules
in order to define the (D,,K[I'r/U])-bimodule structure on Ky 3(Dfm,(M)) =
Ty (Dfm,, (M)) ®Hb(rL7K) K[T',/U]. To this end we can formally work with the resolution

0—> C:=ker D(T',K)®k K[ /U] K[TL/U] —0 (18)

for an explicit construction of K¢ 3(Dfm(M)) in D((D,,K[I'r/U])—bimod), with the
last non-trivial map given by a®b — H(a)-b, where H: D(I'y,K) — K[I',/U] denotes
the augmentation map sending the Dirac distributions of u € U to 1. Indeed, the kernel
C is projective (hence flat) as a D-module by the same reasoning as for [51, Lem. 2.5].
This sequence is related to (the direct sum of) the sequences

Fex; ()
_

0 — I, :=ker ——— D(I'z,K) K(xi)—0

for the characters y; of I';, which factor through I'y,/U.

Instead of verifying that we really have a complex of (coherent) sheaves we just use the
facts as a motivation that on a Stein space I'(Xr,,—) = lim I'(Xy,—) and that higher
sheaf cohomology of coherent sheaves vanishes on affinoids. Thus we rather take the total
derived inverse limit as a formal definition, i.e.,

C. = RF\P,D(FL?K) (f{pL,Dfm(M)) = Rlim(K\pyD(FI”K) (Dfmn(M)))

The following results are variants of those in [51, §3.3]; among others they are
based on the observation that for the sheaf of cohomology groups sending X, to
H D(T'1, K) (Dfm,, (M)) the formalism of coadmissible modules over D(I'y,, K) does apply.

Yinstead of e.g. forming the generalized Herr complex attached to the global sections
Dfm(M)(Xr,)!
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Theorem 4.10.

(i) For all i, the cohomology groups H&/,D(FL K)(XFL,Dfm(M)) of the complex
RU'y p(r,, k) (Xr,,Dfm(M)) coincide with the global sections

liLnlei/,D(rL,K) (Dfm,, (M))

of the sheaf of cohomology groups sending X,, to H\Zi/,D(FL K) (Dfm,, (M)).

(ii) There is an isomorphism in Dgerf(D(FL,K))

RUy pr,, k) (Xr,,Dfm(M)) = Ty (M).

Remark 4.11. In accordance with (21) the isomorphism in (ii) only becomes inde-
pendent of the choice of 3 if we insert the scalar factor Cr.(3,) (see (20) below) in
the identification Dfm,,(M)/3Dfm,, (M) = D,®p(, k)M in the proof of Lemma 4.12,
compare with [36, (32), p. 369].

For the proof of Theorem 4.10 we need the following lemma for which we recall some
notation from [51, Def. 3.20]: We define D,,®pM" as the completion of D, ®p M" with
respect to the quotient topology of the projective tensor product D, @k, M". Then we
set Dn®DM = l.l)nr Dn®DMT.

Lemma 4.12.
(i) The natural map D, ®p M — D,.®pM induces a quasi-isomorphism
D, ®p Te(M) = Te(D,,®p M) — To(D,&pM).

(ii) Viewing Dfm, (M) as D,-module via the left tensor factor, there is a natural
isomorphism in D(D,,)

Dfm,, (M) ®HEJ(FL,K),diag K = D,®pM|0],

where the latter module is considered as complex concentrated in degree 0.

Proof. For (i) the same proof as for [51, Lem. 3.23] works and the assumptions are
satisfied by Theorem 4.9, but note that there D,,, D have a slightly different meaning. The
augmentation ideal Ir, is a finitely generated submodule of D(T', K) and thus projective
as a D(U, K)-module since the latter is a Priifer Domain. Using [51, Lemma 2.5] one can
conclude projectivity as a D(I'z, K)-module. Using that D3 is contained in Iy, gives rise
to the projective resolution of D-modules

0— I, D K —0.
We can represent the complex in question in (ii) by the complex
Dfm,, (M) ®p, diag Ir, — Dfm,, (M) ®p, diag D

with cokernel
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Dfm,, (M)/Ir, Dfm,, (M) =~ (Dfm, (M)/3Dfm, (M))/(Ir, /D3)
= (Dn®pw, k)M)r, v
= Dn®DM7
where v € ', € D(I'L,K) acts diagonally (via y(a®b) = d,-1a®7b)) on D,Qpv, k)M
and this action factors over I', /U. For the second equality we use an obvious variant of

[51, (31)], while by the exactness of colimits the last one is easily reduced to the claim
that on the level of models M" we have

(Dm®pu, k)M )rjv = Dim®p(r,, )M

Since I'/U is finite and taking I'r,/U-invariants in this situation is exact by Maschke’s
theorem, this follows in the context of Fréchet spaces by completion from the well-known
fact that

(Dm®D(U,K)MT)F/U = Dm®D(FL,K)MT’

The injectivity of the non-trivial differential in the above complex can be checked by
calculating instead the cohomology in degree —1 of Dfm,, (M) ®Hf)(FL,K),diag K[I'/U],
because taking I'; /U-(co)invariants is exact and leads to the original complex

(Dfmn(M) ®H[)(1‘L.,K),diag K[FL/UD Qx(r, v K = Dfm,, (M) ®Hb(FL,K),diag K.

For this composition of functors it is crucial that Dfm,, (M) ®H]5(FL’K)7diag K[I'p/U]

belongs to D((D,,,K[I'r,/U])—bimod) as in (18) in order to allow an action by I'y/U.
But then the vanishing in degree —1 can be checked just as complex of K-vector spaces
and therefore it suffices to calculate the derived functor by a projective resolution of D-
modules (instead of bi-modules). To this end we use the resolution (17), which leads to
the complex

Dfm,, (M) > Dfm,, (M),

which is left exact by an obvious variant of [51, (31)], again. O

Proof of Theorem 4.10. Using Lemma 4.12 we obtain isomorphisms in D(D,,)
K, p(ry, k) (Dfm, (M)
v-1
= cone(Dfm, (M) ®pr, ) ding K —— DIy, (M) @1, 1) diag K)[—2]

compatible for the variation in n by an obvious variant of Theorem 4.6 (2). Thus,

combining [51, Prop. 3.15] with Theorem 4.9 we obtain in Dgerf(D) an isomorphism

Te(M) = Rlim(D, ®p Ty(M)) = Rlim(Ky,_pr,. k) (Dfm,, (M))).
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This proves (ii) while (i) follows by the same arguments as in [51, Rem. 3.16] using
that the projective system (K p(r,,x)(Dfm,(M))),, defines a consistent object in
D(mod(N,D)) (using the notation of (loc. cit.)) together with the fact that D is a
Fréchet-Stein algebra. O

4.3. Replacing Local Tate duality

In this subsection we develop local duality analogous to local Tate duality for Galois
cohomology, see [25, 33] for an approach purely in terms of (¢,I')-modules. We focus
technically on the complexes K 3 and shall then apply (12) to deal with K ;. Assume
henceforth that M is an analytic (¢r,I',)-module over R = R . For an analytic character
0: L* — K* we define the twisted module M (J) € M*™*(R), where M (0) := M ®g R(J)
endowed with the diagonal ¢r- and I'-action. Recall the residue map (at Z)

Res: Q= RAZQRr R(641y) = K, Y aiZ'dZ®@esu = a-i,

and that the (¢r,I')-action on RdZ with respect to the basis dlog; = grrdZ is given
by the character yrr.'? As a formal consequence, we have the following:

Lemma 4.13. The map
R(x) = Qg
fex — fdlogr®esur
is an isomorphism of (¢r,I'r)-modules.

Setting M := Homp (M,R)(x) = Homg (M,Q%), for any finitely generated projective
R-module M, we obtain more generally the pairing

(o=Com: MxM— K, (g,f) = Res(g(f)). (19)

where by abuse!! of notation we also write Res: R(x) — K for the map sending >, a,Z'® ‘®
e, to a_;. This map identifies M and M with the (strong) topological duals of M and
M, respectively. Moreover, the isomorphism M = Homp (M, K) (induced by (, ) is
D(T'p,K)-linear by [46, Corollary 4.5.4].

Lemma 4.14. The residuum map induces an isomorphism Res: H2 3 (Qp)'" = K.

Proof. We know from Lemma 4.22 that dim g H2 L3 (2%)"'= =1 while Res is a surjection
Ql — K which factorizes over (¢, —id)Q), and 3 Ql by [46, Lemma 4.5.1] or [15, Prop.

. ] The claim follows as H2 5 (Qp e = H?, 3n(Q ), - O

For compatibility questions we renormalise the residuum map to obtain the trace map

Tr =Crq(3,)Res: H% D(FL)(Q ) = HiL 5 (Q%)'" = K by setting

10The action on Q% differs by 03 (wy from the action considered in [46, Section 4] and agrees
with the action from [15, 1.3.5].
HNote that Colmez defines QRes(o_1(g)(f)) instead.
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qg
Crr(3n) 1= ———. 20
(3= (20)
Note that for L = Q, and 7, = p this trace map is compatible with Tate’s trace map in
Galois cohomology by [36, Prop. 5.2]. Independence of n follows by the same argument
as for Definition 5.11 below. The principle is explained as follows:

The map of complexes, for m > n,

My

M M
induces the restriction maps res?, : Hgn(M) — Hém(M), where Q,,—pn(3n) = gT: =
:;lg;) with 9, (0) = 77", Since Crp(3n) = 77 "Crp(3m) by (48) the isomor-
O HY (M) 2 My, [e] o> [Cro(30)] (21)

n
m?

into the I'p-coinvariants is compatible with res! , i.e., the diagram

I
H%n (M)FL - MFL

n \L y
7’6571'1’

Hy (M)"

commutes.
For a complex (X*,dx) of topological K-vector spaces we define its K-dual ((X*)*,dxx)
to be the complex with
(X*)!:= Homp o5 (X %K)

and

dx*(f) = (—1)deg(f)_1deX.
The following lemma is taken from [46, Lemma 5.2.4 and Remark 5.2.6].

Lemma 4.15. Let (C*,d*) be a complex in the category of locally convex topological F-
vector spaces.

(i) If C consists of Fréchet spaces and h*(C*®) is finite-dimensional over F, then d'—*
1s strict and has closed image.

(ii) If d* is strict and either F is spherically complete or the spaces involved in degree
i are of countable type'”, then h="(C*) = h*(C)*.

2From [37] we recall that a locally convex vector space V is said to be of countable type, if for
every continuous seminorm p on V its completion V,, at p has a dense subspace of countable
algebraic dimension. They are stable under forming subspaces, linear images, projective limits,
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(iii) If C* consists of LF-spaces, C**2 =0 and h*(C®) is finite dimensional, then d* is
strict.

(iv) If V5 W is a continuous linear map of Hausdorff LF-spaces over F with finite
dimensional cokernel, then « is strict and has closed image.

The translation X [n] of a complex X is given by X [n]":= X**" and d¥,,; = (—1)ndifm.
Let ¢+ denote the involution on D(or,K) induced by the inversion on the group or. We

observe that 33 (22)

for a unit A€ D(or,K) as they both generate the augmentation ideal: more explicitly,

3= [-13) =
Theorem 4.16.

(i) There is a canonical quasi-isomorphism

(SD;) (3 1-¢)

K, 3(M): 0 M MoeM M 0
(5 1% 1
3 (3 1-9)
Ky 3. (M): 0 M MeM M 0.
(23)

(ii) Via the pairing (19) there are canonical isomorphisms of complezes in the derived
category D(K)
Koy 3(M)* = Ky, 5 (M)*=EK,, 5(M*)[2]=K,,,5(M)[2].

given by the following diagram of quasi-isomorphisms

* p-1 *
Ko3(M)*[-2]: 0 ae 0 1_<P>(M®M)* 3 ) M 0
T(—A‘I’)* TT: (\1/—1)*
-3¢ 1-9)* 3
Koz D712 0—— " (M@ M)* M 0
]
Ko 3(M*) 0 M* ( 5 ) M*@M* (3 1-9) * 0
5’ 1
K<P,3(M:) 0 M M@M (3 (p) M 0
(24)

and countable inductive limits, cf. theorem 4.2.13 in (loc. cit.). By corollary 4.2.6 in (loc. cit.)
for such vector spaces the Hahn-Banach theorem holds, too. By [53, Prop. 5.4.3] the Robba
ring over any complete intermediate field Q, € K < C, (and hence also finitely generated
modules over it) is of countable type as K-vector space.

https://doi.org/10.1017/5147474802500012X Published online by Cambridge University Press


https://doi.org/10.1017/S147474802500012X

32 M. Malcic et al.
with T = (=PAN*: (MPM)* > (MP M)* and E(x,y) = y®—x. In particular,
we obtain isomorphisms

(M)* = Hy 5 (M)=HZ 5 (M). (25)

)
$rL,3 ©rL,3

induced by the perfect pairings, denoted by (—,—):={—,—)u,

HL 5 (M) x Y 5(V) — K, (), (F>9)) = —Res (1o(g)(m) + () (n) ),

H2 5(M) x HY, 5 (M) — K, (7,71) > —Res ((X'p(m) ),
HO 5 (M) x H2 5(M) — K, (m,7i) — Res(ﬁ(m)).

Remark 4.17. Identify M with ]\51 via m — m** and consider the pairing in degree (1,1)
from Theorem 4.16 obtained by exchanging the roles of M and M, i.e.,

(== H} 5(M) x H, 5(M) — K,
((f,9),(m**,n**)) = —Res(p(n™*)(f) + (A\'m**)(g)).
We have

{man) (Fg)ar = —((Fog). (m™ %)) . (26)
In the other degrees consider
(= H2 5(M) x H 5(M) - K,
(F.m**) = Res(m** (~X((/)))),
satisfying (F,m**);; = (m, Fas and
HY 5(M) x HZ 5(01) - K.
(gm**) Res(n**(g)),

satisfying {(g,n**) o = (M,g)n. ">

Proof. By viewing K, 3 (M) as a Koszul complex attached to the automorphisms ¢ —1,3
of M one can see that 3 and ¢ —1 act as 0 on the cohomology groups. Since

A= —1+ terms divisible by 3

we see that the class (f,g) € H;’\?,(M) is equal to the class of (=\f, — Ag). Now let (m,n) €
H,, 5(M). Using 3f = (p—1)g and 3m = (¢ — 1)n we compute

), (Fg)u = Res( = lg)(m) — (X f)(n) )
= Res(—[g+3£1(m) = (X' f)(p(n) — 3m)

BIn the cyclotomic case L = Q, and 3 = v—1 one has A\* = —y because 3' =y ' -1 =
(—y~1)(y—1). We see that the pairing from [36, Definition 2.13] agrees with our (—,—);
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= Res(—g(m)— (X Po(n) = (3)(m) + (3" ) (m) )

~~

(
=0
= Res((Ag)(m) + OX ) ((n)) )

= Res(m** (\g) + ¢(n**)(f))

= _<(f7g)v (m**vn**) N

where in the fifth equation we replace (f,g) with (—Af, — Ag). Now consider the degree
(0,2) case with regard to (—,—)as. Since p(f) = f we get Res(f(m)) = Res(p(f)(m)) =
—Res(¢(f)(Am)) using that 3m =0 in H° and hence Am = —m. The computation in
degree (2,0) is similar. 0O

Later in explicit calculations we will need to work partly with W-versions, which we
therefore establish in the next remark.

Remark 4.18. As a obvious variant of (i) in Theorem 4.16 there is also a canonical

quasi-isomorphism
p—1
3 (3 1-9)

K, 3(M): 0 M MoM M 0 (27)
)
(5" 0 6w
Ky 3(M): 0 M MeM M 0.

In particular, we obtain an isomorphism Y9, : H} 3
[(z,y)] to the class [(—¥(z),y)].

Using this one derives from (—,—)ps in Theorem 4.16 the (asymmetric) perfect pairings,
denoted by {—, -},

1y 5 (M) x HY 5 (W) = K. ((m,0), () = Res(g(m) = (X H)(n) ),

(M) = Hy,, 3(M) sending a class

H3, 5 (M) x HS (M) — K, (7.7) — Res (#(Am)),

HS 5(M) x H2 5(NI) = K, (m.7) — Res (7(m) ).
for which by construction we have

CAVER RS VICONTOVE

Moreover, we obtain, for x € pr73(M), Y€ Hi_;(]\;[),

(=1 = ™) = {0 W).2™ W, (28)
by Remark 4.17.
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Proof of the Theorem. (i) is an immediate consequence Lemma 4.4. Now consider (ii):
The first isomorphism is induced by (i). Up to signs, (—)* transforms ¢y, into ¢y, and 3
into 3*. Using that 3* = A3 one easily verifies that also the second map is an isomorphism.
Finally, the last isomorphism stems from the identification M* ~ M by [46, Cor. 4.5.4].
For the pairing on the level of cohomology groups, we want to apply (ii) of Lemma 4.15,
for which we have to check strictness of the differentials. But this is not sufficient: in order
to get perfectness of the pairings - which amounts to an algebraic duality while the functor
(—)* only measures continuous duals - we also have to check that the induced topology on
the cohomology groups is Hausdorff. In detail this boils down to the following reasoning;:
Since by 4.6 all the Hj 5(M) are finite-dimensional, we may apply Lemma 4.15(iii) to
first conclude that d* (and trivially d?) is strict. By the same reasoning for H, ‘ (M ) the
d'-differential of Ky, 3.(M*) is strict. Moreover, the H?s are always Hausdorff by 4.15 (iv)
and we note that the H 0 are always Hausdorff (as they are subspaces of Hausdorff spaces).
Applying 4.15 (ii) and using that for a finite dimensional Hausdorff space the continuous
and algebraic dual agree we conclude the claim for the pairings involving H" and H?. By
the strictness of d; we have H} 5(M)* = Hjo“%(M) and, vice versa, H;J(M)* =H] 5(M).
A priori we don’t know if the finite dimensional H's are Hausdorff but combining both
isomorphisms we see that (H, ! 5(M)*)* has the same dimension as H, ! 5(M) which for a
finite dimensional space can only occur, if every functional is contlnuous forcing the H's
to be Hausdorff, which allows us to argue analogously for the pairing of H's. O

4.4. Cohomological computations in the character case
Recall [42, Lem. 4.6] or [15, §2] for the following. The Amice-Katz transform is the
map

A_:D(or,K) — R},
sending a distribution u to
4,2) = | w2yl
oL
satisfying:
(i) A_ is a - and T'p-equivariant topological isomorphism of rings.
(i) for z € o with vy(2) > 0: Ay 2yu(Z) = Au(Z +r7 2), where § g(2)(f-p)(z) =
SOL f(z)g(z)p(z) for any locally analytic function f: o7 — C,.
(ili) (multiplicativity regarding convolution) Ay, = Ax-A4,
(iv) AReSngoL (n) = qinz[ﬂzl(a):o n(=b,a)Au(Z +r1 a) = Respiapo, Ay, where the lat-

ter denotes the multiplication with the corresponding characteristic function.

(v) 0A, = Aqgy where 0= dtLT = logl'L =M(L,2) i dn(l Z) H

(vi) Agy =trrA,, where SDL f@)(dp)(x) = SOL f(@)p(z) with f'(z) = %f.

M Note that on(z,Z) = 2Qn(x,Z).
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Lemma 4.19. (Mellin transform) The natural inclusion D(o} ,K) <> D(or,K) combined
with the Fourier isomorphism induces the map
D(0},K) =5 D(o, K)P2=0 =~ O (%)¥2=0
A—> A(61) 2 Aevy)
which is a topological isomorphism of D(o},K)-modules. Here evy denotes the map on

the character variety which evaluates a character in 1. Moreover, we have a commutative
diagram
Res «
°L

« [P

D(o},K) ———— D(or,K)

m | = A_
1—¢poW

(R0 =Ry,

where M denotes the Mellin transform, which by definition sends p to
pen(12) = [ e 2ule),

or

see [406, §2.1.4, Lem. 2.6, Thm. 2.33,§2.2.7].

Proof. € D(of) < D(or) satisfies Res,« (1) = p, whence A,(Z) =§ n(x,Z)u(x) =
Sox (@, Z) () = M(p)- O

We write LA(or) := LA(or,K) for the set of locally L-analytic functions ¢ :op — K
endowed with the following operators:

s ={ {5 e
(¢)(x) :=¢(mLx)
(@) (@) :=¢(xpr(7)).

By [13, Thm. 2.3] (for the exact sequence), [6, Cor. 2.3.4] (for the surjectivity on R} (8)),
we have for all § € X, the following commutative diagram of D(T', L)-modules with exact
rows

00— Ry (6) —= R (6) — LA(or)(x ') —0 (29)

0 —> RE(8) —> Ric(8) — LA(0)(x18) — 0

which we can also interpret as short exact sequence of complexes of D(T', L)-modules

0 — Tu (R (9)) Tu(Rk(5)) Tu(LA(or)(x™'6)) —= 0.
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with Ty (R} (0)) = (R} (6))Y=1[0] in degree zero. Here the map Ry (5) — LA(or)(x 1)
sends fes to ¢re,—15 with!”
¢5(2) := Res(n(—z,2) fdtrr) = Res(n(—2,2) f(Z)grr(Z)dZ). (30)

In particular we obtain a short exact sequence

0— R (0)¥=1 Ri(6)Y=t ——= LA(or)(x 1)Y= —0 (31)

and an isomorphism
Ri(6)/¥ —1= LA(or)(x '6)/¥ — 1. (32)

Let Pol<n(op) := Polen(0p,K) := (—Bf\io Kz < LA(or) denote the polynomial func-
tions on or,. This subspace is I'f,- and W-stable, more precisely we have

V(') =t 2t
V(=) = xzr#'-

for all i > 0 and v € I'y,. In particular, we obtain, for ¢ =0,1,

, k : _ .
Hi (Polen(01)(x"16)) = Kz'egy -1, if 6(71',;? = ~L— for some 0 < k < IV; (33)
0, otherwise.
It follows that
D Kzkeg, -1, if 6 = z¥y for some 0 < k < N;
J i -1 ~ dx— 1 X x> )
HY(Hy(Polz(on) 0 9) = { oo (31)

Lemma 4.20. For N > v, (x 16(n)) we have a quasi-isomorphism
To(LA(oL)(x™'6)) = Tw(Pol<n(or)(x'6))
and an isomorphism
Pol<y(or)(x™ 1)~ = Pol<y (o) (x™'6)/(¥ 1)

as L-vector spaces.

Proof. (see [11, Lem. 2.9] for the cyclotomic case, even over affinoid algebras A instead
of L). Use the decomposition LA(or) = 2N +'LA(01)® Pol<n(or) and show that for N
as in the assumption ¥ — 1 is a topological isomorphism on 2V *1LA(op). O

Similarly, regarding the I'r- and W-stable submodule Dy := D n := @i\io Kti S RE
we obtain for 4,5 € {0,1},

Ktk es, if §(mp) =n;* for some 0 <k < N;

Hy(Dn(9)) = {0, otherwise, »

B0our map is é times Colmez’ one.
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and

Ktk es, if § = 2% for some 0 <k < N;

H%(H&/(DN((D)) = { 0, otherwise. (30)

Remark 4.21. Note that, by the same reasoning, the analogue of Lemma 4.5 (ii) (but
in general not (iii)) does also hold for M of the form R} (8) or LA(or)(6).

Recall that £ = {z7!|i e N}, X9 = {2'x|i € N} and e, = Xon\(E1 U D).

Lemma 4.22. The dimensions of the analytic cohomology groups are as follows:

Oa 5¢Zl7
1, 6eXq,7=0;
+ _ ) 1,] 3
(i) dlmKH ,D(T'z, K)(R (6)) = 9, §e¥j=1;
1, de¥,j=2
0, j=0;
(i) For 6= ¢ %1 we have dlIIlKH DIy K)(LA(OL)(6)) =< 1, j=1,;
0, j=2
0, j=0;
(iii) For 6—!e ¥, we have dlmKH D, K)(LA(OL)((S)) =< 2, j=1
L, j=
L j=0;
(iv) For 6 € X1 we have dlmKH D(Is K)(RK((S)) =< 2 j=1,
0, j=
_ 0, 7=0;
(v) For § € X5 we have dimKH;,D(rL,K)(RK(‘s)) = i, j =1,
0, j=0
(vi) For ¢ € Lgepn, we have dlmKH D, K)(RK((S)) = (1), j = ;;
y J =4

In particular, generic characters are precisely those with vanishing H° and H?.

Proof. By Remark 4.1 H?, (A*,M) in [15, §5] coincides with H pr, K (M). Note that
Colmez uses L to denote a large field such as our field K. O

It is easy to check that analogous results as in this subsection hold for modules of the
form R 4(9) for affinoids A over K instead of the base field K. The only subtlety is the
appearance of non-trivial zero divisors. By imposing some additional conditions we can
strengthen 4.9 to cover the affinoid case as well.

Note that the action of T';, on A(dx71) extends to an action of D(T', K) by continuity.
The element 3 acts as an A-linear endomorphism on A(éxi—r;) hence by multiplication
with an element 3(5x7%) € A.
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Remark 4.23.

(i) Let A be affinoid over K and let §: L* — A* be a locally L-analytic character.
Assume that 1 —§(7)7* is not a non-trivial zero divisor in A for every i € Z and
assume that (the image of) 3(0x;%) € A is not a non-trivial zero divisor in A or
any A/(1—4(m)m*)'0. Then Ty (M) is perfect as a D(T'z,A)-module for M in

{R%(6),Ra(6),LA(or,A)(6x "), Da,n (8), Pol<n (o2, A)(x"0)}.

(ii) As in Nakamura’s setting we expect the statement of (i) to be true without any
condition. Unfortunately, the methods of [28, Section 5] do not transfer to our
situation directly due to the fact that [28] makes use of the Euler characteristic
formula and perfectness of the W-complex in the étale case. The analogues of these
results are not known to us for analytic cohomology over affinoids.

Proof. First observe that for any locally analytic character p: L* — A* the free rank
one module A(p) is perfect as a D(U,A)-module if 3(p) is not a non-trivial zero divisor
in A. Indeed, let « := 3(p) € A. Then, using the assumptions on «, one sees that
A(p) 2 D(U,A)/(3 —a)D(U,A) is perfect as a D(U,A)-module but then also perfect
as a D(I'r,A)-module by [51, Lemma 2.5]. Let us call a module of the form A(p) of type
F. Now consider the sequence

0— R (0) = Ra(6) = LA(or,A)(x'5) — 0. (37)

We have that Ty (LA(or,A)(x~16)) is perfect by [48, Tag 066T] since the inclusion of the
Pol<n(or,A)(x™16) induces a quasi-isomorphism for N » 0 to a complex whose terms
are perfect as they are finite direct sums of modules of type F. Similarly for D4 n(5). To
see that R (5)¥=1! is perfect, consider the exact sequence

0= Vi — (Ra(8) )= £=5 (RA(6)7) V0 — Va — 0,

where V1,V are defined as kernel and co-kernel of the middle map. By an adaptation
of [11, Lemma 2.9 and Proposition 2.20] to our situation the kernel is of type F over A
while the cokernel is a finite direct sum of modules of type F over A/(1—d(m)7?) with
varying ¢. It suffices to see that they are perfect as D(I'p, A)-modules. This follows from
the assumption that (1—§(m)7?) is not a zero divisor and hence D(T'z,A/(1—§(m)7?)) is
itself perfect as a D(I'f,, A)-module. It remains to see that R (6)/(¥ —1) is perfect. Again
by a similar argument it is a finite direct sum of perfect D(I'z, A/(1—§(7)~1x*)) modules
(the appearance of §(m) ™! is due to using ¥ — 1 instead of ¢ —1). Our assumptions ensure
that 1—§(m)~trt = (=d(7) "tn?) (1= §(7)7 %) is not a zero divisor and we can proceed as
before. This proves the perfectness of Ty (R 4(9)T). Finally the perfectness of Ty (R4 (9))
follows from the exact sequence (37). O

167f we drop the zero divisor assumption the same proof would show that the complexes lie in

D, ;- If Ais a domain and §(m) € K™ then (1—4(m)n") is either 0 or a unit and hence the

condition on §(3) is automatically satisfied!
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5. Bloch—Kato exponential for analytic (¢r,I's)-modules

Recall that for a module M over a commutative ring R and ¢t € R a non-zerodivisor, we use
the notation M; for the localisation of M at the multiplicatively closed subset {t"},,>0.

5.1. Dyr and D.,;s for analytic (¢.,I's)-modules

In this section we will define versions of Dy and D,;s for L-analytic (¢r,,I'1)-modules
M. The idea is that, for an étale (¢r,I's)-module attached to a representation V| these
versions correspond to the identity component of the full Dyz(V'), which arise as (Bgr®1,
V)Cr instead of (Bqr ®g, V)%, and similarly for De,;s(V'). The comparison between the
definitions used in this article and Fontaine’s classical ones is described in [38, Section 5.2].

Definition 5.1. For an L-analytic (¢r,I'r,)-module M over R, we define
Dagr (M) := D (M)"*
and

Dcris (M) Mtr;LT
Remark 5.2. Let M be an L-analytic (¢r,I'r)-module M over Rr. Then Dggr (M) and
D.;is(M) are finite dimensional L-vector spaces of dimension < rk(M). Furthermore ¢y
induces an automorphism of Dis(M).

Proof. We first show that Dgg(M) is finite dimensional. By construction D := Dg;¢(M)
is a finite-dimensional B := (], > Ln((tz7))-semilinear representation of I'y,. We claim
that the natural map

B®pr, D'* - D

is injective and B'* = L, which shows dimz(D"*) < dimp(D) = rk(M). We first show
B't = L. Let f =Y a;ti e B't. We conclude a; = xrr(7)"y(a ) for every y€ I'r. Let
n be large enough such that all a; belong to L,,. Then v(a;) = a; for every v €T, and
we conclude that a; = 0 holds for every i # 0. Finally v(ag) € LEL = L which proves the
claim. For the injectivity we argue like in the proof of 2.13 in [20]. Consider L-linearly
independent vectors v1,...,v4 € D' such that

d
Z )\ﬂ}i =0
i=1

with some \; € B. Suppose d = 2,A\; # 0 and assume without loss of generality A\; = 1. We
obtain vy = vy(vy) = Zf:2 —v(\;)v;. Arguing by induction we may assume that vs,...,v4
are linearly independent over B and conclude \g,...,A\g € B'* = L. a contradiction.
From the injectivity of ¢,, according to Remark 3.14 we deduce that dimp,(Deis(M)) <
dimy,(Dggr(M)). Finally ¢ps induces an injective endomorphism of My, and by a
dimension argument an automorphism of Dg,is(M). O
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5.2. exp for analytic (¢r,[')-modules

Let M be an L-analytic (pr,[')-module over Rg. By Prop. 3.18, we have an action of
D(I',K) on M. Thus we may (for some fixed n) consider the complex K 3, (M), which
(up to sign) amounts to

3,@1—p)
_——

Ky 3, (M) = [M E2532, g | M]

concentrated in degree [0,2].
On the other hand, for any D(T', K)-module N, we define

K3, (N):=[N =% N]

concentrated in degree [0,1], and denote its cohomology by H3 (V).

Next we want to define K;’%n(MO) and Kéi) (My) for My e {M,M,,,}. By inspecting
the proof in the reference for Prop. 3.18, one sees that the action of D(I'K) on M
preserves all the M (™). For m » 0, we set

I’?%sn (Mém)) — [Mém) (¢—1,3n) Mém+1) @Mém) (3.®1—¢) Mém+1)]

concentrated in degree [0,2]. Passing to the limit with respect to the transition maps
induced by the canonical inclusions M{™ —— M) recovers K, 3, (Mp), but taking

the limit with respect to the transition maps induced by ¢: Mém) — émﬂ) produces

a new complex

K@) (M) i=lim K, 5, (M{™)

m,p

whose cohomology we denote by H g’p%’n' (Mp). Similarly we define

K (M) == lim K5, (M{™)

m,p

with cohomology groups denoted by H éﬁ’)”(Mo).

)

Remark 5.3. Note that we have
Dar(M) = HY, (Dy;(M))"/ "
and
Dcris(M) = Hgn (MtLT )F/Fn'
Lemma 5.4. For m » 0 and My e {M,M[1/tyr]}, the following natural maps induced
by ¢ are quasi-isomorphisms:
K3, (Dl (M) — K3, (D, 41 (M),
K3, (Mg™) — K5, (Mg™ ")) and

Ion

=~ m ad m-+1
Ky 3, (M{™) — K, 5, (MS™)
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In particular, the maps
K3, (Dgi),, (M) — K5, (D (M)
3n( difym 3n di, ’
K, (Mg™) — K (M) and

~

Ko, (M{™) — K9 (M)

n

are quasi-isomorphisms.

Proof. We only need prove the first statement.By Lemma 4.4 the action of 3,, on Méz’:O

(resp. (M{™)¥=0) is invertible. Using this fact, one can conclude the proof with the same
(purely formal) arguments as in the proof of [36, Lemma 2.17]. O

Lemma 5.5.
(i) For m> 0 and My € {M,M, .}, the map
K5, (My™) — K5, (M)

induced by the inclusion Mém) —— My s a quasi-isomorphism.

(ii) InD~(K), by composing the inverse of the isomorphism in (i) with the isomorphism
IN(%% (Mém)) — Kg(f%n (My) from Lemma 5.4, one obtains an isomorphism

K5, (My) = KL (Mo)

which is independent of the choice of m > 0.

Proof. Both statements follow by purely formal arguments from Lemma 5.4, just as in
the proof of [36, Lemma 2.20]. O

Definition 5.6.
(a) By the compatibility of the maps t,, with ¢: M) — M™+1) and the inclu-

sions Dgf)m(M) — D((Jf?mH(M) as in Definition 3.15, the ¢, induce canonical

morphisms'”

K7 (M) — K5, (D(M)) - and K57 (My,,) — K3, (Daie(M))
which we will both call .. Moreover, the inclusions Mém) — émH) induce a map
Frob: Ky (My) — Ky (Mp).
(b) We construct morphisms

i K3, (Mg) — K (M) and gt K5, (Mo) — K3, (DS (M)

in the following way:
"Note that obviously we have K3, (DS (M)) ~lim K3, (DY, (M)).

dif dif,m

https://doi.org/10.1017/5147474802500012X Published online by Cambridge University Press


https://doi.org/10.1017/S147474802500012X

42 M. Malcic et al.

Define f,, as the composition of the isomorphism K, 3, (M) — K S’P‘%n (My) from
Lemma 5.5(ii) with the map Ké’ ) (My) — Kéi) (M) obtained by taking the direct

3n
limit of the morphisms

_ (L3 QU0 pplme))

> m m m+1 m
Koz, (Mg™): (Mg MgV @ My™ s My

\L lid i (z,y)—y

m m 3'” m
K3, (M§™): [p™ MM

Furthermore, the morphism g, is defined as
fn L
gnt K3, (Mo) L K (M) = K5, (DS (M),

Proposition 5.7. Consider the following diagram:

d d +1
Ko 3, (M) —— K3, (Mi, ;) ® K3, (D}, (M) ———— K3, (Daig(M)) ————

id Fn®id (0, z)

ds d. +1
K3, (M) —> K (M) ® K3, (D (M)) —= K{? (M, ) ® K3, (Dais(M)) ——

where the d; are given by

di(z) := (2,90 (2)), da(z,y) = gn(x) =y,

d3(z) := (fu(2),9n(2)), da(z,y) := (Frob(z) —z,u(z) —y).
Then the vertical map is a morphism between two distinguished triangles.

Proof. The proof can be carried out analogously to the proof of [36, Prop. 2.21]: We
make use of the following well-known fact from homological algebra (see for instance
[56, Ex. 10.4.9]):

Let A be a ring and

0—X*—Y*—2°—0

an exact sequence of complexes of A-modules. Then there exists a natural map Z° —>
X*[1] in the derived category D(A) such that

Xy — 7L X1

18 a distinguished triangle.

First, we show that the upper row is a distinguished triangle. Our goal is to replace the
complexes K3 (D((;irf)(M )) by new, quasi-isomorphic complexes K, 3, (Dgﬂ) (M)), which
we define below, and construct an exact sequence

0— Kp3,(M) — K5, (M0 ) ® Ky 5, (D5 (M) — Ko 5, (Daie(M)) — 0 (38)

https://doi.org/10.1017/5147474802500012X Published online by Cambridge University Press


https://doi.org/10.1017/S147474802500012X

e-Isomorphisms for rank one (p,I')-modules over Lubin-Tate Robba rings 43

that will induce the upper triangle in the statement by the above-stated fact. For k >0
and m » 0, we put

O o(M) = [ ] t77 D, (M)

pn=m

and denote by Iz'%jjn (tpx. D;ifm(M)) the complex concentrated in degree [0,2]:

D i (M) 25 Dy o (M) D i1 (M) 255 Dy 1 1 (M),
where

bo(2) ) 1= ((BnZp) pzms (Tp—1 — Tp) pzmt1),s

and

bl((zu)uzma (yu)u2m+1) = ((xu—l - Iu) - 3nyu)u2m+1-

Furthermore, let

Ko,3, (Dait,m(M)) == | Ko.3, (7D ip, (M)
k=0

‘We now define

0— K, 3,(M™) — K, 5, (M) ® K, 35, (D (M) — K3, (Dait,m(M)) — 0

%y
(39)
as the sequence of complexes induced by applying f(% 3. (=) to
0—> M =5 MM @ [T Dg; <2 | T tehDg . (M) —0, (40)

n=m k=0p=m

where

ci(z) = (xv(bu(m))uBm) and ¢y, (yu)u) = (Lu(x) _y#)u>m~

Down below, the sequence (38) will be obtained as a direct limit of the sequences (39).
We claim that the sequence (40) and hence also (39) is exact. Consequently, the same
will then hold for the direct limit (38).

The crucial part now is the exactness of (40), which generalizes the exactness of the
sequence (5) in the proof of [36, Prop. 2.21]. The latter is demonstrated in [35, Lem. 2.9],
and we check that the arguments carry over to our sequence (40). The non-trivial
statements are ker(cy) = im(c;) and the surjectivity of cs.

The second statement can be reduced to showing that the map

M — [T D, (M) ftrr, @ (0u(2)pzm (41)

p=m

is surjective, using the fact that Mt(ZnT) =Uso tﬂ,ﬂM(m) and reducing inductively to the

case k =1 via dévissage. Now we fix an R%m)—basis e1,...,eq of M(™) assuming m is large
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enough for Proposition 3.2 to hold. From [3, Prop. 4.8 & Lem. 4.9] it follows that for any
1 = m, the composition

RY™ 5 Lllter]) 2= L,

induces an isomorphism R(Lm) /(Qu) = L, where Q,, := @fﬂ@).“ﬂ Therefore, using [46,

Lemma 4.3.6], we obtain on the level of the extension F' an isomorphism
REV/Qu = (RYVBLF)/Qu = (R /QuOLF = Lu®L F = F,

for 1> m. As a result, we see that (1,(e;))i=1,...q is an Fy-basis of Dy ,(M)/trr for
any p = m. Now the surjectivity of (41) is proven just as in [35, Lem. 2. 9] For a family
(Yu) u=m in the target, we write y,, = 22‘11 ay,i-tu(eq) for = m. Choosing a representative

a; € ’Rg,m) of the preimage of (a,,;)u>m under the natural isomorphism

R( tLT AN H F a»—> (a)>u>m (42)

p=m
for each 4, we obtain a preimage Zf 1a;e; of (y,), under (41). To see (42) one uses
trr=27]] Qu a5 well as the fact that trr and [ | Qu (Jiffer by a unit in R( ™) since

pu=l g u=m mr,
for v <m the @, are units as they have no zeros inside the annulus of convergence of RSF ).

Now (42) follows via a projective limit argument from the isomorphisms R%m) /(Qp) =
and the Chinese remainder theorem.

Concerning the first statement ker(cg) = im(c;), one needs to show for any x € Mt(znT)
that if v, (z) € Dglf (M) for all 1 >m, then we have in fact z € M) Writing x = 2 -t 4

with g € M (™) Remark 3.14 implies

k
tu(zo) -l
LM($)= M e LT
LT

So the claim follows if we show that if ¢¥ . divides ¢, (z¢) in F,[[tr7]] for all 4 >m, then
it also divides z¢ in M (™). Of course, we can assume k = 1 as well as M = Rp after
choosing a basis of M. Then the isomorphism (42) yields the desired result.

Now that the exactness of (40) is established, it follows by construction that the
sequence (39) of complexes is exact as well.

Next we form the direct limit of the sequences (39) over m, where the transition maps
are the ones induced by the natural inclusions Mo(m) — M, (m+1) and the maps

a*: Kp3, (DY, (M) — K,5,(DG), 1 (M)
given by “cutting off” the component at the lowest index. So by defining
K5, (DG (M) := lim K. 5, (DG, ()

m,a®

we obtain the desired exact sequence (38).

18I0 case the underlying Lubin-Tate group law is special, then @, is just the minimal
polynomial of a uniformiser of L., /L.
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This sequence yields a distinguished triangle as explained in the beginning of the
proof; in order to bring this triangle into the desired form, it remains to define suitable
quasi-isomorphisms of complexes K3 (D((Jf) (M)) — K, 3, (D((Jf) (M)), which is done

in the following way: First, for m » 0 consider the morphisms K3, (D:{if’m( M)) —
Ky3, (D¢, (M) defined by

3n

D it m (M) D it m (M)

z—(T) p=m lm»—»((m)u>m,0)

H D(leif“u.(]\4)H 1>_[ D;lLif”u,(M)® H D:lrif,,u,<]\4)H H Dgif”u,(M%

pu=m pu=m p=m+1 pu=m+1

(43)

noting that bo((2)uzm) = ((3n®)uzm: (¥ = ¥)p=m+1) = ((3n@)u=m,0). There are similar
morphisms K3, (Dgif,m(M)) — Ky 3, (Dair,m(M)), and one checks that they are all
quasi-isomorphisms, using the exactness of the sequence

o> (2) 5 ()= (T 1 =T ) 1

0 ——=Df (M) ——="> [] D} (M) [1 DY (M) —>o0.
p=m p=m+1

It is obvious that the quasi-isomorphisms K3n(D((;i}?m(M)) — ~¢,3H(D$f?m(M))
are compatible with the transition maps, induced by the inclusions Dé";f)m(M ) —>

D(d;{mﬂ(M) on the left and given by the a® on the right, so they induce a quasi-

isomorphism
K3, (DY (M) = K, 5, (DG (M)).

Putting everything together, and inspecting the explicit definitions of the morphisms
involved, we get that the upper row of the diagram in the statement is in fact a
distinguished triangle.

To demonstrate that the second row is also a distinguished triangle, we start again with
forming a certain direct limit of the exact sequences (39) of complexes. But this time,
instead of the a® from above, we define morphisms

(a)*: K3, (D, (M) — K3, (D0 (M)
given by shifting (z,),>m — (Tu—1)usm+1 instead of cutting off. Then let

K D)= lim K5, (D57, (M)).
m) (a/)l

Furthermore, note that the quasi-isomorphisms K3 (Dgf)m(M)) — ~%3" (D((;irf)m(M))
from (43) also form a morphism of directed systems if we use the (a’)® instead of the a*
as transition maps on the right, so they yield a quasi-isomorphism

K5, (DY (M) = K (DY (M), (44)
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After these preparations, we consider the chain of quasi-isomorphisms

o3, (M) = cone (R 5, (M) © K3, (D, (M) — Ky 3, (Datt,m (M) [-1]

tLr

m+1 >
> cone (K, (M) @ K5, (Dir ,, (M) — K3, (M) @ Koy 3, (Dt (M)) ) [~1],
(45)
where the first one follows from applying the fact from homological algebra stated at the

beginning of the proof to the sequence (39) and the second one is formally obtained by
the identity

~

Rop.3, (M) = cone (K3, (M) =5 K3, (M) ) [-1]

trr trr trr

Taking the direct limit of the quasi-isomorphisms (45) with respect to the transition
maps (a’)® and the morphisms induced by ¢: Mém) — Mém+1), and applying the quasi-
isomorphism K, 3, (M) = Kg(;,p%n(M) from Lemma 5.5(ii) to the left-hand side and (44)

to right-hand side, we obtain the distinguished triangle
1
K5, (M) — K5 (My,) ® K3, (Dgie (M) — K7 (My,) © K3, (Dair(M)) -

which is the bottom row in the statement of the proposition. O

We define
D (M) := HY (Daie(M)) and  DUY(M):= HY (M;,,).

Cris

For m >» 0, the map

0 Hgn (M(m)) . Hgn (M(m+1))

trr trr

is an isomorphism by Lemma 5.4. Moreover, the inclusions H3 9 (Mt(znT)) — DEZZ(M ) are
isomorphisms by a result analogous to [36, Lemma 2.18] Wthh is formally deduced from
Lemma 5.4 (and the fact that the cohomologies are finite-dimensional). Thus the above
i can be viewed as an automorphism

©: D (M) = D™ (M),

Cris Cris

Next we construct two isomorphisms ji,jo: D" )(M) — Héf)’o(MtLT) making the

Cris
diagram

D™ (M) —=% . D (M)

Cris Cris

s |5

,0 Frob —id
B0y, ) P H (M)
commute, where Frob is induced by the Frob in Definition 5.6(a). Let

ju: DEL(M) = HS, (M) £ HS (M) = HY (M)

cris tor tLr
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where the last map is an isomorphism by Lemma 5.4. Note that j; is independent of the
choice of m » 0. Finally, we set

. n 1 R Frob s
Jo: DM L B0 (M ) B B0, ).

cris

Additionally, we define

i: D)

cris

(M) 2 HE (M, ) - DY (M)
where ¢ is induced by the ¢ in Definition 5.6(a).
Definition 5.8. Denote by
expyy s DY (M) — HL 5 (M)
and
expiin: DL (M) 25 HYD O (Myy) — H 5, (M)

the boundary maps obtained by taking cohomology of the exact triangles in Proposi-

tion 5.7.
Set
n exp(n)
H} 5, (M), :=Tm(D{) (M) =0 HY 5 (M)
and
. . exp™ 4 exp(™
H} 5, (M)s = Tm(D) (M) @D (M) —=—— H] 5 (M))
and

tiy = DY (M)/DSR(M)° where DY (M) := HY (D (M)).
Then Proposition 5.7 yields the following diagram with exact rows

o> i(@) expl)

0 —— HY 5, (M) =22 DI (M)#=! £y HL 5 (M)e — 0

Jid J,THT J{z»—»(o,z) lm»—»z

0 —— HOs5 (M) —=22,5 DI (M) —2 DO (M@t —% HL 5 (M) — 0
(46)

where
ds(z,y) = (1—)ai(@))  and  dg = expiy +exply .

For later calculations we state the analogue (in the LT-setting) of the f-version (with
fe {¥,p}) of the explicit formula for exp,, and exp; j, in [36, Prop. 2.23] and leave the
straight forward adaption of the proof to the reader.
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Proposition 5.9.
(i) For x e Dgg (M) choose T € Mt(:T/) for some sufficiently large n' = n such that
tm (%) —z €Dy, (M)
for any m =n'. Then we have
expy (#) =[( ~ 1), 302] € H{ 5, (M).
(ii) Forxe Dgg (M) choose T € Mt(LnT/) for some sufficiently large n' = n such that
tm (%) € D s (M)

and

/
+
bn! +k? Z bn/ +l E Ddlf n’ +k<M)

for any k = 1. Then we have
exp') (@) =[(p—1)F +¢" (x),3,7] € H} 5, (M).

5.3. Derivatives of measures

In cyclotomic Iwasawa theory the constant log(xcyc(7y)) shows up at various places (see
[36]) in order to make constructions independent of the choice of a topological generator
7 of I'g,. Since we have replaced the element v —1 by 3, we again have to check the
dependence on this choice. As our computations below show, the constant 2 plays a role
in normalisation and seems conceptually new at a first glance since in the case L = Q, one
can take ) = 1. But recall that 2 is only unique up to units in oy, hence in the cyclotomic
case one could just as well take any element of Z,;. Comparing (20) with [36, Proposition
5.2] we see that we should take Qq, = log,(x(7))~!, where logy(a) := log(a)/p¥»{°e(e)).
We first generalize the derivative of a measure from the cyclotomic case (e.g. [34, §2.1])
in a naive way:

By (—): 0] — 1+ mpor, we denote the projection which is induced by the Teichmiiller
character w : kj — op. Fix mo > -7 and my > 0 such that log, (o7 ) € 7™ or. Then,
for s e m'or, with m := mg 4+ m; the map

(=)0 = 14+7n["0p,x— (x)" :=exp(slog(x))
is well-defined. For Ae D(T',K) and f e C*(T'y,K) we define
La(f,s) =M fxzwr)’) (La(—s)in D(T',K) for fixed s)

and
/ BT £)\(f78)_£)\(f70)
LA\(f) = 071&13120 . e D(T',K).
This limit exists and we have
L\(f) = Mlog(xzr)f) (47)
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0 <XLT(’SY)>S*1

using that limg,,_, = log(xrr(7)). As an example one easily sees using

Remark 4.3 that the expression
7/3" (1) (48)
T

is independent of n.

For D(T',,) as at the beginning of subsection 5.2 there is another way of attaching such
a derivative better adapted to the Lubin-Tate situation as follows:

By [43, §3, Thm. 3.6] the characters of ', are all of the form () := k(£ (7)) using
their notation. For small v we have

¥2(7) = exp(Q,(v)logr(2))

and for z = exp LT(%) the characters 7, and x 7 coincide on an open subgroup of I'z.
For Ae D(T',,) and f e C*"(T',,,K) we may define

LTA(f,2) == A(fv:) (LTA(—2) in D(I'y,K) for fixed z)

and
CTIS) = im LTA(f,2) ;E’R(f,o) e D(), K).
This limit exists and we have
ET() = - Mlog(xin)) (49)
using that limo. o 2= = Zlog(xrr(7)) as grr(0) = 1 by (1),

We conclude this discussion by considering again A = 3,, and the trivial character f = 1.
Then LT3, (1,2) = 3,(¢,) = z by [43, Lem. 4.6], whence LT3, (1,0) =0 and (49) becomes

Q L (1) 1

1=LT (1) = =—3,( = 2 50

7—3"( ) 723 (log(xrT)) an e Q (50)
5.4. The dual exponential map exp*

Let M be a free L-analytic (¢r,')-module over Ri. We say that M is de Rham if
the B =J,, Km((tLr))-module Dgi¢ (M) is trivial as a (B,I'z,)-module. By Galois descent
(technically in the form of [48, Tag 0CDR] for the Scheme X = Spec(K)) this is equivalent
to Dgir (M) being trivial as a (B,I'),)-module for some n. Indeed, in this case Dfﬁg(M) is
a K ®r, L,-module with a semi-linear I';, /T, = Gal(L,,/L)-action (which is trivial on K).
Note that we have dim g Dg"R) (M) =[L,, : L]-rp where 7y is the rank of M over R and

that Dgg (M) is in fact free as a K ®p, L,-module. We denote by s ps the connecting
homomorphism

H3 (Daie(M)) — HZ 5, (M)
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obtained from the sequence in 5.7. We define

n

Cy(3n) 1= L5, (1) = 3, (log(xer)) = <& (51)

for the trivial character 1. We stress that this is compatible with Nakamura’s definition
when specializing to the cyclotomic situation.

Lemma 5.10. Let M be de Rham. Then the natural map

(U Km((tLT))> ®u, DY (M) — Dgie (M)

18 an isomorphism and the induced map
937 : Dy (M) — H} (Dai(M)), @~ Cy(3.)(1®7)

is an isomorphism. The inverse is induced by sending f®d e K, ((trr)) Rk, D((ﬁ%) (M)
to Cy(3n)~ ! ﬁTer/Kn (fitnr=0)d, where by abuse of notation (although trr gets
inverted!) we denote by f;, .—o the constant term of f with respect to tpr.

Proof. The first part follows immediately from the definition and implies that D g (M)
is isomorphic to the trivial B-semi-linear I'j,-representation. For the second statement
it thus suffices to consider the rank 1 case and prove the statement for B itself, namely
that the natural map B'» — B — B/3,, is an isomorphism. Because the [-action respects
the direct product decomposition K, ((tr7)) = [ [1ez Knt% . and B'» = K, it suffices to
show that any Laurent series, whose constant term vanishes, lies in the image of 3,, and
that there is an exact sequence of the form

0—K, K, —o s,

K,—0

with Tr = ﬁTr K. /K, Dy Wedderburn theory. Using the product decomposition it

suffices to treat the monomials at¥,. with some a € K,,. Taking 1 # v € I',,, we obtain

y(a) = a and y(trr) = X7 (Y)trr. By construction (y—1)(tpr) = 7t utrr for some [ e

Z,ue o} and hence (y—1)(atprm; 'u™") = an 'u='((y—1)(trr)) = atpr. Since 6, —1 is

divisible by 3,, in D(I',,K), we conclude that at% ;. lies in the image of 3,,. O

Note that Dgg (M), for a (¢r,I')-module M, carries a natural filtration given by
Fil' DYR (M) = DY (M) 0 £y D (M).
Definition 5.11. Let M be a de Rham (¢,I'r)-module over Rg. We define the dual
exponential map as the composite

(giH 1

H} 5 (M) — H} (D} (M)) — H} (Dais(M)) DR (M).

Where the first map is given by mapping [z,y] to [¢,(y)] with p>» 0. Its image is contained
in FilO(Dc(g_{) (M)) and we thus obtain a map

exp®™ 1L 5 (M) - Fil’ (DY (M)).

https://doi.org/10.1017/5147474802500012X Published online by Cambridge University Press


https://doi.org/10.1017/S147474802500012X

e-Isomorphisms for rank one (p,I')-modules over Lubin-Tate Robba rings 51

We define

exp, : HY pp,y (M) — Fil’(Dar(M))

by taking I'j-invariants of exp*-’(n), which is independent of the choice of n. Indeed, as
shown in [50, Lem. 3.2.7] the restriction map

HY 5 (M) —HL 5 (M),[2.y] — [2,Qm-ny],

for m = n induces an isomorphism after taking I'y-invariants, where Q,,_,(35) := %’" =

w with Q,,_,,(0) = 77" and we have Cy(3.,) =77 "Cy(35) by (48).

Definition 5.12. We define a pairing
Uair: HY (Daie(My)) x H3 (Dair(M2)) — H3 (Daie (M1 @, M2))
given by (z,y) — [t ®y]. Furthermore we define
(= =)ait : Hy, (Dait(M)) x H} (Dgi¢(M)) == H3 (Dgie(M Qg M)) — K

as composite of Ugir with

(n)

—1
(g51) e I /K

H} (Dais(M Qg M)) 25 H) (Dgi(21)) D (Y =~ K,

using that Dgﬁ) (QY) = K, via t; e — 1, where e corresponds to 1 in Q! =~ R (). We
further define (—,—)4qr via the composite

1
[ K] LT Kn/K
_

Dy (M) x Dy} (M) — D (M@ M) <> D (@) = K.,
Remark 5.13. The pairing {(—,—)ar := {(—,—)dr, M
Dy (M) x D (M) — K
is perfect if M is de Rham and induces a perfect pairing
DY (M)/Fil® DY (M) x FI° D (31) — K.

Proof. Let us abbreviate V := Dgﬁ) (M),G=T,, and B=K,((trr)). For a suitable r,
we have that V = (B®,, M(™)¢ = (B®xk, V)¢ by definition. We will first show that the
pairing on the level of K, is perfect. Observe that base change to B provides us with
an injection Hompg, (V,K,,) — Homp(B®g, V,B). The target can be endowed with a
G action by (g)\)(z) = gA\(9~'x) and, because the action on V is trivial, we see that
the image of the above map is precisely the set of G-invariant elements. Indeed, since
B¢ = K,,, a linear form X\ which is fixed by g has to map elements of the form 1®uv into
B¢ = K,, and hence restricts to an element of Homp, (V,K,,). The perfectness now follows
from Homp(B®gk, V,B) = Homp(B®,, M,B) =~ Homp(B®,, M,B(xrr)) = B®,, M
by taking G-invariants, using that the evaluation pairing commutes with base change.
Note that we used that B = B(xrr) as I'r-modules (since B* contains tr) and that
Dait(M (xr7)) = Dair (M (x)) as they have “the same” I'-action. To conclude perfectness
of the K-valued pairing, it suffices to show that the pairing is non-degenerate on one side.
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Set W = Hompg, (V,K,). Let V' := Homg (V,K) which we view as a K,-module in the
obvious way; we endow W and V' with a I'p/T',-action via v f(—) = vf(y~!-). By the
above perfectness at the level of K, it thus suffices to show that the map W — V' given
by w— Trg, sk (w(—)) is injective. One easily checks that it is compatible with the K-
and 'y, /T, -structure on V’. We thus have constructed a I'y,/T",-semilinear map between
free K,,-modules of the same rank. By Galois descent it suffices to show that it is injective
on I' /T -invariant elements. Suppose w € W''* satisfies Trg, /i (w(v)) = 0 for all ve V.
This means that the image of the map w: V' — K, is contained in the kernel of the trace
map. For any z € V'L, we obtain w(z) € K nker(Tr) = 0 by the I'z-equivariance of w.
Thus w is trivial on I'p-invariants and by Galois descent trivial, because V is generated
by I'r-invariant elements, which implies w = 0.

For the second statement observe first that FilO(Dl(ﬁg (Q1)) =0 and Filfl(DgB QhHY)) =
K,. Hence FilO(Dfﬁg (M)) is contained in the subspace orthogonal to Fil’ Dg}g (M). In
order to see that this inclusion is an equality, it suffices to show that the canonical
bijective morphism of filtered vectorspaces Dgﬁ) (M) ®Dg§) (M) = Dgg (M®M) is in fact
an isomorphism. This is not entirely trivial and can be achieved by an analogue of [9,
Proposition 6.3.3]. As in their case one reduces to the corresponding statement about
graded objects and finally to the corresponding statement of rank one objects (which is
clear in our case as well). O

Lemma 5.14. The diagram

DR () —— K2 — T K, (52)
aly k] L7 /5
-5 Tr=Cr,(3n)Res
H} (Dair(Q')) —— HZ 5 ()

15 commutative.

Proof. Given any a € K,, (in the right upper corner of the diagram) we first have to
calculate 02(1® -, ) as 7:=1® ;'€ € Kn[[tLT]][#]eX = Dair,n (') represents -
up to a constant - the image of *-e, € Dg&)(ﬂl) under gg?. In order to calculate the
transition map d2 we use an analogue of [35, Lem. 2.12(2)], which is an easy snake-lemma
application to 5.7: Assume that z belongs to Dair (Q') for some k > 0. For any element
Te %Ql’(k) = #R(X)(k) such that

tm (Z) — cang, m(z) € Dgif,m(Ql)

(using the notation of Definition 3.15) for all m > k, we then have d3([z]) = [(¢ —1)T] €

HE 5, ().
We construct Z as follows. Consider the isomorphism
Ric/(ter) == | [ Ky ar— (6(0)) 0 (53)
n=0
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analogous to (42) and let f be an element in R}, whose class in the left hand side
corresponds to the tuple (a,),>0 with

W’ ifu=k
Ap = TrKk/Ku (a) ifk>p=0;
ﬂ-L ) = = b

on the right hand side. Note that the operator ¥ on R?{ induces the map
v [Ku— [ B,
=0 u=0
() = (¢ wo+ 4 " Trpey yie (21),0  Triy i, (@2), 00 o, i, (T )
Moreover, (x,), satisfies qV¥((xu),) = (v4), if and only Trg, /k,(z1) = 0 and

Trg, .\ /K (Tmy1) = T, for all m > 1. In particular, ¢¥((a,),) = (au), if and only
if Trg, /i, (a) = 0. We now set & = #ex € ﬁR(X)(’“) and check that, for m > k,

()

trr
T A,

l’m(‘%) eX mOd D(_Iifﬂn(R(X))

e
X

trr
m—k

7TL a

gty

= cang, ., ()

Cx

as required, i.e., d2(1® z-ey ) = [(p — 1)(Lex)] = [(# _f) ﬁex]- Since

trr
(Z2 1) ) =202 ) = 2250 =0
q q q
for all m > k, we conclude from (53) that £ — f e (H£> A ?an) R, whence

<<p(f)_f> R (H£>k %) o1 . 50

R
K= K
q trr trr Z] |u>1 =

using trr = Z]_LL>1 = . Since all involved maps are K-linear and K,, = K @ker(Trg, /)
it suffices to check the commutativity in the two cases a€ K, i.e., k=0, or Trg, /i (a) =0,
ie., q¥((au)u=0) = (au)u>0

If k=0, the element ; oex is sent via the lower composite to

Crr(3n)Reso (—62) 0 gt (——ey) = —Cy(30)Crr(3n) Res 0 62(1@ —— ey )
tLT tLT

— _quReS( <¢(qf) - f) LdtLT)

trr
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- _qiil ((p(qf) _f>|z_0

___1 (f(o) —f(O)) —

=1\ ¢
where we use for the second equality the definition (20) and for the third equality (54).
Thus the claim follows on the subspace Dé’;{)(Ql)FL, because ﬁTrKn/K(a) =a.
If q¥((ap)u=0) = (au)u=0, i.e., ¢¥(fmodtrr) = fmodtrr, it follows from the surjec-
tivity of W — 2 on RT by [6, Cor. 2.3.4] and the commutative diagram with exact rows

t
0 R —= R} R /trrRfe —=0
lqjli \p_ll \I/_li
TK q q q
t
0 R —= R} R /trrRf —=0

that we may assume without loss of generality that f also satisfies ¢¥(f) = f, whence

we obtain \IJ(@ — f) =0. Using the identity Res(V(f)dtrr) = x(wr)Res(fdtrr) from

[15, Prop. 1.5] we conclude that Res((@—f) Ldt;r) vanishes, from which the

tor
commutativity follows also in this case by a similar calculation as above. O

Lemma 5.15. Let z € HY (Dai(M)),[z,y] € H. 5 (M),a € H 5 (M) and [b] €

H;,Sn (M). Using (—,—):={—,—)r as before to denote the pairing
H 5(M)x H2 3(M) - K

obtained from /4.16 we have

(exply (), [2.9]) = [t () Dait

and
(a,62,m([0])) = (enla), [b]Dait-

Proof. Let z be in Dgﬁ) (M) and [z,y] € Hé“%n(M) with 2 € M,y e M+, Then we
have

1

o [en () Datie = T og(—lloev([z@Ln(y)]) — _Trod, ([2®Ln(y)])

by (52) and, by the same snake-lemma application in order to calculate the transition
map g induced by Proposition 5.7 (compare with [35, Lem. 2.12(2)]),

~Tr(32([=@ W) = ~Cre(3n) Res([(o - DEOW)))
— —Cre(3n)Res([(p—1)(2) @ (y) + 2@ 3,2])
= ~Cr,(3)Bes(2(0) (e~ D)(2) + (312) (2)):
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where in the second equality we have used the co-boundary condition (¢ —1)(y) = 3.
Moreover, Z € Mt(f; is an element with the property that ¢,,(Z) — 2 belongs to D; dit.m (M)
for all m > n, the existence of which is granted by the exactness of (40), whence Lm(z®
Y)—2Qutm(y) € D;{lf L(M®M) for all m = n.
On the other hand we have by a straightforward analogue of [3 [35, Lem. 2.12 (1)] for the
first, the formula in Theorem 4.16 for the second equality and (22) for the third equality

Cexpli () [y]) = (e = 1)(2). 302 [2,9])
= —Crr(3u)Res(p(v) (= D(E) + (N2)(342))
= —Crr(3n)Res(p(v) (0= D(E)) + (302) (3)),

which agrees with the above formula. We leave the easy proof of the second identity to
the reader. O

Proposition 5.16. Let M be de Rham. Let x € DSQ(M)/FHODSQ(M) and y €
H 5 (M). We have

(expp (@), y)ar = (o expi™ (1))ar,

i.e., expgw) is adjoint to exp,; ’(n).

Proof. This is a formal consequence of Lemma 5.15 after plugging in the definition 5.11
of exp>X< () O

Only for the purpose of the next lemma (needed in the proof of the subsequent

proposition) we introduce the notation H’, (N) as the i-th cohomology of the complex

Kéi)(NtLT)(—BKBn (Daif(N)) of the bottom right in Proposition 5.7. We define a pairing

(M) x H!

YUmix * H mlx(MQ) - Hmlx(Ml ®RK MQ)

mix

given by (z,y) — [t ®y]. Furthermore, we set

(== mix s Hipix (M) % Hyoo (M) = Hyoo (M ®p e M)) = Hyio ().

mix mix mix

Finally, by

G Hy 5, (M) — HY (K (M) © K, (DG (M) — Hy (M)
we denote the composite H'(d7)o H'(d3), where d7 : Ké“:)(MtLT) ® K3, (D5 (M)) —
Ké“:) (M, )® K3, (Dair(M)) sends (z,y) to itself using the natural inclusion D (M) —

Ddif(M ). Then the next Lemma is formally analogous to Lemma 5.15, thus we leave the
details to the interested reader.
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Lemma 5.17. The following diagram is commutative

<_7 _>mix
_— >

Hr?nx(M> x Hr}mx(M) Hl'llliX<Ql)

lexpgn& +exp1(\2) TG laQ

~ (==
He s, (M) < Hg 5 (M) —————HZ 5 ().

Proposition 5.18. Let M be a trianguline L-analytic (or,I'L)-module over R which is
de Rham. Then H;,Bn (M)?L is the orthogonal complement of H;H?M (M)IJ:L with respect
to the duality pairing {—,—)nr.

Proof. Analogous to [36, Prop. 2.24]: Replacing the sequence (13) in (loc. cit.) by (46),
using the Euler-Poincaré formula 4.7 as well as duality 4.16 and the de Rham property of
M one shows that dimg H 5 (M)l;L +dimg H} 5 (M)?L =dimg H} 5 (]\?)FL, There-
fore it suffices to show that (x,y) =0 for allze H} 5 (M)?L andye H) 5 (M)I;L This is
accomplished by Lemma 5.17, because G(y) = 0 since y € ker H!(d3) by assumption. [

6. e-constants

Let E be a field of characteristic zero containing p,=, 1o 1= ¥¢ : Qp — E* the character
(with kernel Z,) attached to a fixed compatible system & = (,)n>1 of p-power roots of
unity via wo(p%) =&,.

Similarly, we may define for the compatible system u = (uy,)nen € T (and a choice of
generator t(, of T%) the character ¢, := Yoty 0 L — B, % = Ty (z,up).

But there is another (canonical) choice: ¥y, := g0 Try, /0, : L — E* is alocally constant
character (with kernel the inverse of the different ideal D q, ).

Remark 6.1. The character ¢, factorizes over or,. Hence, by (4) there exists a = a(t(,u) €
oy, such that the following diagram commutes

Y, (1,u
TT‘L/Q, 141 (1,u)
Ljor, > Qp/Zp — u(p)
o] ]
Tx ®0L L/OL = T ®0L L/OL-

Here 7, (1,u) := (g, (1,un))n is a generator of Z,(1), again by (4). In particular, for the
choice § = 7y (1,u) we obtain

Yr(x) = Yu(az) (55)
for all x € L. It is clear that a is a generator of the different ideal D g, .

Let dz be the Haar measure on L such that SOL dr =1. Let ¢p: L - E* be a non-trivial
character which kills an open subgroup of L.

For a finite-dimensional E-linear representation D of the Weil-group W, := W(L/L)
which is locally constant (i.e., the image of the inertia group is finite) we have local
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constants
€(D,§) :=ep(L,D,3,dx) € E*,

see [18] or [52] and [16, §2.2].
If dimg D =1 corresponding to a locally constant homomorphism § : L* — E* via local
class field theory (see section 7.4 for the normalisation we choose), i.e., D = E(J), then

L 2
ep(LD,tr.dr) = 8(m)" Vg0 3T 660 (), (56)
’iE(OL/?Tz(J))X Ty,
ep(L, D,y dx) = 5(wp) g ) N 5(0) T (i, tags))- (57)
ie(or /m2(2))x

Here n(1)) denotes the largest integer n such that m;"or < kere, a(d) denotes the
conductor of §, (0 if 0 is unramified, the smallest positive integer m such that 1+
wor < kerd, if § is ramified). If W = (D, N) is a Weil Deligne representation of Wi, with
monodromy operator N and underlying Weil group representation D we modify, following
Nakamura, its e-constant by the factor

e(W) := e(D)det(—Frob | (D/DN=0)1r), (58)
where I}, denotes the inertia subgroup. Both definitions agree if N acts as 0 on D.

Remark 6.2. 1, (y) is independent of the choice of n such that y = =/} and n(y,) = 0.

Proof. The independence follows inductively from n(mx,uy) = n(x, oL (un)) = n(x,un—_1).
On the one hand, by definition oy, < kert),,. On the other hand by §1, Fact 2 in [8], using
that w; is a non-zero 7z-torsion point we may find a € o, such that ¢, (a/7r) = n(a,u1)
is a primitive p-th root of unity. This proves that 7, ‘oz, is not contained in ker(z,,). We
conclude n(¢,,) = 0. O

How do the epsilon-constants for the two choices ¥, and v, compare? The first choice
behaves well under induction: there is a constant A € E depending on L/Q,, the choices
of Haar measures dzg,,drr and the choice of ), such that!?

ep(Qp,Ind§ 5,10,dzg,) = Nep(L,6,¢r,dxy)

for all locally constant characters 6 : L™ — E* (see [2] or [18, (5.6)]).

The second choice is obviously better adapted to the Lubin-Tate situation. By (55) there
exists a € L* such that ¢, () = 1, (ax). Moreover, one knows that eg(L,d,9, (bx),dxr) =
%eE(L,J,wL,de) by [52, (3.2.3) or (3.4.4)] for all be L*. Combining the above we get
the following:

9As ep is inductive with regard to virtual representations of dimension 0, one concludes that
A= €E(Qpalnd&p6t!'iv7w01szp

) .. .
P A PR T o for the trivial representation d¢yiy -
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Remark 6.3. There exists A € E depending on L/Q,, the choices of Haar measures
drq,,drr, and the choice of ¥y, as well as a € L™ depending on vy and u such that

o(a
EE(vaIndépéawmdep) = )\(a|)6E'(L757wu7de) (59)
for all é.

If we start with a Haar measure dx of L, then the dual Haar measure dz with respect
to the duality induced by v, i.e.,

is the unique Haar measure such that f(x) = f(—x) =, F()¢(—xy)dz(y) holds for all
test functions in L'(L), where

f(y) = Lf(m)w(wy)dw(:v)

denotes the Fourier transform of f. Especially for f = 1 —nww,, we obtain:
L

171';"(1#)0L (y) = (LL"(WOL dﬂ?) 1oL (y)7

17;/:_\;014(_1.) B <J —n(y) dx) J w(_xy)dim(y)

B Uu dm) <f di”ﬂ(y)) 1o, ()

ie., §, dz(y) = qn% and dx = ﬁdm.
From [52, (3.4.7)] we obtain

whence

6(L7(5,1/),d.13)6(L,(5_1‘ - |,’(/)(—l'),dA$) =1 (60)
and similarly for higher rank representations D instead of §. Since by (3.2.2/3)
in (loc. cit.) we have €(L,0,%,rdx) = re(L,0,dx) for r > 0 and e(L,0,9(ax),dr) =
5(a)|a|te(L,8,4(x),dz), we conclude that

€(L,0,,dw)e(L,0~" | = (), dw) = 5(=1)g" ). (61)
Moreover, by (3.4.5) in (loc. cit.) it holds that

e(L,57 | = | (x),da) = = O W) e(L, 67 p(x), da) = |73V (1,67 (), dx).
(62)
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7. Epsilon-isomorphisms - the statement of the conjecture

7.1. Determinant functor

Let R be a commutative ring. A graded invertible R-module is a pair (£,r), where
L is an invertible R-module and r : Spec(R) — Z is a locally constant function. We
define the category Pgr of graded invertible R-modules by setting Mor((Ly,7),(L2,s)) :=
Isomp(Ly,L2) if r = s and empty otherwise. We further define

(L1,m) - (La,8) := (L1,7) ®(L2,8) := (L1 R Lo,r +5)

for each pair of objects and we identify (L1,7) ® (L2,s) with (La,5) ® (L1,r) via the
morphism induced by I; ®1ls — (—1)" %I, ®1;. We denote by 1g the object (R,0), which
acts as a unit with respect to the tensor product and we remark that every object (£,r) has
an inverse given by (L7, —r), where £7! denotes the R-dual of £. For a ring morphism
R — S and (L,r) € Pr we set (L,r)s := (L®S,r*), where r* denotes the pullback of r
along R — S. An isomorphism 1z — £ is called a trivialisation of £. Let Py,(R) be
the category of finitely generated projective R-modules and let (Py,(R),is) be its core,
i.e. the subcategory consisting of the same objects with isomorphisms as morphisms. We
have a functor

th (Pfg(R),ZS) i PR
P — (det P,rankg(P)),

where det P denotes the highest exterior power of P. Note that dgr is compatible with
short exact sequences and base change in the sense that given an exact sequence 0 —
P; — P, —» P3 — 0 the natural isomorphism

det Py ®det P3 = det P
induces an isomorphism
dRP1 -dR.Pg = dRPQ.

Moreover, for a morphism of rings R — S we have dr(P)s = dg(P®S). This functor
can be extended to the category (CP(R),qis) of bounded complexes in P(R) with quasi-
isomorphisms as morphisms. On the level of objects this extension can be described as
follows: Let C* € CP(R) then

dp(C*):=Rdgr(C)7".
i€Z
This functor is again compatible with exact sequences and if C'* is acyclic, then the quasi
isomorphism 0 — C* induces a trivialisation of dg(C*) that we take as an identification.
One can show that d factorises over (Dgerf(R),qis), the image of the category of bounded
complexes of finitely generated projective modules in the derived category with quasi
isomorphisms as morphisms. If a complex C* is cohomologically perfect meaning that
H(C*) considered as a complex concentrated in degree 0 is in D?__;(R) for all i, then we

perf
have a canonical isomorphism

dr(C*) = @dr(H (C*) Y,
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that we take as an identification. This extension is further compatible with duality and
base change in the following sense: There exist canonical isomorphisms

dr(RHompg(C* R)) = dg(C*)™*
and

ds(S®p (C*)) = dr(C*)s.

7.2. Fundamental lines

Let M be a (¢r,I'r)-module over R 4, where A is an affinoid algebra over K. We assume
that M satisfies the following technical condition:

There exist £ € Pic(A) and § = dqet ar € Xan(A) such thatdetr , M =~ L& R 4(6),
(63)

where det M denotes the highest exterior power of M. Clearly det M is always a module
of rank 1 and the technical condition is asking det M to be of character type up to a twist
on the base. The full subcategory of (pr,I'r)-modules satisfying the above contains all
modules that arise as a base change from Ry by [22, Proposition 1.9] and furthermore
contains all trianguline modules (even with £ = A). If M satisfies the above condition the
isomorphism class of £ and the character ¢ are uniquely determined. Furthermore £ can
be identified with the subset

La(M):={xedetM | pr(x) = ddot M (7L)T, YT = dget s (V) x}
by sending [ € £ to [Qes € L& R A(0).

Definition 7.1. Let M be an L-analytic (¢r,I'r)-module of rank ry; over R 4 satisfying
(63). Write det(M) = LOR A(ddet ar). We define

Ay a(M) :=dar, u)(Kp,, pw,k)(M))@arr, ] 4,
using Remark (4.8), and
Ao a(M) = <{$ edet M | ¢r(x) = ddet M (TL) 2,72 = Sdet 1 (V) T}, *XA[FL/U](K@,D(U,K)(M)))

i.e., the underlying line bundle of Ay 4 is £ which has a canonical (¢r,I's,)-action given
by et ar,. We also write L£(dgetas) if we wish to emphasize the action.

Remark 7.2. We have
(zeRk(0) | on(x) =d(nr)zye = d(y)a} = RE " res = Kes =~ K
whence Ag k(R () = (Kes,1) = (K,1) using Remark 4.7.
Proposition 7.3. Ay 4(M) and Ag, 4(M) are well-defined graded invertible modules and
A (M) := A1 4A(M)-Ag 4(M)

satisfies the following properties
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(i) For any continuous map of affinoid algebras A — B induces a canonical isomor-
phism

AA(M) ®a B~ AB(M®AB).

(ii) As(M) is multiplicative in short exact sequences.
(iii) Aa(M) = A(M)*®(A(x™),0).

Proof. Compatibility with base change can be checked for A; := A; 4 individually. For
A1 it follows from Theorem 4.6 and for As it is clear. The compatibility with short
exact sequences can also be checked individually for A;. For i = 2 it follows from the
corresponding statement for determinants and for ¢ = 1 it follows from the fact that a
short exact sequence of (¢r,U)-modules induces a short exact sequence of the complexes
Ky pw,Kk)- The quasi-isomorphism f (M) : K, 3(M) = K, 3(M)*[~2] induced from (24)

by identifying M = M gives an isomorphism Ay 1 (M) = A?,I(M )* while the isomorphism
Ay o(M)= Ay o(M)*Q@(A(x™),0) arises as follows: First observe that M satisfies (63), if

M does, and since M = A(x) ®4 M* one sees that det(M) = A(x"*M))@det(M*). Hence

we see Ay o(M) =A42(M*)QA(x"). A small calculation shows Ay o(M*) = Ay o(M)*,
hence the claim. O

Definition 7.4. Let X be a rigid analytic space over K. Given a family of (¢r,I'1)-
modules M over Oy, i.e., a compatible collection of (¢r,I'r)-modules M4 over R4 for
every affinoid Sp(A) € X, we define Ax (M) as the global sections of the line-bundle
Dx (M) defined by Sp(A) — As(My). If X is quasi-Stein covered by an increasing
union X, of affinoids we also have Ax(M)[0] = RI'(X,Dx(M)) = Rlim(Ax, (Mx,)) =
limAx, (Mx,)[0] by Theorem B for quasi-Stein spaces. We have analogous definitions
and statements for A; x (M)and ©; x,i = 1,2 respectively. D x,D; x are graded invertible
Ox-modules by definition.

A word of caution is in order. A priori the A; x (M) are not necessarily graded invertible
Ox (X)-modules because the global sections do not have to be finitely generated over Ox.
In our applications (in section 8) we will have Ay x = Ox(X) and will be in a position
to apply the subsequent remark in order to conclude that A; x is an invertible Ox (X)-
module.

Remark 7.5. Let X = JX,, be a quasi-Stein space. Let Cp be a family of perfect
complexes of Ox(X,,)-modules together with quasi-isomorphisms OX(X7L_1)®H(5X( X
Cy ~ Cr_,. Assume that there exists a perfect complex C* of Ox(X)-modules (in the
ring-theoretic sense®’) such that OX(X7L)®]I(§X(X) C*~Cp.

Then we have do, (x,)(Cn) = Ox(X,) ®do, (x)(C*). Furthermore do, (x)(C*®) is
coadmissible, i.e., doy (x)(C*) =lm doy(x,)(C}).

20Here one has to make a distinction between a perfect complex of O(X)-modules and a perfect
complex of sheaves of Ox-modules, i.e., a complex whose restriction to each Ox,, is perfect.
One can show that C' is isomorphic to RlimC),. Hence this remark could be restated to
require RlimC', to be perfect.
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Proof. The proof is formal using that determinant functors commute with derived tensor
products and Ox (X,,) — Ox(X,—1) is flat together with the fact that d(C*) is a rank
one projective module over Ox (X) and hence coadmissible by [43, Corollary 3.4]. O

7.3. Statement

We expect that the results in section 4 extend to affinoids (where only stated or proven
over fields) and to all analytic (¢r,I'r)-modules (where only stated for rank one or
trianguline ones), explicitly this refers to Remark 4.7 and Theorems 4.9, 4.10, 4.16. Hence
we state the conjecture below in this level of generality.

Conjecture 7.6. Choose a compatible system u = (uy,) of [n}]-torsion points of the
Lubin-Tate group and a generatorty of Th. Let A be an affinoid algebra over K, a complete
field extension of L containing L. For each L-analytic (¢r,I'1)-module M over R,
satisfying condition (63) there exists a unique trivialisation

eanu(M): 14 = Aa(M)
satisfying the following azioms:
(i) For any affinoid algebra B over A we have
eau(M)®aidp =ep o (M&®4B)
under the canonical isomorphism Ax(M)®a B = Ag(M®aB).
(ii) 4,4 s multiplicative in short exact sequences.
(iii) For any a € o] we have
€a,au(M) = ddes m (@) A,y
(iv) ea,u(M) is compatible with duality in the sense that
EA,u(M)* ®h(x™) = (_1)dimK HO(]V[)Q;)T]WEA,fu(M)

under the natural isomorphisms 14 =1, ®14 and A(M) = A(M)*® (A(rar),0),
where h(x™): A(rar) — A maps eyrar to 1.

(v) For L =Q,, mp, =p and u = (Cpn — 1), the trivialisation coincides with that of
Nakamura, in the sense of Proposition 8.7.

(vi) Let F/L be a finite subextension of K, My be a de Rham (pr,I'r)-module over Rp
and M = K&QprMy. Then

ex.u(M) = e, (Mo).
Remark 7.7.

(i) The occurrence of the power of  in the compatibility with duality (iv) is a
conceptually new phenomenon in our conjecture, see also Proposition 7.14.

(ii) Due to the equivalence of categories stated in [7, Thm. 3.16] there is an analogous
conjecture for L-analytic (¢r,I's)-modules over the character variety, i.e., by
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replacing the usual Robba ring Rk = R (B) (attached to the open unit ball B) by
the Robba ring Rk (X,,) of the character variety X,, attached to the group o, see
[7, §2.4] or [46, §4.3.6]. In this situation, we expect that the conditions concerning
K can be weakened and perhaps the descent to L (or any finite extension of it)
instead of the huge field K should be feasible, compare with Thm. 4.3.23 in (loc.
cit.). Moreover, due to [46, Lem. 4.3.25] there should be no occurrence of Q! We
will pursue this in future work.

(iii) The assumption that K contains L can be dropped in the case that L = Q,
as the period (lg, can be taken to be any element in Z;. In order to specialise
our construction to Nakamura’s one has to make more specific choices. Fixing an
element v € I', whose image in I'/T")_ ,ower-torsion 18 & topological generator implicitly
determines the period as Qg, = logy(Xeyc(y)) ™! But this would not necessarily
be compatible with Nakamura’s variant of the de Rham isomorphism, since his
variant does not involve any period. Instead one should choose a ~ such that
logy(Xeye(y)) = 1. This defect is due to the fact our variant of the exponential
map involves the period 2 as part of its definition and hence so does our de Rham
isomorphism. This is not a contradiction to the uniqueness of the e-isomorphisms in
question. Indeed in the rank one case, we can see the e-isomorphism is determined
by its behaviour at de Rham points. If {)g, # 1 then our variant asks for a different
behaviour at these de Rham points thus leading to a different result.

7.4. The de Rham case

In this section we explain how to attach a Weil-Deligne Representation to an L-analytic
de Rham (¢r,I'r)-module over Ry, in order to define the de Rham epsilon-constants.
We denote by B- for ? € {cris,dR,st} Fontaine’s usual period rings. Without difficulty
this construction can be generalised to (¢r,I'r)-modules over F®p Ry for a finite
extension F' with trivial action. In order to keep notation light we will assume without
loss of generality F' = L. We write B, 17 = ﬁ[l/tLT]*"Lﬂ. We will make use of the
equivalence of categories between L-analytic (¢r,['s)-modules and L-analytic B-pairs
originally suggested in [5, Remark 10.3] and detailed in [39, Theorem 5.5]. A priori
these results are only applicable to FE-linear representations of G, where E denotes
a Galois closure of L/Q,. If we start with an analytic (¢r,I'r)-module M over Ry, then
by [39] we can attach to E®p M a B-pair (called Big-pair in (loc. cit.)), i.e., a pair
consisting of a finite free E®p Bjp-module W iy p with a Bj-semi-linear (and E-
linear) G'r-action and a finite free B, 17 g := E®r B, rr-module VVlﬁTE with semi-linear
G -action together with an isomorphism after base change to Byr. By Galois descent,
taking invariants with respect to the G(E/L)-action (acting via the first tensor factor)
provides us with a B-pair W (M) := (Wj(M),W.(M)) over (B}, Be r7). The ring B, 17
can be viewed as a subring of B, 1. Indeed, since ¢(trr) = mrtrr it suffices to consider
elements of R satisfying o(z) = ﬂ%x for some j € Z, which by Frobenius regularisation
are already contained in Rt (ct. [3, Proposition 3.2] in the cyclotomic case, and a similar
result holds for ramified Witt-vectors as well (cf. [49, Satz 3.19])). The ring R is a subring
of Beris, .- We call a B-pair (W;R,We) de Rham if W;’R[l/tLT] admits a Gr-invariant
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basis. One can show, that this is equivalent to the corresponding (¢,I'1)-module being
de Rham (cf. [38, Section 3.2, Proposition 3.7] for a proof in the étale case). Note that
our notion of de Rham coincides with L-de Rham in loc. cit.). Consider for F'/L finite
the vector space

Dy (M) := (Byy ®p, We(M))%"

over the maximal unramified subextension F” of F'/L. We define D (M) as their colimit
over all F'/L finite. By a standard argument (cf. proof of Theorem 2.13 Part (1) in [20]),
each F’-vector space Dy (M|p) is of dimension < 1kM and Dy (M) is hence an L""-
vector space of dimension < rkM. We say that M is potentially semi-stable if this
dimension is precisely rk M or, equivalently, if there exists a finite extension F/L such
that Dy (M) is an F'-vector space of dimension rk M. The p-adic monodromy theorem
also holds for B-pairs in the cyclotomic case and there is an obvious L-analytic analogue
providing us with the following (see [38, Corollary 3.10] for a treatment in the étale case).

Remark 7.8. M is de Rham if and only if M is potentially semi-stable.

Note that Dy (M) naturally has a semi-linear G'z-action and inherits from By 1 =
B ®1, L an action of ¢, and the monodromy operator N satisfying Ny, = gp4N.

We now explain how to modify this action in order to obtain an L""-linear representa-
tion of the Weil group Wy,. By local class field theory the maximal abelian extension L
of L is given by the composite L™ Lo, and L™ n Ly = L. Consider the reciprocity map

recy, : L* — Gal(L*°/L),

which by our convention sends 77, to the geometric Frobenius on L™". This induces an
isomorphism L* >~ W@t ~ o x T';,. We denote by ~ : W, — W the canonical surjection
and define a linearised action of Wi, on D,s (M) by setting

piin(9) () 1= @Zﬂ(rec_ (g))<Psemi—lin(g)(x))’

where psemi—iin denotes the action we considered previously. For a € L™, we then have

prin(9)(az) = o7 (po i 1in(g) (az))

(
1
— QOUW((reC (@) (psemifli’n(g) (a)psemz lln( )(:E))
g —1\vr(rec™?! vr(rec” (g
— e ree™ @) (o 1yon e @) () e o D) (i (9)(2))
= apiin(9)(2).

By passing to the base change D, (M)®p Ly (with trivial action on Lo, ) we are
finally able to define W (M) := (Dpst(M)®r Loy, prin,N) which is an L-linear Weil-
Deligne representation (Note that since D, (M) can be written as a base extension of
some Dg;(M|p), the action of the inertia group I is discrete and because I is open in
W, the action of Wy, is discrete.)

Example 7.9. The linearized Weil-Deligne representation W := W(Rg(9)) with 6 =
Siex¥is given by the character oy = 01c0%", : L* — (L“b)X via class field theory sending
L
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7y, to the geometric Frobenius. In particular,
_ —k
(5W)\oz - 6|oz (Z‘ )|oz . (64)

Proof. For the convenience of the reader we give a proof using B-pairs. Let es be the
obvious basis of R (8) and write §(m) = §(m)m* = nla with a € o} . We can find a €
L™ < R such that ¢,(a) = aa and hence y := @@e(; e Wo(RL(0)) = (R[1/trr] ®r
R (6))¥r=1. Note that G acts diagonally on W,.(R(5)), where the action on Rp(4)
is given via the quotient I'y. Let F' be a field extension of L such that §. is trivial
when restricted to the image of Gg in I'z,. Then the action of g € G is given by g(y) =
a/g(a)xrr(9)" 'y and hence z :=t' Fa®y is a basis of (Bs ® W.(R(6)))F. Write
0= xké;ﬂ’lk(Sg”p where p is a locally constant character with p(m) =1 and p(y) = §i(7)

L
for 4 € I'z. In this representation it is clear that the residual (non-linearised) action of
Gy is given by gz = p(g)z and hence the linearised action is given by

-1 — vy (rec™!
p(9)py= e D (2) = (' Fa) e 9 p(g)2
_ 5lc(ﬂ,)vﬂ(rcc*19) (ﬂ-fk)v,r(rcc’l g)p(g) = 5lc5;—“}k (g)z 0

7.4.1. Equivariant de Rham epsilon constants. For a de Rham (¢r,I'z)-module
M over Ry we would like to define the epsilon constant of M to be the e-constant
associated to W (M)

E(Mﬂ,[},dl') = ELab (L,W(M),¢,d$)

defined in section 6 using the adjustment (58). In the cyclotomic case (take for simplicity
L =K =Q,), these e-constants can be viewed as elements of L,, = Q,({y»). In our case
the constants are defined using p-power roots of unity which are “built” from the LT-
torsion points using the power series 1(—,T). The problem we run into is that, contrary
to the classical case, we can not assume that L, contains the p-power roots of unity.

Suppose K contains L°. Then it makes sense to view £(M,1),dz) as an element of K, but
by our convention that K carries the trivial I'z-action, we do not have v(e(M,1)y,dz)) =
e(M,-(u),dr), which we will need for technical reasons below in (67),in the form of
Remark 7.11. Roughly speaking we would like to define the e-constants as elements of
L, ®p K with n large enough, such that the definition of the epsilon constants “involves
only” the 7} -division points of the Lubin-Tate group. We make this concept precise via
the following equivariant construction.

Definition 7.10. Suppose the complete subfield K of C, contains L% and let W be
a Weil-Deligne representation of Wy with coefficients in K. Building on the e-constants
defined in section 6 with £ = K we define the I'p-equivariant e-constant

EW,u,dx) := (e (L, Wbz (), d)) 7,
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for lifts 7 of 7 to I'z,, viewed as an element of*!
[] F2L.®K<SL,®LK
7: Lp,—>K
via the canonical isomorphism, where n » 0 is large enough such that the e-constant
can be defined in terms of characters of conductor < n according to Deligne’s (inductive)
construction principle: In the rank one case, i.e., in the case of a locally constant character
0: L* — K*, one can take n = a(d). In general, the definition of the e-constant involves
multiple such characters defined over finite extensions of L (cf. [18, p. 536, Equation
4.2.1]) and one has to choose n greater than the supremum of all appearing conductors.

Remark 7.11. The e-constant &(W,u,dx) is well-defined, i.e. its definition above is
independent of the choices of the lifts 7. Furthermore, with respect to the I'p-action
on L, ®r, K via the left tensor factor we have

y(é(W,u,dx)) =eW,y(u),dz) = (1®5detW(XLT(’V)))g(Wvuvdm)‘

Proof. Without loss of generality we can assume W is of rank one corresponding to
a locally constant character 6: L* — K> due to Deligne’s construction principle. First
of all we note that ¢ is well-defined since u,s) € L, by assumption. Because the natural
isomorphism L, ®r K =[], ;. _,; K maps u®1 to (7(u));, we can see that  is obtained
by replacing in (57) the elements 7(a,u(s5)) by the series n(a,T’) evaluated at the element
(Ua(s) ®1), ie., by ¥y, (1®ai)(uq@s ®1)°, where n(a,T) = Yja;T* (this expression
converges with respect to the tensor product topology). The formula for the 7y-action
can be read off from (57). O

Definition 7.12. For a de Rham (¢r,I'r)-module M over Ry we define the epsilon
constant of M to be the I'p-equivariant e-constant associated to W (M)

E(M,u,dx) := (W (M),u,dx).
We usually omit dx from the notation and write
E(M,u) := (M, 1y, dx).
Remark 7.13. Let dz be the self dual Haar measure with respect to v, then
E(M, —u,dx)é(M,u,dz) = 1

Proof. In order to apply (60) we check that we have an isomorphism D, (M)
Dyt (M)*(|z]). Using the usual functorialities it suffices to check that Dy (Q2')

lle e

211f § takes values in a finite extension F of L and W = W (R (d)), then as an element of

K= [] FOLEK=FQLLi®LKCSFQLLe®LK
7: L,—»K;o: F>K 7: L,—>K

assuming F' € K for the first isomorphism. Also the o should be involved as W (M), in the
defining tuple then.
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L™ (Jz|), which is a special case of Example 7.9. The proof of the other required equation
det(—¢|Dst(M)/Deris(M)) det(*90|Dst(M)/DcriS(M)) =1

is then also standard, see e.g. [17, claim 5 in proof of Prop. 2.2.20]. O

We now describe how our construction relates to the étale and the cyclotomic case. The
comparison of e-constants involves a number of choices and we will only give an informal
comparison of the constructions presented here and the ones from [36] - by which we
mean that we give a comparison up to constants that only depend on L/Q,. There are
two avenues to be considered. On the one hand, we can specialise our constructions to the
cyclotomic case L = Q,, taking u,, = (p» —1 and Q = 1. Because (pn = 1+ u,, = (1, (up))
in this case our construction specialises to Nakamura’s, more precisely, our € is equal
to ena®1 viewed as an element of Lo, ®q, K, where ey, denotes the constant from
[36, Section 3C]. Indeed the elements n(a,u, ®1) = (5. ®1 appearing in 7.11 lie inside
L, ®Qp Qp'

On the other hand, we take the induction of an L-linear G -representation V and treat
it as an L-linear representation of Gg,. For the moment let us assume V € Rep, G, is
semi-stable and L-analytic and set X :=Indp,q, V. Let Q, S Lo S L be the maximal
unramified subextension. We can decompose

(Bu®qg, V) = [[ Bu®wL.-V)%*
TZLQH@

and have a similar decomposition for (B ®q, X )92 . The epsilon constants of the
induction (given suitable choices of additive characters) are related by explicit constants
independent of V (see (59)). Ignoring these, the e-constants defined by Nakamura are
the product of the e-constants of each component in the sense that he attaches to X a
tuple (W;), of Wg,-representations to which he attaches a tuple (¢(W-)). (cf. [36, p.359]
for details) of constants living over Q,((y~)®q, L. In contrast we attach (informally
speaking) to the 7 = id component a constant £(W;4). As we can not assume that L,
contains the p-th roots of unity, an analogous construction involving L., does not work
in the obvious sense and taking the base change to L% with G, acting naturally on
L does not provide us with the Galois action needed to make the constructions in 7.11
work. By assuming L’ = K we can make sense of the elements 7n(a,(u, ®1)) € L, ®r K,
which allow us to define &(W,4) with the desired technical properties now living over
L,®rLK = HaeHomL(LmK) K for n» 0 (note that the index set of the product is different
in comparison to Nakamura’s situation). By projecting to the o =id component we
can recover Nakamura’s e(Wiq) and our constant e(Wiq) = (e(Wid,%s(u),dx))s should
be informally thought of as (o(e(Wiq)))s, which is not well-defined as o does not act on
K but only on L,.

The fact that V is semi-stable and L-analytic forces each non-identity component to
be potentially unramified (since they are semi-stable with Hodge-Tate weights 0). If they
are even unramified, all e-constants at non-identity components would be 1 and both
methods give comparable e-constants (more precisely, at o = id they would be the same
up to explicit constants independent of V). If the action on the non-identity components
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is only potentially unramified, we cannot assume that the e-constants at the non-identity
embeddings are 1. In particular these embeddings contribute to the e-constant attached
to V by Nakamura in a way that can not be captured by only considering the identity
embedding.

7.4.2. The de Rham epsilon-isomorphism. For each de Rham (¢,I'1)-module M
over R which arises as a base change of a (¢r,,I')-module My over R for some finite
extension F'/L, and for each generator u of T, we are going to define a trivialization

e (Mo) : 1 = Agc(M) (65)
as product of three terms
et (Mo) :=T(M)-©(M) - Oar,u(Mo)
where
O(M): 15 Ak 1 (M)dk (Dar(M)),
Our.u(Mp): d (Dar(M)) = Ak o(M),
'(M)e K*.

To keep notation light and consistent with the previous subsection we will, without loss
of generality, restrict ourselves to the case L = F. Firstly, we define I'(M), which depends
only on the Hodge—Tate weights of M. For r € Z let

77,(7“) = dimg gI‘_r DdR(M),

so n(r) is the multiplicity of r as a Hodge-Tate weight of M. We adopt the convention in
this paper that the Hodge-Tate weight of the cyclotomic character is 1. We define

(r=1)! ifr>0,
I*(r) = {(w <
W 1 7’\0,

the leading coefficient of the Taylor series of I'(s) at s =r. Then we set

D(M) =] [(T*(r))~").22

reZ

Secondly, ©(M) is obtained by applying the determinant functor to the following exact

sequence
0— H2,3n (M)FL - Dcris(M) - Dcris(M) Dlm H;;,:’)n (M)FL -
- Dcris(M)* ®DdR(M)O - Dcris(M)* e Hijn (M)FL —0, (66)

which arises from joining the bottom exact sequence of (46) with the dual of the same
sequence applied to M by local duality (—,—)ys in 5.18 and using Remark 5.13, upon

221% (k) in [36] has been replaced by QFT* (k) in our setting
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(i) using the tautological exact sequence 0 —= D g (M)? ——— D g (M) —

tpr —> 0 as well as de Rham duality in the form

DdR(M)O = t;k\]’ €T {g — [y7x]dR,]\~l}a
and
(ii) identifying each time the two instances of D (M)* and D
by the identity.

M), respectively,

cris( cris(

Thirdly - here comes the reason why we use a model My - Ogpr (M) := f]\_li,u is
defined by the analogue of [36, Lem. 3.4] which - using Remark 7.11 and (64) - induces
an isomorphism fas, . : Ag.2(M) => dg(Dyg(M)) from the map (taking into account
Remark 3.21)

Lk (M) = Dy, (detr, M) = Kn((t17))®, oo (et M)™ (67)

T (é(MO,u)_1 . %) ®p"(x)

tor
for sufficiently large n such that the equivariant constant £(W (Mp),u,dx) from Definition
7.10 liesin L, ® K = K,,((tz1)), where hjs denotes the Hodge-Tate weight of det M. One
easily checks independence of the choice of a model My - the reason why we use My in
the notation is to indicate that we need a model to define these objects. Note that (67)
depends on u in two ways. On the one hand via € and on the other hand due to the
explicit appearance of t;,7 which, as pointed out in 3.11, depends on the choice of u. An
analogous computation to [36, Remark 3.5] shows that fus, qu = 5detvaK M(a)*lfMoyu for
a€o;y.

Proposition 7.14 (Properties (ii) and (iv) for e7%, (Mp)).

(i) For any exact sequence 0 —= M, M> M3 —= 0, we have

ef (My0) = €17, (My,0) @7, (Ms,0)
under the canonical isomorphism Ax(Mz) = Ag (M) @ Ak (Ms).

(ii) The following diagram of isomorphisms commutes

Ak (M) ——— Ag(M)*® (K (ra),0)

Eil,%u(Mo)T
(_1)dimK HO(IW)erM can
1K ]-K@]-Ka

where h(x") : (K(x"),0) > 1x sends e, to 1.

lfii(l\?o)*(@h(x’“)

Proof. Analogous to [36, Lem. 3.7], but with some differences. Due to the period € in
the definition of I'(M) we now obtain

D(M)T(M) = Q"M (—1)hntdimectar (68)
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instead of (27) in (loc. cit.). By definition, the second part of the long exact sequence
(66) for M is given by the commutativity of the following diagram with exact rows

0 —— HY(M)/H*(M)j —— D_;.(M)* @D 45 (M)° —— D_,; . (M)* —— H;BH(M) —=0

F;f(M)i J/ l F%A‘mi
(eXP/',M @EXPM)*

00— H'(M)¥ ———— D, (M)* Dt} D_. (M)* — H'(M)* ———= 0

(69)

cris(

where we have identified M = M and abbreviated Hi% 5 (N)I'* by H'(N). Moreover, the
maps F}f(]\;[), F2(M) and similarly F }(M) : H' (M) — (H*(M)/H"(M))* are induced

from the complex isomorphism K, 3(M) = K, 3(M)*[—2] from (24). Taking duals gives
the following commutative diagram with exact rows

0 expy v @expy 1
0 H®(M) Dy (M) ————— D s (M) Dtnm HY (M) 0

F%M)*i l \L r;f(M)*i

0 —— H*(M)* —— D_,;.(M) — D_,;,(M) DD 45 (M)°)* —— (H"(M)/H"(M)5)* — 0
(70)

cris(

Upon noting that f2(M)* = f °(M) while f *(M)* = —f (M), whence also F}f(M)* =
—-F }(M ), we obtain the modified commutative diagram with exact rows

o exp; a D expyy 1
0 HY (M) Dy (M) ———— D s (M) Dtnm HY (M) 0

F“(M)i idl id@canl F}(M)i

0 ——> HA(M)* —— D1, (M) ——> D1, (M) @(Dyyyy (M)°)* —— (H' (¥1)/H" (§1) 1)* ——0
(71)

eris(

Combining this diagram with the analogue of diagram (69) for M instead of M we obtain
the commutative diagram

OMm

1k A 1(M)®@dk (Dyg(M)) (72)

(—1)dim ¢ +dimge HO(JLI)\L iF(M)@can

o* ~ ~
1x <JAK71(M)*®dK(DdR(M))*

Finally, one has the commutative diagram

e (D gy (M) —— 2= ) Ase»(M) (73)

(=1)hn cani

- Oar,u(Mo)*@h(x"M)  ~
dx(Dar(M))* @1k iLXAKJ(M)* ® (K (x™),0),
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because of Remark 7.13 and since changing u to —u requires the change t;r to —tpr
(compare with [36, Rem. 3.5] which applies analogously here) in the definition of fa,, v
above. Then (ii) follows from (68),(72) and (73) while the proof of (i) is literally the same
as in (loc. cit.). 0

Remark 7.15. As in [36, Rem. 3.5] one shows property (iii) for defzu(Mo) using
Remark 7.11:

E%ﬁzu(MO) = 5det7zK (M) (a)g%{%u (MO)

for all a € o .

8. Epsilon-isomorphisms for (Lubin-Tate deformations of) rank one modules

In order to construct the Epsilon-isomorphism for rank one modules M in 9M**(K) we
shall construct it on the level of the deformation Dfm(M) of M (introduced in §4.2)
and descend the results to M. As this deformation lives over the character variety Xr,
(base changed to K) of the locally L-analytic group I'z,, we can use density arguments to
deduce many of its properties just from its de Rham points.

Definition 8.1. Using that the complexes Cy, := Ky p(r,,x)(Dfm,(M)) are perfect by
Theorem 4.6 (1) we can apply our definition

Ay x, (Dfm,(M)) :=dp,, ,.x)(Kv,pr,, k) (Dfm, (M))),

which defines a (graded) line-bundle on X, by (2) of the same theorem, with global
sections

n

Auzp, (DEm(M)) =lim A, x, (Dfm,, (M)).

n

From the proof of Theorem 4.10 we know that for the derived limit C'* and for every n,
L o L .
Ox,, (Xn)®om xr,) " =0

in D(Ox;., (X»)). Hence, by Definition 7.4, Remark 7.5 and again Theorem 4.10 together
with Remark 4.11 we obtain

Al,er (Dfm(M)) = dD(FL7K)(RF\II7D(FL7K) (Xr,,Dfm(M))) = dD(FL7K) (T (M)).
(74)
Furthermore,

ACE (Dfm(M)) = lim Az x, (Dfm,,(M)) = @1((9%% (Xn),1) =(D(Tr,K),1). (75)

n n

We survey some preliminary results that allow us to construct an isomorphism
Az xp, (Dfm(M)) = dpr,, ) (Tp(M)) ™"

Let 6 € $4,,. Using (R (6))Y=Y = (R},)¥=°(6) combined with Lemma 4.19 and since
©(es) differs from es only by a scalar in K, we can take n(1,7)es as a D(I', K)-basis
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of (R}.(6))¥=°, which gives rise to the Mellin isomorphism
M5 :D(Lr, K) = (R (8))Y =0 A= An(1,Z)es). (76)

It turns out that for technical reasons (more precisely, in order to obtain the
commutative diagram (99) below), we have to renormalize the Mellin isomorphism by
inserting the operator o_; € I'y, with ypr(o_1) =—1:

Msoo_1: DT, K) = (REG)Y 2N = Ao_1(n(1,2)es)). (77)
Remark 8.2.

(i) The complexes Ty (LA(or)(x 10)) = Te(Rr(0)/Rx(6)"), Tu(Rk(5)) and
Tu(R%(8)), are all perfect complexes of D(I'r,K)-modules. Indeed, by Lemma
4.20, the cohomology groups of Ty (LA(or)(x~18)) are finite-dimensional K-vector
spaces, whence perfect as D(I'r, K )-modules by [51, Lem. 3.7] (with r = 0 and using
the Fourier-isomorphism). Then [48, Tag 066U] implies that Ty (LA(oL)(x19))
belongs to DY (D(I'z,K)). Since Ty(Rx(6)) is in DY ((D(I'r,K)) by Theorem
4.9, so is Tg(R}(8)) as the third complex in an obvious exact triangle with the
previous ones. The same holds for 7y (Dn(8)) and Ty (R} (6)/Dn(4)) for similar
reasons.

(ii) Since over affinoids A the analogous conclusion of [51, Lem. 3.7] - ie., that a
D(T'1,A)-module, which is finitely generated as an A-module, is perfect - is not
available, we are not sure whether the construction below also carries over to
families directly. It certainly does, if R4(d) € M*™(A) satisfies the conditions of
Remark 4.23.

Lemma 8.3. Let § € Xy, and let M = Rk (9) be the associated (¢r,,I'1)-module of rank
one. We denote by M the submodule R}(d) We have the following isomorphisms in

Po(ry, k)
(1) dp,,x)(Te(M)) =dpr,, k) (Te(M™)) induced by the canonical inclusion M+ <
M and the trivialisation of dpr, i) (Te(M/M™)) from Lemma 4.20.

(ii) dpr,. ) (T (M) = dpr,. 0 ([M*T 2> M*)) induced by (1 - pr,id) and the
trivialization of dpr,, k)(Te(Dn())).

(iil) (D(T'z,K),1) = (dpr,,x)[M™* LR M)t induced by identifying ker(W¥) with
DT, K) via Msoo_1.

Chaining these together gives an isomorphism dpr, x)(Te(M))™" = (D(I'1,K)(6),1).

Proof. The first statement follows since the short exact sequence 0 —» M* — M —
M/M™* — 0 induces a short exact sequence of complexes. For the second statement we
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use that by [22, Lem. 5.1] we have a commutative diagram with exact rows

0 —— (Rf(6)¥=! —= R{(6) ——> R (6) —0

l—go\LN l—galN

- N4
0 ——= Ry ()" —— Ry () —= Ry (6) —=0,

which induces a quasi-isomorphism between the complexes, if §(7,) # Wzi for all 7e N.

Otherwise, kernel and cokernel of R (8) 1%, R} (0) are isomorphic to Kt¢ , and can be
trivialized by each other when taking determinants (formally this is achieved by replacing
R3.(8) by R%(6)/Dn(5) and then trivializing the determinant of Ty (Dx(5)) as in [36,
(40),(44) in §4.1]). For the third statement we first remark that the complex M™ =
M (concentrated in degrees 1,2) is cohomologically perfect by Lemma 4.19 - using
(R1(8))¥=0 = (R)¥=%)(8) - because on the one hand ¥ is surjective and on the other

hand its kernel is free over D(I'y,,K) by (77). Therefore the determinant of M LN Vs
is equal to (D(I'p,K),1)7L. O

From Lemma 8.3 we obtain finally an isomorphism (cf. [36, Def. 4.1])
O(8) : dpr,, k) (Te(Ri(8))) " =dp(r,, x)(D(TL,K)) = Ag x,., (Dfm(Rk(9)))
which in turn induces an isomorphism over K
ED(FL,K),U(Dfm(RK(5)) : 1D(FL,K) o dD(FL,K)(T\I'(RK(5)))dD(FL,K)(T\II(RK(5)))_1
id®O(s
290, d e, ) (Te(Ric (8))) Az x,, (DEM(R(6))
= Ax,, (DEM(Rx(9))). (78)

Note that the map (77) depends implicitly on w. If we consider instead of R the
isomorphic subring R, (Z,) of Ry, as pointed out in Remark 3.11, then for a = xr7(7,) €
of we have Z,, = [a](Z,) and thus we get a commutative diagram

D(T1,K) —22 (R () V=0 (79)

5l J{é(a)l‘

Indeed, we have
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Concerning the descent, we have to distinguish the following two ways.

Remark 8.4. Let § : 'y, — K* be an L-analytic character. Mapping a Dirac distribution
~ to §(y)es induces a surjection of D(I'y, K)-modules

ps: D(FL,K) d Ke(;.

Alternatively we may equip D(I'r,K) with the I'z-action yn = [y~!]n, denoting the
resulting I'z-module by D(T'z,K)‘, and map v to 6(y~!)es to obtain a surjection of
D(T',K)-modules

f§ : D(FL,K)L - Ke5.

Proof. Since ¢ is analytic K(d) = Kes comes equipped with a D(I'z,, K')-module structure
extending the K[I'z]-module structure. The map ps is surjective because 1 is mapped
to a K-basis es and D(I'y,K)-linear by construction. The second statement follows
analogously since the inverted action is also L-analytic. O

Now, for the descent we observe that, if f5, : D(I't,K) — K arises from a character
do 0] € L* — K* interpreted as character of I'z,, we have the following:

Lemma 8.5. The isomorphism (74) induces the canonical isomorphism
SPs, - A:{FL (Dfm(RK(é))) ®D(I‘L,K),f50 K~ AK(RK((S(S()))

taking the normalisation from Remark .11 into account, compare with [36, (34), p. 370].

Proof. We show this isomorphism for each part of A separately:

Ay xp, (DIM(M))®p(r,, 1), 5, K = dicr, o) (Ty(M(d0)) @

w(M(60)) ®p(v) K) ®x(r,/v) K
£,3(M(00))) ®xr, v K
1,3(M(60))) @k r, ju) K = A1,k (M(d0))

) ®b 1, 1) POL/U)) @epr, o K
= dieir, jv)(Ty ))®h
=~ dgr, v](Kv

1Ky

=dgr, /U]

and
Az xp, (DIM(M))@p(ry, k), 15, K = Do,k (M) @k D(I'L, K)®p(ry, i), 15, K (81)
= Ag k(M (do)) = (Kess,, 1)
using Remark 7.2. O

With these preparations we are now able to state the main result of this article.

Theorem 8.6 (Local e-conjecture for Lubin-Tate deformations of rank one modules).
Let F'/L be a finite subextension of K and M be a rank one analytic (¢r,,T'1)-module over
R and denote by My the completed base change M®r K. Then the isomorphism

enry, K),u(DfM(Mg)) : 1pr, k) — Az, (Dfm(M))
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induces for every L-analytic character ¢ : 'y — F* with finite intermediate extension
F'© F € K such that Mk () is de Rham the following commutative diagram

1p(r,, 5) ®p(ry. k), gy K ————— 1k (82)
ED(FL’K)’u(Dfm(MK))®idKl J/s%’?u (Re(59))
sp
Axl"L (Dfm(MK)) ®D(FL7K)7f19 K — AK(MK (19))7

where the notation fy has been defined in Remark 8.4 and the specialisation isomorphism
spy is explained in Lemma 8.5 above. Moreover, epr, k).(Dfm(My)) is uniquely
determined by this property.

The uniqueness follows from the considerations in Appendix A while the specialisation
property will be proved in subsection 8.4 below.

Note that the isomorphism epr, x)(Dfm(Rx(5)) does not literally fit into Conjec-
ture 7.6, because D(I'z,,K) is not an affinoid algebra over K. But for any morphism of
rigid analytic spaces f: Sp(A4) — Xr with an affinoid algebra A (e.g. D,,) over K it induces
the isomorphism

e A(*DEN(Ric(6))(Sp(A)) 1= e, 10 (DIM(Ric () @p(r, 1) A):
145 AA(f*Dim(R (5))(Sp(A))

which provides instances of the conjectured type. Note that for the inclusion f: Sp(D,,) —
Xr we obtain

" DIm(R (6))(Sp(Dn)) = Dfm,, (R ().

8.1. Property (v)

Specialization to the case considered by Nakamura requires some special care, because
we used a different definition of e-constants. As discussed in 7.7 the assumption that K
contains L can be dropped since Lo, contains the p-power roots of unity. We can thus
even assume K = Q,, in the construction of the de Rham e-constants. Similarly we can
take 2 = 1 and hence do not need any special assumptions on K in order to make use of
p-adic Fourier theory.

Proposition 8.7. Assume L = Q,, assume 7y, = p. take u, = (pn —1 for a compatible
system of p-power roots of unity and choose a y € I'g,, which is a topological generator of
the torsion-free part, such that logg(Xeyc(v)) = 1, and take Qq, = 1. Then, if one assumes
K = Q,, our construction agrees with the one in [36].

Proof. Note that by a density argument and by property (vi) it suffices to see that the
constructions in the de Rham case coincide. The condition of L-analyticity is automatic,
if L = Qp. We remark that the complex K¢, 5(—) considered by us specialises to a variant
of the usual Herr-complex as we can take 3 = — 1, but there is a small difference to [36,
Definition 2.10]. The order of ¢ —1 and v —1 is exchanged (which poses no problem),
Nakamura uses a topological generator vy, of I'/A, with A = T'p_power-torsion While we
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use a generator of the free part. In the case p = 2 the terms of Nakamura’s complex are
M?A. In this case our choice of v is a valid choice for the variant in (loc.cit.) while in the
case p # 2 we can arrange that 'yﬁ,_al = . In both cases the torsion subgroup A’ € T'is a
split subgroup and taking A’-invariants is exact in characteristic 0. Let U = @ cT'. For
p =2 we have A = A’ and plugging in the isomorphism M* =~ M /A and A =T /U we
see that our Q, ®q,[a] Ky, 3(M) is canonically isomorphic to the complex considered in
(loc.cit.). For p # 2 we can consider instead the natural map of complexes

[M 2L ar) — [M 225 M

given by m — p%l > gear g in both degrees, which induces a quasi-isomorphism onto the
A’-(co)invariants of the right-hand side and induces a corresponding quasi-isomorphism
of the Herr-complexes by taking ¢ — 1-cones. We can thus conclude that the fundamental
lines are canonically isomorphic to the ones considered by Nakamura. Similarly the
exponential maps are the same. Because 7y, = p = ¢ we see that the character x is just
Xeye and the duality pairing (—,—); from section 4.3 is the pairing used by Nakamura.
In (66) we use {—,—)p; which by the same reasoning corresponds to the pairing used by
Nakamura, namely the duality pairing for My = M. The assumptions on v and Q avoid
the problem discussed in 7.7 (ii) concerning normalisation factors and the appearance of
Q in the I'-factor. Finally, the series 1(1,2) is just 1+ Z and we can view (1, (u, ®1))
appearing in the construction of the equivariant e-constants as an element of Lo, in fact
we have 7(1,u, ®1) = (p» under the isomorphism Ly ®q, Qp = L. Combining all of the
above shows that our e-constants constructed in the de Rham case agree with those in
Nakamura’s work. O

8.2. Property (i)

For all f: A— A’ such that we are able to construct the e-isomorphism as above for
A and A’, the base change property (i) with respect to f: A — A’ obviously holds by
construction.

8.3. Property (iii)

We can rephrase the diagram (79) to the following commutative diagram for any a € oy

DT, K)(8) 25 (R (5)) 40,
[a_l]l id
Ms,w i

DT, K)(6) — (R (6))* "

where [a] acts on D(I'z,K)(8) as 67" -d(a) (here d,, denotes the dirac distribution
attached to v, € I'r, with xr7(7.) = a). Note that the action on N :=Dfm(Rk(d)) with
respect to the basis 1®es is given precisely by the character 6: I'y, — D(I'z, K)*;v
(6,)7 1 (xrr(v)) and hence property (iii) follows from the above diagram by specialising
along D(I'r,, K)(6) — K (9).
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8.4. Descent

For § € ¥,,(F) with F a finite extension of L, we consider the decomposition ¢ = §""dy
as in section 3.4 and define on the basis of (78)

EK’M(R((S-)) : 1[( i AK(R((5>)

as €p(r,,K) (Dfrn(RK((Sun))®D(FL’K)J5O K) followed by the isomorphism from Lemma
8.5. In order to make this definition more explicit we have to understand the isomorphism
O(8) :=O(8"") ®p(ry, K), 5, L+ which we will consider as an isomorphism

i gyt
dipr, ) (Hy, 3(Rx(0))T ®@kr, v K = (Kes, 1)

X

O(9) :

=0

by using (81) and the inverse of the natural isomorphism

dpr..x)(Ty(Re(9))) ®D(rL, K), f5, K = dir, v (Kw,,3(M(00))) ®xr, o) K
2 .
= ®dK[FL/U](HfIJL,3(RK(5)))(_1) ®rr v K
i=0

induced from (80) using properties of the determinant functor from section 7.1.
From the exact sequences (29), (31), (32) we derive the following exact sequences and

isomorphisms:
0 —Hy 3(R%(8)) — Hy 3(Ri(8)) — Hy 3(LA(or)(x™'0)) — (83)
H3(Hy(R%(9))) — H3(Hy(Rk(9))) — H3(Hg (LA(or)(x19))) — 0,
Hj, 5(R%(0)) = H3(Hy (R () =0 (84)
Hy 5(R%(8)) = H3(Hy (R (9))) = R(6)"~"/Z, (85)
H3(Hy (R (6))) = H3(Hy (LA(or)(x™'9))) (86)
Hj, 5(Ri(9)) = Hy, 5(LA(or)(x™9)), (87)

0 — H3(Hy(Ri(0))) — Hy 3(Rk (0)) — H(Hy(Rk(d))) —0.  (88)

For the descent it is useful to recall that the determinant functor d» commutes with
taking the derived tensor product —®H[“)(FL) K, fs K. E.g. the additivity on short exact
sequences above turns into the additivity on t(ile associated long exact sequences of
cohomology groups below. Finally, the determinant functor commutes with attached
spectral sequences by [55].

8.5. Verification of the conditions (iv), (vi).

In this subsection, we prove the condition (iv) using density arguments in the process of
verifying the condition (vi). Indeed, it suffices to prove (vi) as the duality statement for
de Rham characters was shown in 7.14 and by Zariski density of the de Rham characters
(see Corollary A.4) the validity of property (iv) holds in general once we establish (vi),
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i.e., the interpolation property in the de Rham case. We follow the strategy of Nakamura
and consider first a generic L-analytic de Rham character of weight k. The case k < 0 boils
down to Proposition 8.11. The case k > 1 is treated in Proposition 8.14. The remaining
so-called exceptional case is treated in Section 8.5.3.

8.5.1. Twisting. We define the operator 0: Rg — Ry, f — logl’LT 4 = dtdfT, and the

residuum map Res: Rx — K, f > res(fdtrr) with res(Y,, ,a;Z'dZ) = a_,. Extending
theses maps coeflicientwise, i.e., applying it to f in fes and using [22, Lem. 2.11, 2.12]
we obtain an exact sequence23

0— K(§) — Ry (6) — 2> R (26) — > K (5|z|~1) — 0. (89)

It is well-known that the partial operator 0: Rx — R is related to twisting, see e.g.
[46, §4.3.9]:%4

DT, K) —2 s (R )10 (90)

0

Q=

Twxp Nl
m + 1\ =0
D'y, K) — (Ry)*+=".

Here, for a locally L-analytic character p: 'y, — K* we denote by
Tw,: D(G,K) = D(G,K) ,

the isomorphism which on Dirac distributions satisfies T'w,(d4) = p(g)dg-
Using for dp(r,, k) Tw (K (8')), o' = §,0|x| 71, the trivialization by identity, the operator
0 induces via the above exact sequence the isomorphism

01 Ay x, (DIM(R(0))) = Arx,, (DFM(Ri (25))),
which also descends to an isomorphism
0: ALk (Ri(8)) = Ay k(R (26)).
Moreover, we have isomorphisms
0: N %, (DEM(Ri(6))) = Ao xp, (DFM(R i (5))),
and
0: Mo i (Ri(0)) = Ag k (Ri (20)).
by sending fes to _ﬁl feszs. Altogether we obtain an isomorphism

0: Ax,, (DEM(Ri(6))) = Az, (Dfm(Ri (29))),

23This sequence already exists over L instead of K!
24Here Q is required!
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which also descends to an isomorphism
0: A (Rk(8)) = Ax (R (xd)).
Using diagram (90) and the definition of ep(r, k) (Dfm(R g (6)) and ez (Rx(J)) respec-

tively, we conclude the following

Proposition 8.8. If 6 # 1,|z|, then there are canonical equalities
doep(r,, x)(DIM(Rk(5)) = ep(r,, k) (DIM(R i (26)) and doer(Rk () = eL(Rk (z6)).

Proof. Since the second statement follows by descent from the first one, we only have to
consider the case of the deformation following the construction in Lemma 8.3 step by step.
Regarding 8.3(i) we observe that the operator 0 restricts to an operator R ;. (§) — R (z6)
while it induces the operator LA(or)(x 16) — LA(OL)(Xilx(s),gbeX—lg = Qroe, 1,4,
which can easily be derived from Remark 3.12 (v) combined with the exactness of (89).
The compatibility with 1 — ¢, in 8.3(ii) is a consequence of Remark 3.12 (i). Finally,
the compatibility of ¢ with Msoo_; in 8.3(iii) follows from diagram (90) together with
the o_1 in the definition of (77) using 3.12 (ii). Combining both yields the factor —2
which cancels against the factor in the definition of Ja,. One can check that the twisting
construction is compatible with the various trivializations involved. O

Proposition 8.9. Let 6 € X"(F) with F/L finite such that Rp(0) is a de Rham (¢,I'1)-
module with Hodge-Tate weight different form zero. Then we have the equality

doetl, (Rp(6)) = eil', (Rr (24)).

Proof. The proof is analogous to that of [36, 4.14] upon noting that I'*(k) has to be
replaced by QFT* (k). O

Since €4 and ¢ are compatible with respect to ¢ by the above propositions, it can be

used to transport the validity of the Conjecture between characters dz and 0.

8.5.2. Generic case. This subsection has been inspired by [36, 4B1] and [54]. In this
subsection U =T',, and 3 = 3,, for an appropriate sufficiently large n » 0, which might be
adapted to the specific situation. This is possible because due to our normalisations the
constructions and the factorization of the descent over K[I'y/T',] are independent of n,
see Lemma 8.5, (80), Definition 5.11 and Remark 4.11.

Lemma 8.10. For 6 € Xyc,(F) we have
Hy 3(LA(or)(x™19)) = Hy 3(Pol<n(or))= Hy, 3(Dn(8)) =0, (91)
H3(Hy(LA(or)(x™'9))) = H3(Hy(LA(or)(x14))) =0
for all i and N =0, and
Hy 5(R%(8)) = Hy 3(Rk(8)) =0 (92)
fori#1, and
Hy 3(R(0)) = H3(Hy (R%(5))) = Hy 3(Rk (). (93)
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Proof. The first claim follows from (34),(36) and Lemma 4.20. The second follows from
Lemma 4.5 (combined with Remark 4.21) and 4.22 (there for I'j, instead of U, but applying
the result to all twists by characters of the finite group I';, /U also implies the statement
concerning U) combined with (83) and (84). The last assertion follows from the previous
ones combined with (88),(86),(85). O

By construction according to Lemma 8.3 and using Lemma 8.10 we see that ©(J) arises -
upon taking determinants and descending further by —®Hf<[FL 0] K - by the composite of

(i) (the inverse of) the isomorphism H}(HY (R} (6))) = H&,J(RK((?)) together with
the trivializations of dpr, ) (Tw(LA(or)(x™ 1)) and dpr,, k) (Te(Pol<n(oL)
(x~19))),

(i) H3(HY(RE(9))) = H3(R{(6)"=) induced by 1—¢, together with the triviali-
sation of kernel and cokernel of R} () LN R} () - each isomorphic to Kt} 5 -
respectively with the trivialization of dpr, x)(Tw(Dn(5))) and

(i) H(RF (6)V=0) £ (R (5)¥=0)y = D(I'1,K)p = K[T/U] up to choosing
basis elements and using the Mellin transform Msoo_;.

Altogether - up to the isomorphism HJ(HY(R%(6))) = H&,73(RK(5)),[x] — [(0,z)] -
this amounts to

HY(HY(R}:(0) —5 HA(RE(0)"") = D(T,K)ves = K[Tr/Ules.  (94)

For the remainder of the section we assume in addition that § is de Rham. We have to
compare (94) with

*,(n)
PR (o)

HI(HS(RE(6))) = HY, 5(Ric(6)) — D) (R (6)). (95)

By the commutativity of the upper square in the (second) diagram of Lemma 8.12 one
immediately sees that a class [A,e;] is mapped under (94) to prr, (T'ws—1 (Resoz (1)))es
while under (95) to t,,(A,€5)t,—0 = 0 0tn(Ayes) by Definition 5.11 combined with
Lemma 5.10. Recall that § was defined above Definition 3.13. Consider the K[I'y/T,]-
linear map

%1 K[[1/T] = DY (R (9)), (96)

whose p-component, for p running through the characters of Gy, :=T'r,/T',,, is given as the
K-linear map

n — _ ].
5 K = Ke = ¢, D (Ric(6) = Dan(Ric (9 )1 €p™ ) o—esr, (97)
LT

upon noting that Dyr(Rk (")) = (Lo ®L Kﬁey)m. Here ¢, := ﬁdeGn plgY)ge
K|[Gy] denotes the idempotent attached to p satisfying ge, = p(g)¢e, for all g € G,,, while
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for an analytic character ¢’ : L* — (F')* (of weight k < 0) we set
(- { E(Ri (8),u) ", if a(6") # 0;

€y = (98)

(—k)! | detll—a'¢ Dens(Ric ()

det(l_‘P‘DcriS(RK(‘s/))) ’
in L, ® K. Unravelling the definition of 5%7 and using Proposition 5.16 one easily sees
that part (vi) of Conjecture 7.6 is equivalent, for k£ <0, to the next

otherwise

Proposition 8.11 (Explicit reciprocity formula). Let 6 = 6;.x* be de Rham. For k <0,
the following diagram is commutative:*"

1—¢p Msoo_q
(R (0¥~ —— (R (6)"™° DT, K)

112

2—~[(0,Cr,(3n) " 1a)] Py

Crp(3n) tin

can > n =
HY 5 (Ri(8)) —"— HY (Daiy) <—— HY (Daif) = D3} = L, ®L Dar <—— K[I'L/U],

) (n) ~
k 9751((5) j

exp (1)

(99)
i.e., a class [A,es]e HY (HG (R (5)))FL ~H} V.3, (RK(é))FL, is mapped under exp* to

¢(5)p5—1(u)) j 5(a

€s.
1k
tLT

The left hand triangle in (99) is induced by the commutative diagrams

RE f& —"> Daif(Ri(9)) = Koo ((trr))es (100)
Ry (6) & Ka((tor))es
and
(RE(6)Y=Y /30— Dais(Ri (9))/3n (101)

zi |

Hy 5, (Ric(8) —=% Hj, (Dais (R (9)).
The middle triangle is commutative by Lemma 5.10 upon recalling that

Cg (Sn)CTr (Sn) = qiil

25The factor Cy(3,) " in the left vertical map takes (21), i.e., (iii) above into account.
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by (20), while the commutativity of the right upper triangle of diagram (99) follows for
k =0 from the (lower rectangle of the) following lemma (applied to each p-component)
which explains how e-constants show up naturally in the descent procedure (cf. with
[2, Lem. 4.9/Cor. 4.10] and [36, Prop. 4.11] in the cyclotomic situation):

Lemma 8.12. Let § be a locally constant character. Then the following diagram is

commutative:2°
Res x (—)es
(D(or,K)es)¥=1 L D('1,K)es
A(_)eél m(_)eai: ST
l1—p)or=1— Msoo_;
(R (8)7=1 Qeprmie (RE@)¥=0 <72 "p(r,,K)
(;:1 [LWI:L]TrKn/KOGOL,,l ipl()
¢(d)es
HO(T'L,Ln®r Kes) (es K.

Proof. The commutativity of the upper rectangle in this diagram is an immediate
consequence of Lemma 4.19, that of the triangle is immediate from the definitions, while
that for the lower part is obviously equivalent to the commutativity of the outer diagram

Res x(—)es
°L

(D(or,K)es)¥=1 D(T'p,K)es
H[LnltL]TrK"/KOGOLn(A()e[;)i J(pé_l(_)eé
§(—1)e(s)
Ln@L Ke§ Ke57

where ps(p) := §_x 6(z)p(x) denotes the evaluation at a character 6. In order to check
L
this, assume p # 2 (the case p = 2 can be dealt with similarly as in the proof of [36, Pro.
4.11]) and first assume that n :=a(d) = 1. Then we have
Tri,/k 000in(Aues) = 2 oi (Botn(Apes))
ie(op/mp) >
= Z Ti (L"(Aﬂe5)\tLT=0)
ie(or /7] )*
= Z 0i (Au(un®1)p "(e5)) in Ln®Kes

i€(or /7] )%

=( 3 é(i)AH(mT(un)le))

i€(op /w1 )* T

(e X 0] sworwuw) e

ie(or /m) X T

(e X a0 (] atwirn) )

ie(or/mL)* T

¢ "(es) in HKQ;

26Here, the notation of a map f(—)es means that des or d is sent to f(d)es.
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1 . ..
B (W PIIONDY ww(un))f u(w)) es
L i€(or, /7P )* j€or /m} j+mtor .
JEOL/WLZG(OL/W")X j+mlor -
( 1 o
- (W Y Y somtire)| ,u(;c)) o
je(op/m)* ie(or /nT)* j+mPor -
e > o w) | M(@) o
JG(OL/WZ)XZ’E(OL/WL)X Jj+mior -

e (( . )X5(i)n(i,7(un))>_ ) 5(3‘_1)L+WEOLM(1:))T65

je(op/mp)*

q nu) e (L,K (6~ z/)m,d:c f o(x ( )) es

T

qa(é)eK L6~ \—\ Y(x m,dw)péq(Resozu)) €s

T

(5t
(50
(o
(q‘”“”“ K(5~")tsudw)ps1 (Res, w)) es
-
(it

5(—1) @ nbe)
ex( L 3,2, dx) pg—l(ReSOZ/,L)>T95

In the two last equalities we used (61) and (62). Moreover, the equation (%) requires part

(i) of the next lemma. Finally, by Remark 6.2 we have n(y,,) = 0, whence the result in this

case as [K,, : K] =¢"~1(¢—1) upon comparing with (98), Example 7.9 and Definition 7.10.
Now we consider the case a(§) = 0 and obtain

Trg, kofou(Aues) = D, oi(Bon(Aues))

Z‘G(OL/TI'L)><

2 g; (Ll(A,U.eé)‘tLT:O)

iE(OL/ﬂ'L)X

= ) s (A (e (es))

iE(OL/TrL)X

= 6(7r XLL z,0;7(u1))p(z) | es

i€(or/mL) -

_ W f (i, (u))p(z) | es

ze(oL/TrL)>< -

1
o, 2 T e ] ) e

i€(or/mL)* jeor /7L
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reIDD) i) [ )| e

jEOL/ﬂ'L i€(or/mL)* Jtmror -

()

. ( e <<q—1>LLOLu<ac>—LZ u(x))) -
1

= (@—n%—l) [ ntwres

L

N

5()

=q—— P51 (Res,xp)es,
—d(mr) L

where the fact that 6(i) = 1 for all i € o] by assumption is used in the fourth and last
equality, while part (ii) from the next Lemma is the justification for the equality (x).
The second last equality can be derived from the observation that the condition A ,es €
R (6)=" implies that W(A,) = §(r)A, by the product formula, whence

LLOL wle) = LL W) (@) =o(rr) LL p(x) = d(m) (LX () + LLOL u(x)) :

L
It follows that §_  pu(x)= ) O

LOL 1— 5(71'[,)

Lemma 8.13. Assuming n = a(d) =1 we have for all j € or,/7}
(1) Z?,E(OL/T( v ) X 5(2)77(2‘7,,”71) =0 if'/TL|j;

.. .. CI*L ifﬂ-L 7
(i) Die(oy jmpyx NG u1) = { 1J .

1, otherwise.

Proof. If 7, divides j, then n(ji,u;) =1 for all < and both statements (for n = 1) follow by
a character sum argument (Note that the assumption n > 1 asserts that ¢ is not trivial).
Otherwise the claim (ii) follows from the character formula 3}, n(i,u1) =0 while for
(i) we may assume n = 2. We first show

5(i) =0 (102)

i€(op/mE)*,i=r mod j’

for every r € (o /n7)* and every proper divisor j' | 7. By shifting it suffices to consider
r = 1. In this case we are looking at

>80,
i€eH

where H = ker(or/n})* — (or/(j'))*. This character sum can only be different from zero
if ¢ is trivial on the subgroup H, contradicting the minimality of n. Without loss of
generality assume that v, (j) < n, whence 77/j belongs to or. Now let 2 be a system of
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X X

representatives of (or/(7} /7)) inside (or/7})* and rewrite

>, dlmligiun) = 3 | nlirun) s | =0
i€(or/m})* reR i,i=r mod 7wl /j

by (102) applied to j' = 7} /j, using that n(ji,u,) = n(jr,u,) if i =r mod 7} /j. O

Proposition 8.11 for k < 0 we will be reduced to the case k =0 by a twisting argument
based on the previous subsection 8.5.1. Similarly the cases k > 1 of the following
proposition will also be reduced to the case k = 1. But first we have to slightly modify
our notation. Consider the K[I'y/T',]-linear map

3 K[Pp/Tn] = YR (Ric (9)), (103)

whose p-component, for p running through the characters of G,, :=I'y,/T',,, is given as the
K-linear map

/ n — / _ 1
¢, : K = Ke, — ¢,D{Y) (Ric(6)) = Dar(Ri (5p~ 1)), 1 €' (6p~ ") —es,1 (104)

tr
with
é(RK((S/)au)_la if a(d’) # O7
() = Q= 1) det(1—q Lo Dosie (R (5" . (105)
: c(let((i—;D\Dclris(Rf(((g))) ))), otherwise,
in Ln ®L K.

Proposition 8.14 (Explicit reciprocity formula). Let § = §.x* be de Rham. For k > 1,
the following diagram is commutative:

Msoo_1

_ 1— _
(R (6))"=" — = (R{(5)"" D(I'L.K)
@ [(0,Crr(3n) " ta)] T,

exp(™)

Hy 5 (Ric(5)) D (Ric(8)) = L ® Dar (R (6)) <—— K[I'/U],

(106)
i.e., a class [A,es] € HY (HY(RE(6)) = Hy 5. (R (6))F'E, is mapped under exp;zi(é)
0
/ 1 / 1 1
&) (1) e = €(6) [ 6(0) () e
trr o} trr
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Proof. As mentioned earlier - by the twisting technique - we only have to show the case
k=1 (i.e. § = 0x). We will show the commutativity of the following diagram

*,(n)
PR g = Lala))

Hy, 3, (Ric(0) D (Ri(5)) = (Lop @1, Fez)

s a
al laer)tw es

1 PR (8) (n) r
Hg 5 (RK(4)) D (Rk(9)) = (Lo ®r Kes)

on the image of (R} (5))¥=! in H‘},jn(’RK((g)), which together with the diagram (90)
implies the desired formula by comparing the cases k =1 and k = 0. To this end assume

eXp;in()Sﬂmn ([0, fe5]) = ae;

with fe; € (R%(0))Y='. Then it follows from definition 5.11 in combination with
Lemma 5.10 that

Cy(3n) " en(fe)] = [aes] € H3, (D (R (9))
for sufficiently large n > 1, i.e., there exists y, € DL (R (9)) such that
Cy(3n) in(feg) — a5 = 3nyn. (107)

By Remark 4.3 the element V € Lie(T',,) is divisible by 3, in D(I',,K) and the quotient

v 0 log;1(2)
3 corresponds to w7

L2 — 0y(3n) at Z =0 (cf. (51)).

L

under the Fourier-LT-isomorphism, which takes the value

(n)

We wish to apply the W-version of Proposition 5.9 (1) for XDy, (5 With & = % (%eg)
and x = %85, which would tell us that

engl(a)(%eé) =[(¥— 1)%(%05),371% (éeg)]
\Y%
~ 5= (Len). v (L))
- [07a(f)e5]7

whence the claim. Here, for the last equality we used the formula (iv) of Remark 3.12.

V(fie(;) =((V+w _15)f)%e5 = tLTa(f)tieg =d(f)es

trr XL LT LT

noting that Rz (8) = #RK (0),fes— %e& is an isomorphism of (,I's,)-modules and

that the Hodge-Tate weight of W5 vanishes.

Thus it remains to verify the assumption of Proposition 5.9 (1), i.e., t;(Z) —z €
D(Tif,m(,R’K(é)) = tLTD(;ﬁm(RK((S)) for all m = n.
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From (107) and Remark 3.12 (iii) we obtain the equality

Cg(Sn)_lbn( (feg)) = Cy(3n) taes +V(yy) € Cy(3,) ' ae; +tLTD$f’m(RK(5)).

(108)

30

Using that (1 —¢)(fez) = 3,3 for some e Ry (5)¥=" by Lemma 4.4, we conclude for
any m=n+1,

(5 (Fe5)) = s (5. ()
(<1w>%<fe )
i BV ((1- ) fep))

(Snﬁ)) = 1n(V(B)) € trrDy . (R (8))

In particular, we obtain

\Y
(5 (Fes) a5

for any m > n by induction. This finishes the proof. O

(fez)) € trrDis n (Ric(9))

By an analogous density argument (using the results from Appendix A) as in [36, Cor.
4.17] the Propositions 8.11 and 8.14 imply that ex (R (d)) : 1x — Ax (Rx(9)) satisfies
conditions (iii), (iv) of Conjecture 7.6 for any analytic character ¢, i.e., for any rank one
analytic (¢,I'r)-module.

8.5.3. Exceptional case. This subsection has been inspired by [36, 4B2] and [54
§2.5].

By observing that the character x° is dual to x = x|x| with respect to the pairing
in Theorem 4.16 and upon applying compatibility with this duality 7.14 as well as
with twisting according to Propositions 8.8 and 8.9 one easily reduces the verification
of condition (vi) in the ezceptional case, i.e., § being of the form z~% or 2’y = z**!|z| for
i €N (recall 0 € N), to the case of § = x = z|z|.

First we are going to describe ©(4). To this aim note that the natural inclusion Kz° =
Pol<y(or,) — LA(or), which is a splitting of the projection sending ¢ to ¢(0), induces a
quasi-isomorphism

Ky 5(Kz") — Ky 3(LA(or)) (109)

by Lemma 4.20.
The long exact H, p(ry, x)-Sequence attached to (29) together with (84), (109) induces
for dimension reasons (compare with Lemma 4.22 (v)) an isomorphism

g H&/,D(FL,K)(RK(X)) = H&I,D(FL,K) (LA(or)) = H&I,D(FL,K)(KZO) ~ K@ K2,
(110)
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which - induced by the evaluation at 0 of the Colmez transform given by (30) - sends
[fiex. faey] to
(Res(f1(2)grr(2)dZ)2°, Res(f2(Z)grr(Z)dZ)2°) (111)
as well as
az: Hy pr, w0 (Rx(X) = Hy pr, ) (LA(oL)) = Hy pr, g (K2°) = K2°, (112)
which sends [fe,] to
Res(f(Z)grr(2)dZ)2". (113)

Finally, again as part of the long exact Hfl, D(ry, K)-Sequence attached to (29), we have
an isomorphism

ap: (K2° ;)H\(I)J,D(FL,K)(KZO) = H&/,D(FL,K)(LA(OL)) = H\}/,D(FL,K)(R;((X))
= Hpr, k) (Hy (RE(X))). (114)
But note that in contrast to the generic case the canonical map
Hy ey i) (RE0) = Hpr, gy (Hy (R (6))) = Hpr, i) (Hy (R (5)))
- H\}I,D(FL,K) (Rk(9)) (115)

is the zero map, which can be seen by using (83), (88) and counting dimensions. More-
over, we have H\%,D(FL,K) (RE(x)) = H&D(FL,K) (Rr(x)) =0= HE(U)(H,},(R;}((?))) =

H;D(FL’K)(R;}(X))by Lemma 4.22 (v) and (84) as well as Hy i g (LA(or)) =

HY by ey (E2°) = Ka® (cf. (34).
Altogether it follows that the isomorphism

2 1
O(x) : R dir, ) (Hy, 3(Rx(x) " @k, o K = (Key,1)
i=0

coincides with the composite

2
i _qyitl
®dK(H\I/L,D(FL,K)(RK(X)))( b

i=1
2
a i qyitl
_)®dK(H\I/L,D(FL,K)(KxO))( Y ®dx (Hpr,, 1) (Hy (RE(X))))

i=0

P89, A (Hb 10 (HY(RE () 2 (Key,1), (116)

where « is induced by «;, for i = 0,1,2, and  is the canonical isomorphism

2

i )i+l
®dK(HfoL,D(FL,K)(KxO))( RAES P (117)
i=0

which stems from the base change of the trivialisation of dpr, x)(Tw(LA(or))) from (i)
of Lemma 8.3. Finally, g is induced from (94), i.e., by
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(i) H3(Hy(Ri(x)) = H3 (R (x)"~°) induced by 1—¢, and

(i) HY(Rc(0)* ") S22
0'71)_1 .

Consider the basis fo := 2% (f1.1:= (2°,0), f1.2:= (0,2°)) and fp = 20 of Hg,’D(FL’K)(KxO),
H&,’D(FL’K) (K2°) and H\%’D(FL’K)(K@‘O), respectively. Then, analogously to [36, Lem.
4.19] one easily checks that

(RE(0)"=°)y = D(I't,K)y = K[I'L/Uley using (M, o

BUE®(frin fi2)®fF) =1. (118)

where f;" denotes the dual basis of f; for i = 0,2. So it remains to study the effect of o.
In order to calculate the effect of g consider the Coleman power series g := gb(u)’u(T)27
in the notation of [45, Theorem 2.2], where we consider

t(u) = (up, moduy),€ liLMLn/UlOLn ~ lim o,
n n, Norm

as an element of mn L, the group of units of the corresponding field of norms Ej, (cf.
(30, Lem. 1.4]).

Remark 8.15. The element %

Y=TL
q

(i) belongs to Ry and
(ii) satisfies Res(%gdtLT) =1

7L
v q

Proof. By the last sentence of section 2 of [45] the term %g belongs to R . By the
explicit reciprocity law Prop. 6.3 in (loc. cit.) we obtain®®

Res(%dtLT) = Res(%) = é’w(l)(recEL(L(u))_l) =1. (119)

Indeed, under the reciprocity map recg, the inverse of the uniformiser ¢(u) is sent to the
Frobenius (lift) ¢4 of A, whence the cocycle 0,(1), which is given by sending h € H to
ha —a for some a € A with ¢4(a) —a =1, sends recg, (¢(u)) to 1 tautologically. O

The following Lemma should be compared to [36, Lem. 4.20] and [54, Lem. 2.9].

2"For L = Q7 =p odd and LT = G one has 9(Z) =Z as N(Z) = Z in that case. We
do not know whether [[, ., (a+r7 2Z) = (=1)"2®)(Z) holds in general? If so, this would

have simplified the proof of [45, Lem. 2.5]. Moreover, it would simplify the argument here
considerably as the use of the reciprocity law is quite a heavy argument. The statement
is true in the case that ¢(Z) is a monic polynomial by the following argument, which was
explained to us by Laurent Berger: Observe that the monic degree ¢ polynomial h(T) :=
©(T) —¢(Z) € Quot(oc, [Z])[T] vanishes precisely at the a+rr Z,a € LTi and hence h(T) =
[[(T—(a+rr Z)). Comparing the constant coefficients yields the claim.

28Note the opposite normalisation of the reciprocity map in (loc. cit.).
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Lemma 8.16. The isomorphism
Hy piry 1) (K2%) =5 Hpp, e (Hy (RE (X)) = Key,

sends fo to _Q%(S(IOg(g(T))))\T:OeX'

Proof. By Remark 8.15 we obtain an element %gex € R (x)¥=" which lifts fo under the

Coleman transform (30). Thus ag(fo) is represented by
3 (agge) — 3(Jlog(g)ey) = 0 (3logg) e
by (90). It is mapped into Hp, p, ) (R (x)¥=°) to the class of
(-3 ( Loy ) =301 ) @loglo)ey) € R 00"
=3 (a0 £)0stare, )
= (s (3120~ £)108(0) ) e

Now we use the commutative diagram

Mz
K <" D(p,K) —% Ry (|a]) =0

o I

K <2 D(Iy, K) — Ry (x) V=0

to conclude by observing that the evaluation at 1 corresponds to setting 7'= 0 and that

((1 - g)a(bg(g(T))))lT:O = T2 (3(log(9(1)))r—o- -

Remark 8.17. The map v — (1— %)(log(gv,u(T) ) generalizes Coleman’s map as used
in Kato’s proof of the classical rank one case, cf. [54, (2.5)].

Lemma 8.18. With the notation in the proof of Lemma 8.16 we have

(3n(l0g(9(T))))r=0 = £3, (1) = Cg(3n).
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Proof. Note that g€ Tor[[T]]. Writing g = Y},-, a;T" we see that for any € T',, we have

(v — 1) log(g(T)))r—o = log<W>|T=o

B log( (Zi>1 a; ([XLT(%)](T)) ) )
- i—1
291 aiT |T=0

_ log(mXLT(’Y))
ai
It follows that for elements A =}, a;(y; —1) in the K-span S of v— 1,7 € I',\{1}, in
D(T,,K) we have

(Mog(g(T))) 70 = Zai log(xrr(7i)) = Aog(xrr)) = LA(1),

=log(xzr(7))-

because > a;(v;i —1) = >, a7 — (2, @)1 and log(xr7(1)) = 0. Since 3, belongs to the
closure of S the claim follows by continuity. O

Now we define a basis (f1,1, f1,2) of H&/L,D(FL,K)(RK(X)) and f, of H\%L,D(FL,K)(RK(X))
29

via
al(fl,i) = ]ZLZ' for ¢ = 1,2 and OéQ(fQ) = f~2. (120)
Combining (116), (118) and (120) with Lemmata 8.16, 8.18 we obtain

Corollary 8.19. O(x)((fi1 A f1.2)®fF) = —Q%C’Q(Sn)cﬂ(:ﬁn)ex =—Qe,.

Now we shall compare this to the de Rham e-isomorphism, i.e., mainly to the map
O(Rk(x)), because

I(Rk(x)=9"" (121)

and Op gr.o(Rr(X)) : drg (Dar(R(X))) = Ak 2(Rx(x)) corresponds to the isomorphism

~ 1 a
Lrx(Ri(x))=Key = Dyr(Rr(x)) = K—e,,ae, — —e, (122)
trr trr

as £(Rk(x),u) =1 due to x being crystalline.
By the long exact sequence (66) the map ©(Rg(x)) is induced from the following
isomorphisms and exact sequences

1 1-2 1

Dcris(RK (X)) ii’l) cris (RK (X))vle’ KEeX — Kan’ (123)
exp T
Dp(Ric(x) —=5 H} 5 (R ())f* —> Hi 3, (R (x))}" (124)

29Nakamura adds here the factor +

—(p—l)log’m in fI‘OIlt Of the az'
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(with T’ induced by T’ in Remark 4.18)

2o (T (@) om0}
Hy 5, (Rx(0))'" /Hy, 3, (R (X))} S (HY 5, (Ri) )

(eXPf,RK)*

D.is(Rk)* (125)

and

B (T (0) 00}
() S

Deiis(Ri)* = Hy 5, (R H) 5 (Ri)™)*, (126)

which is dual to the natural isomorphism H&Sn (Rr)'t = Deis(Ri),1 — do := 1€

K = Dis(Ri). We define basis ¢g and (e1,1,€1,2) of H) 3 (Rx)'* and H), 5 (Rx)"?,

respectively, as follows:>"

ey = le RK7 €1,1 = [(1,0)], €1,2 1= [(0,1)]
Lemma 8.20.

(i) eXPy R (do) = e1,1
(i) Y oexpr, () (trrey) = q%lf“

(iii) Using the pairing
= Preo: Ho 3, (Re(X) x H2S (Ri) = K

from Remark /.18 we have

{fL2e1 1m0 =L {fLvetirec =0,
{fL2e128re0 =0, {fLve2reco =1
{{f2.e0tric () = 1.

(iv) (epr,RK)*(<(T/)_1(f1)2),—>73(x)) =d§ € Deris(Ri )™, where the pairing (—,—)r )
had been introduced in Theorem 4.16.

Proof. (i) follows from Proposition 5.9(ii) by taking & = 1. For (ii) we apply Proposition
5.9 (i) with & = L-e, € Rk (X)[55], where f lies in Ry such that f(u,) = 7 for any
L

trr
n > 0. The existence of such f follows from the analogue of (42) over the ring R},

Ric/trr = [ [ Llun),J — (f (wn))nzo-
n=0

Moreover, T satisfies

tn(%) =T €D, (R (x))

301n order to normalize e1,2, i.e., to make it independent of the choice of 3,, one would need
the factor Cy(35) from (20), but for our calculations this is not needed. Since in our choice
for the generalized Herr complex the order of the operators Z and ¢ —1 (or ¥ —1) is the
opposite compared to Nakamura’s version, our indexing of the basis elements differs from
Nakamura’s!
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for all n > 1, because

Ln(

by Remark 3.14. Therefore the conditions of Proposition 5.9(i) are satisfied and hence we
conclude that

T ey=mp e _ Lo mod DY, (Ri()

— 7
trr trr trr

exXPr . () (tzrex) = [(9 = 1)(2),3n(2)] € Hy 3, (Ric (X))

and

Thoexpr, (o (tzrex) = [~ V(e —1)(2),3.(7)] € Hy 3, (R (X))-

Hence it suffices to show that

Res (MdlogLT> =0 (127)
lor
and
21 _
Resyz <(q)fdlogLT> = —g7 (128)
tor q

because —W(@—l)(ﬁex) =7 \P((l)f)ex and

e _1q 21
Resz \Il((q)f)dlogLT = 7T—LResZ udlogLT
trr q trr

by [46, Lem. 4.5.1 (iv)]. For (127) one shows first the analogous statement for v —1,
v eIy, instead of 3, by similar arguments and then concludes by continuity. For (128)
we calculate

P _ P _
Resz <(qtl)fdlogLT> = Resy, ., <(ql)fdtLT>

LT
L
= Resy, . ( (f) dtLT) Resy, . (fdtLT>
tor trr

< (qf )Itm =0 ltLT:O
“(557) sy Do
-0 --—,

where for the first equation the reasoning is as follows: since f(0) # 0 the expression on
the left-hand side has a simple pole at Z = 0. The residue formula for simple poles gives

us Resz ((%71” LTdZ) = ((g%)(()z)gLT(Z)) = Resi, .. (( 1)fdtLT)
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(iii) follows by direct computation using the formulae of Remark 4.18:

rmer Y ey = —Res«m(%gem _ —m(»)Res(%Adlogu)) 1

upon noting that fi 2 = [(O,%gex)] by the proof and with notation of Lemma 8.16.
Take f1,1 =[(A1ey,A2€,)]. Then
{fret1Brc00 = —Res((A1)(Az2ey)) = —p1(X) Res(Aadlogr) = 0
and, for A satisfying [—1](3,) = 3% = A3n,
{fL1e12re () = Res(1(Arey)) = Res(Aidlogpr) =1

by definition of fy 1. Finally, writing f> = Aze, we have

{f2,e08 R ) =Res(L(Af2)) = Res((A'1)(f2)) = p1(X*)Res(Asdlogr) = —1
(iv) follows from (i) and (iii) using (28), i.c., {(Y") " (f1.2), —r() = {fL2— PR O

Combining the previous lemma with (123), (124), (125), (126) we obtain

Corollary 8.21. O(Rx(x))((fi1 A fi2)®fF) =—7e, € Kﬁex =D (Rr(x)).

trr

Together with Corollary 8.19 and (121),(122) this proves property (vi) for the
exceptional case.

Appendix A. Density Argument

When verifying that ek (M) satisfies a given property we frequently require a density
argument. This is formally justified as follows: We reinterpret a given property as a
commutative diagram in the category of graded line bundles (hence involving only
isomorphisms). E.g. for the property (iii) of Conjecture 7.6 one takes the diagram

e 2N

idJ/ J{édem(a)
oo (M,
e = OR .

The commutativity of this diagram for a given property P can be reinterpreted as the
automorphism P(M) of 1k, which is obtained by going around the diagram, taking the
constant value 1. In this section we will construct a (reduced) rigid analytic space Top
over the normal hull E of L, whose K’-points parameterise L-analytic (¢, )-modules
attached to characters 0: L — K'* such that the map M — P(M) is a map of rigid
analytic spaces

an
77171 - an .

This is the same thing as a a global section of O% . Since Tgy, is reduced the vanishing
of a global section (in our case M — P(M)—1) can be checked on a Zariski dense subset
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(essentially by definition as we will see below). Let W (resp. T) be the rigid spaces
representing the functors

W(X) = Hom (0] ,IT'(X,0x)™)
resp.
T(X) =Homy, (L*,T'(X,0x)%).

For the representability of the first functor see [10, Lemma 2]. The representability of the
second functor can be seen by fixing a uniformiser, which provides us with an isomorphism
T = G,, x W and we denote by W,,, the subspace of locally L-analytic characters inside
W, where by convention we call a character locally analytic if the composite with
the restriction map to O(Y) is L-analytic for any affinoid ¥ < X (this makes sense
because O(Y) is a Banach space). Similarly we define 7g,,. Since o} is open in L™, we
conclude that a character 0 € T is L-analytic if and only if its projection to W is L-
analytic. Analogously we get an isomorphism (depending on the choice of uniformiser)
Tan = Gy X Way. The representability of W,, is shown in [19, Proposition 6.4.5]. Recall
that a character is locally L-analytic if and only if its differential at 1 is L-linear. A
character 0: o] —I'(X,0%) (with X affinoid over a Galois closure E of L) can be written
(locally around 1) as

§(z) = 2 an(z—1)",
neN>
with some an € I'(X,0x), where X is the set of Q,-homomorphisms o: L — E and (x —1)"
is defined as [[, .5 0(x —1)"" where n = (n,),. The partial derivative at =1 in the
direction of o € &, i.e., the coefficient a._ of the power series at the o-unit-vector is called
the o-part of the generalised Hodge-Tate weight of 4.

Remark A.1. A character § € W is L-analytic if and only if a., =0 for every o #id.

Proof. This is essentially [5, Remark 2.7]. Note that a character is L-analytic if and
only if 1 is an L-analytic vector for the corresponding representation. (Loc. cit.) uses the
logarithm as a chart around 1 € o} rather than the map z — x —1. Since logg (T)=T+...
the coefficients in total degree 1 are unaffected by the change of charts. This means that
our a., agrees with V(1) in (loc. cit.). O

Recall (cf. [1, Chapter 3]) that a subset Z of a rigid analytic space X is called Zariski-
dense if the only reduced analytic subset containing Z is X,.q. For a reduced Stein space
this is equivalent to requiring that an analytic function vanishing along Z is identically
zero. An illustrating example is the set pN < Bl Tt is Zariski dense because a function
vanishing on pN has infinitely many zeroes inside the affinoids B®"] and thus vanishes
identically along an admissible cover. For n » 0 the group U =T',, of n-units is an open
subgroup of o} isomorphic to or. Recall that by [42] the corresponding character variety
X :=Xr, is a smooth one-dimensional quasi-Stein space. For such spaces it is known (cf.
[7, Section 1.1]) that the divisor of an analytic function has finite support in every affinoid
subdomain and a similar argument as before shows, that a set having infinite intersection
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with infinitely many members of a given increasing family of affinoids (X, )men covering
X is automatically Zariski dense. Note that we have a canonical restriction map

Wan - %7
which is finite and flat.

Theorem A.2. Ife<p—1 then the set Wi, = {2 | de N} is Zariski dense in Wy, If
e=p—1 we have that the set {x € Wan | xju = 2%} is Zariski dense in We,.

Proof. We first consider the restriction of 2% to the subgroup I',, as above. Recall that
X is covered by the neighbourhoods X(r) consisting of characters taking values inside
the disc |z —1] <7 Usmg the fact that for any element of x € 0} we know that 297!
is a l-unit and 2@ VP" for N » 0 is close to 1 we conclude that z(9=DP™ for m > N
are an infinite family of distinct points inside X(r) for N » 0. If e(L/Q,) <p—1 we can
decompose 0} =~ k* x (1+mror). This allows us to cover W,,, by sets of the form w?X(r),
with w the composition of the projection mod 7 and the Teichmiiller character. Since
the powers of z intersect every w’-component infinitely many times we can conclude
from the preceding reasoning, that Wj,; is Zariski-dense. In the general case we consider
the finite flat restriction map. Passing to affinoids we first observe that Zariski density
inside an affinoid Sp(A) in the sense above is equivalent to Zariski density in the scheme
Spec(A) since affinoids are Jacobson. Furthermore, because affinoids are noetherian, we
can conclude that the restriction of the map p: W,,, — X to a suitable family of affinoids is
finitely presented and flat (in the ring-theoretic sense) and hence (universally) open with
respect to the Zariski topology. The claim follows from the preceding density statement
because openness implies that the preimage of a dense subset of X is dense inside W, .
Arguing as in the first part, we can show that the image of Wj,; inside X is dense and
hence also o~ (p(Wint)) = {x € Wan | Xjor = 2} O

Remark A.3. Let F’/L be a finite subextension of K and fix some § € ¥,,,(F"). The map
M — P(M) (for a given property P) corresponds to a unique section of T'(Wyn,Ow,,. )™,
where we identify W,,, with the space of analytic twists of d.

Proof. We will explain the argument for property (iii). The other properties are treated
similarly. We consider the isomorphism

5D(FL,K),u(Dfm(MK)) 1pr,,K) = AxFL (Dfm(Mk))

from Theorem 8.6. The validity of property (iii) amounts to the commutativity of the
diagram

ED(Iy,

K),u
1pr,, k) —— &er (Dfm(Mk))
idl J/(Sdethm(I\/I)(a)
ED(I'y,, K

Since all arrows are isomorphisms, going around the diagram clockwise (starting at
1p(r,,x)) amounts to an automorphism of D(I'z,K), or in other words, an invertible
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global section of Xr,. The isomorphism I'y, =~ o} induces an isomorphism Xp, = W,,,.
Hence we get an invertible global section P of W,,,. This allows us to interpret the validity
of property (iii) for every twist Mg (6) with 6 € W,,, as the section P of W,,, constructed
above specialising to 1 at every such 6. O

Corollary A.4. The set
S :={(N\d0) € Tan(K') = G (K') x Wan(K') | K'/K finite,6x00 generic and (6o)jy de Rham }
is Zariski dense.

Proof. Note that the set of de Rham characters contains the set of characters which
restrict to a power of z on U and is hence dense in W,,,. As a conclusion the analogously
defined set without the genericity condition is dense. For every d there is precisely one A
such that §yz? is non-generic. It is not difficult to see that the set S remains dense. [J

To restrict some considerations to (¢r,I'r)-modules arising as a base change from a
finite extension of L we introduce the following notion.

Definition A.5. A character p: o] — C, is called classical, if its image is contained in
Qp. Analogously a character L* — C,, is called classical, if it takes values in Q.

Remark A.6.

(i) The image of a classical character p: of — C,, is contained in some finite extension
F of Q.

(ii) A character is classical if and only if its restriction to some open subgroup U takes
values inside Q,.

Proof. Since o is topologically finitely generated we can see that the image of some
set of topological generators is contained inside F'* for a suitable finite extension F' of
Qp. Moreover, by compactness of o}, its image is contained inside the maximal compact
subgroup oy < F*. Now suppose p(U) < F' for some open subgroup U  of . Let v € oF,
then 4[°2°Ul € U and hence p(v) is algebraic over F. Setting F’ = F(p(y),y € R) for a
system of representatives R < o] of o] /U we can see that the image of p is contained

in F'. O

Lemma A.7. Let §: L* — K* be a de Rham (L-analytic)ichamcter, i.e., such that
R (8) is de Rham in the sense of section 5.4. Then 6(o;) < Qp.

Proof. Let n » 0. Note that Dgit ,(Rx(J)) embeds I'p-equivariantly into HjeZ(Ln ®r
KtJLT(é)) and the latter is I',-equivariantly isomorphic to [ [c,( l[i’{:L] KtJLT(J)). The de

Rham condition hence forces that § agrees with XJLT for some (unique) 7 when restricted
to I'n. As a consequence the restriction 0|  is classical. O
°L

Remark A.8. The proof of the previous Lemma shows that any de Rham L-analytic
character §: L* — K* is of the form

§ = 82
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for some k € Z and some locally constant character 9y : L* — K*. Vice versa any character
of this form is obviously de Rham L-analytic.

Corollary A.9. Using the notation from A.J the subset S’ of S consisting of classical
points is Zariski dense.

Proof. This follows from the following easy observations: The set of characters whose

restriction to U is of the form x? is classical and the subset of G,, defined by @x both
are Zariski dense. O
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