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Abstract

A numerical method for calculation of the generalized Chakalov-Popoviciu quadrature
formulae of Radau and Lobatto type, using the results given for the generalized Chakalov-
Popoviciu quadrature formula, is given. Numerical results are included. As an application
we discuss the problem of approximating a function / on the finite interval / = [a, b] by
a spline function of degree m and variable defects dv, with n (variable) knots, matching as
many of the initial moments of/ as possible. An analytic formula for the coefficients in
the generalized Chakalov-Popoviciu quadrature formula is given.

1. Introduction

Let dk(t) be a nonnegative measure on the real line K, with compact or infinite support
supp (dX), for which all moments

tik= I tkdk(t), it = 0 , 1 , . . . ,

exist and are finite, and fi0 > 0. A quadrature formula of the form

n 2s

where Ai%v = Afv = A{"f, rv = ru
(ntl), which is exact for all algebraic polynomials of

degree at most 2(s + l)n — l, was considered firstly by P. Turan (see [20]), in the case
when dk(t) =dt on [— 1, 1]. The case with a weight function, dk(t) = co{t)dt on the
interval [a, b], has been considered by the Italian mathematicians Ossicini, Ghiizzetti,
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430 Miodrag M. Spalevic [2]

Guerra and Rosati, and also by Chakalov, Stroud, Stancu, lonescu, Pavel, etc. (see
[15] for references).

The nodes xv in (1.1) must be zeros of a (monic) polynomial nn{t) which minimizes
the integral

F = F (ao , a l t . . . , an_x) = f nn(t)
2s+2 dX(t),

where

nn(t) = tn + an^t"-1 + . . . + fl,r + a0.

In order to minimize F we must have

nn(t)
2s+ltkdX(t)=O, k = 0 , l , . . . , n - l . (1.2)L

Polynomials nn (t) which satisfy this new type of orthogonality "power orthogonality"
are known as s-orthogonal (or s-self associated) polynomials with respect to the
measure dk(t).

For s = 0 w e have the standard case of orthogonal polynomials.
Let n e N and let a = an = (su s2, • •., sn) be a sequence of nonnegative

integers. A generalization of the Gauss-Turan quadrature formula (1.1) to rules having
nodes with arbitrary multiplicities was given, independently, by Chakalov [2,3] and
Popoviciu [17].

In this case, it is important to assume that the nodes rv (= T^"'a)) are ordered, say

ti < r2 < • • • < rn, TU e supp (dk), (1.3)

with odd multiplicities

2s{ + 1, 2*2 + 1, . . . . 2sa + l,

respectively. Then the corresponding quadrature formula

n 2sv

LR u = l 1=0

(1.4)

where A( > = Afv = AJn
l)'

<T), xv = ru
(n<7), has the maximum degree of exactness

(1.5)

(1.6)

if and only if

/ flit - xv)
2s^tkd\{t) =0, * = 0,..., n - 1.

./R ,
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[3] Chakalov-Popoviciu quadratures of Radau and Lobatto type 431

The last orthogonality conditions correspond to (1.2). The existence of such quadra-
ture rules has been proved by Chakalov [2], Popoviciu [17] and Morelli and Verna
[16] and existence and uniqueness subject to (1.3) by Ghizzetti and Ossicini [10].

The conditions (1.6) define a sequence of polynomials [jrn,CT}neA/0.

v=l

such that

f (0 f l (r - tw
(--"))2*+I dX{t) = 0, k = 0 , . . . , n - l.

These polynomials are called cr-orthogonal polynomials and they correspond to the
sequence a = (su s2,...). We shall often write simply zv or z(

v
n) instead of ru

("ilT). If we
have a = (s, s,...), the above polynomials reduce to the 5-orthogonal polynomials.

An iterative process for computing the coefficients of 5-orthogonal polynomials in
a special case, when the interval [a, b] is symmetric with respect to the origin and the
weight co (in the case dk(t) = co(t) dt on [a, b\) is an even function, was proposed by
Vincenti [21]. He applied his process to the Legendre case. When n and s increase,
the process becomes numerically unstable.

In [12] (see also [8]) a numerical procedure for stably calculating the nodes zv in
(1.1) was proposed. In [8] a numerical procedure for stably calculating the coefficients
A,:,„ in (1.1) was also proposed. Some alternative methods were proposed in [11,19]
and [14] (see also [18]). In [15] the methods from [8,14] for calculating the coefficients
A/p in (1.1) were generalized to be able to handle those in (1.4). A simple numerical
method for stably calculating the nodes zv in (1.4) has been considered recently in
[13]. For all calculations in this paper we shall use the methods from [13,15].

2. Quadrature formulae of Radau and Lobatto type
connected to a-orthogonal polynomials

Let [a, b] be the support of the nonnegative measure d-^(t) = w(t) dt, where w(t)
is the weight function.

Let
b P

u(t)di/,(t) = £>*«<>) + £ £ AJX>(r,) + <„, (2.D

zv € (a, b), —oo < a < oo, p e No, with

RH.P («: W) = 0 for u € ^ 2 ( I ; ; = 1 s,+n)+p,

be the generalized Chakalov-Popoviciu quadrature formula of Radau type.

/

b
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Let
P 1 n 2sv

*=0 *=0 v=l i=0

rv e (a, b), —oo < a < b < oo, p, q e No, with

be the generalized Chakalov-Popoviciu quadrature formula of Lobatto type.
With £?k we denote the set of all polynomials of degree at most k, k € Â o.
By using the results of Ghizzetti and Ossicini [9], we shall prove the existence and

the uniqueness of the formula (2.2).
We shall denote by ££[a, b] the class of Lebesgue-integrable (summable) functions

in [a, b] and by ACk[a, b] the class of functions whose Jt-th derivative is absolutely
continuous in [a, b],k = 0,1,2, ....

Let us consider in [a, b] a linear differential operator of order L, L = 1, 2, 3, . . . ,

k=0

with the following conditions on the coefficients ak(t):
L-k-l[a,blk = \,2,...,L-l; aL{t) e Sf[a, b\.

The operator E can be applied to the functions u{t) 6 ACL~x[a, b], obtaining the
function (defined almost everywhere):

L

E[u(t)] = E(u) = J]at(r)«
(L-*)(/) € t£{a, b\

We associate with the operator E the reduced operators

0 1 L l

and their so-called adjoint operators

where E*L = E*.
Let K(t, $•) be the so-called Cauchy resolvent kernel, which is (as a function of /)

the particular solution of the homogeneous equation E(w) = 0 which satisfies, at the
point £, the initial conditions:
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where

r = s.

Let us consider the elementary quadrature formula

= 0=>R(u)=0l (2.3)
/

*

h=0 i=l

where E is the linear differential operator of order L.
In [9, pp. 29-31] the following result is proved.

THEOREM 2.1. If, having I fixed nodes X\, x2, •. •, xt and IL constants Chi, the
linear functional

R{u) = / u(t)w(t) dt-
"*" A=0 i=l

15 null when u is a solution of the homogeneous linear differential equation E(u) = 0,
then there are / — 1 uniquely determined solutions cp\ (t),..., (pi-i(t) of the differential
equation E*(cp) = w which, together with (po(t) and cpi(t) given by

= - f * (£ , t)w(^) d$, <p,(t) = f
Ja Jl

<po(t)

validate

Chi = {£*_A_,[^(0 - «P,--i(0]},=*,; h = 0, 1 , . . . , L - 1, i = 1, 2,

and
1 fXi+l

R[u(t)] = J2 <Pi(t)E[u(t)-\dt.
;=o Jx>

Having fixed the nodes x{, x2, ..., xt and the linear differential operator E, we may
write the quadrature formula (2.3) in oo('"1)L different ways, since (I — \)L is the
number of arbitrary constants on which the / — 1 solutions (p\(t),..., cpi-\(t) of the
differential equation E*(cp) = w of order L depend.

Define the generalized Gauss problem (see [9, pp. 41-45]).
The question is whether, having fixed nonnegative integers p, (pt < L — 1),

i = 1 , . . . , / , with (3 i = I,... ,1) pi > 1, it is possible to make use of the arbitrary
nature of these parameters to drop the values u(h) (*,) of the derivatives of order higher
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than L — pi — I, i = 1 , . . . , / , from (2.3), that is, whether there can exist a formula of
the type

J a

I L-pi-l

J2 Ckiu
m(Xi) + R(u), [£(«) = 0=> R(u) = 0]. (2.4)

= l h=0

The answer is given by the following theorem (see [9, Problem 2, p. 45]), which can
be proved similarly to Theorem 2.5.1 in [9].

THEOREM 2.2. Given the nodes xt, ... ,xh which satisfy

a < xi < x2 < • • • < Xi < b, (2.5)

the linear differential operator E of order L and nonnegative integers p-, (/?, < L — 1),
i = 1, . . . , / , with (3 i = \,... ,1) pi > 1, consider the homogeneous differential
problem

£(« ) = 0; uw(Xi) =0, h=0,l,...,L-p,-l, i = l,...,l. (2.6)

If this problem has no non-trivial solutions [whence L < IL — Yl'i=i PiJ 'f is possible
to write a quadrature formula of the type (2.4) in oo'L~^i=>Pi~L different ways. If on
the other hand the problem (2.6) has q linearly independent solutions Uj (t) [j =
1, 2, . . . , q, with L-LI + £ ' = 1 p, <q < p, (Vj = 1,..., /); 1 < q] then (2.4) may
apply only if the q conditions

f
J a

are satisfied; if so, there are oolL £<=ip' L+<? possible formulae of form (2.4).

Consider (2.2), with conditions (2.5) for

X\ z = a, %v+i ^ Ty, v = 1, . . . , YI, X\ == Xft+i ^ /?,

(where Chl = ah, Chi = AL
hi, CM = Ch,n+2 = fih)

for which R(u) = 0, VM e ^2 (EL ,^+«)+P+9+I -

Let L = 2( 5Z"_, *„ + n) + p + ? + 2. By virtue of Theorem 2.2 we must consider
the boundary problem

dLu/dtL = 0 ;
with

M
( A )(rv) = 0, ft = 0, . . . , 2 J U , v = 1 , . . . , n,
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and its non trivial solutions which are

tk(t - a)p+\b - t)"+i Y\(t - rv)
2s"+\ k = 0, 1 n - 1.

Therefore, (2.2) is possible if and only if

(t - aY+\b - t)"+i • tk Y\« - TV)2S>+1 d\lr(t) = 0, k = 0, 1 , . . . , n - 1,
u = l

are satisfied and this shows that the nodes xv must coincide with the zeros of the
polynomial nn<a{t) of the a-orthogonal system relative to the measure

With such a choice of the nodes (2.2) is unique since, with the notation of Theo-
rem 2.2, we have

n = 0.

Similarly, we can conclude that (2.1) exists and it is necessarily unique. In the
following, we shall put p = m = q, without loss of generality.

3. Calculation of the formulae (2.1), (2.2)

We give two lemmas, which give a connection between the generalized Chakalov-
Popoviciu quadrature (1.4) and the corresponding formulae of Radau and Lobatto
type.

LEMMA 3.1. If the measure d^r{t) admits* the generalized Chakalov-Popoviciu
quadrature of Lobatto type (2.2) (in which p — q = m), with distinct real zeros
rv = r*n) = xl"'a), v = I,... ,n, all contained in the open interval (a, b), there exists
then a generalized Chakalov-Popoviciu formula

f
, n 2sv

g(t) dX(t) = J2 J2A°"gU) (r"<n)) + R?(8)> C3-1)
v=l i=0

*For example, this holds if d\j/(t) is nonnegative (or nonpositive).
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where dk(t) = [(b — t)(t — a)]m+l dijf(t), the nodes ry
(n) are the zeros of a-orthogonal

polynomial nna(-; dX), while the weights Afv are expressible in terms of those in (2.2)
by

l = E ( •
where i = 0 , . . . , 2.^, v = 1 , . . . , n.

PROOF. Let g(t) = ((b - t)(t - a)r+lp(t), p e ^2(E:=,,.+„,_, and ru = t<">. We
have by (2.2)

J a

n 2su

= E E t«6 -
and by (3.1)

jf
2sv

w= 1 i'=0

So, we have that

E E [«* -
v=l

= E E
u=l i=0

Applying the Leibniz formula to the k-th derivative in the second sum, we find

* = 0

2.vu

'•=o

= E(
i=0 \ t=i

where

*=/

K,

- «))m+l):i':>tp(')(^)) = E A°y\rv),
/ 1 = 0

' = 0 2 * w . v = l . . . . . » .

Similarly we can prove the following lemma.

LEMMA 3.2. If the measure d\jr{t) admits the generalized Chakalov-Popoviciu
quadrature ofRadau type (2.1) (in which p = m), with distinct real zeros TV = r̂ "'*,
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TABLE 4.1.

437

V

1
2
3

T 2 v -1

8.06063896919729(-02)
4.93117605175704(-01)
8.94837669670698(-01)

*2u

2.42198578093389(-01)
7.15377067743040(-01)

v = 1 , . . . , n, all contained in the open interval (a, b), there exists then a generalized
Chakalov-Popoviciu formula (3.1), where dk(t) = dk*(t) = (t - a)m+i d\j/{t), the
nodes ru

(n)* are the zeros of a-orthogonal polynomial 7Tn,a(-;dk*), while the weights
Afv are expressible in terms of those in (3.1) by

2sv

(3.3)

We can write the triangular system (3.2) in the form

2s,

where
kS

0;

k\
k-i

(-l)'(m + l)!2(ru -

i! j ^ l\(k - i - l)\(m -k + i + l+ \)\{m - I + 1)!

The triangular system (3.3) we can write in the form

2.YV

t v ) A R
k • i = 0,...,2sv, v = l,...,n,

k < i,

; i < k < 2sv.

k=i

where

0;
kl(m

k < i ,

i <k < 2sv.
i\(k - i)\(m - k + i + 1)!'

4. Numerical results

As an example we consider the Chebyshev measure dx//(t) = dt/^/t — t2 on the
interval / = [a, b] = [0, 1] in the Lobatto case. Therefore we have

= [/(! -t)]m+l/2dt.
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In Table 4.1 the nodes TV of the corresponding Chakalov-Popoviciu quadrature
formula (1.4), fora = (0, 3, 1, 2, 1), n = 5, are given.

TABLE 4.2.

V

1

to
 

to
 

to
 

to

3
3
4
4
4
5
5

i
0
0
2
4
6
0
2
0
2
4
0
2

4.20127478080609(-08)
3.7148558986941l(-05)
1.24288590234291(-07)
6.72398482227105(-ll)
6.18123581366015(-15)
9.25967832748324(-05)
9.57294036599511(-08)
4.27128390332233(-05)
7.93022775662744(-08)
1.92447787210554(-ll)
5.22053028280481(-07)
1.12436028390154(-10)

A G

2.53189264911106(-06)
3.28295940614803(-09)
7.51024105924184(-13)

1.88049797773032(-08)

-1.71275165622089(-06)
-1.08954169181538(-09)

-1.15793712000017(-08)

In Table 4.2 the weights Afv of the corresponding Chakalov-Popoviciu quadrature
formula are given. For m = 5, the weights Afv of the corresponding Chakalov-
Popoviciu quadrature formula of Lobatto type (2.2) are given in Table 4.3.

TABLE 4.3.

V

1
2
2
2
2
3
3
4
4
4
5
5

i

0
0
2
4
6
0
2
0
2
4
0
2

2.53603580873942(-01)
6.54607056346764(-01)
1.78916012822395(-03)
1.06575641867557(-06)
1.61701214701959(-10)
3.98578546685041(-01)
3.92553687612449(-04)
5.24003817562713(-01)
9.30751562588805(-04)
2.70074453090533(-07)
4.11726824044766(-01)
1.61911889209916(-04)

2.47009978449190(-03)
8.68913193385365(-06)
3.29355080757672(-09)

-1.82300441012789(-04)

-8.43880698485214(-04)
-1.57766077104084(-06)

-3.70334318380999(-04)

Table 4.4 gives the corresponding coefficients ak, pk in the endpoints —1,1. The
numbers in parentheses denote decimal exponents. The programs were realized in
double precision arithmetic in FORTRAN.
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TABLE 4.4.

439

k

0
1
2
3
4
5

Oik

4.48079461557622(-01)
6.76966763724565(-03)
7.83092608702163(-05)
5.74636703570962(-07)
2.44687263671571 (-09)
4.67095320822040(-12)

4.50993366518945(-01)
-6.86234369124486(-03)

7.94301775592061 (-05)
-5.80256392257038(-07)

2.45051821492370(-09)
-4.62776252162197(-12)

TABLE 4.5.

n
2
2

2
3
3
3

a

(1,
(0,
(0,

(1,0
(0,1
(0,1

1)
2)
3)

, 1)
,2)
,2)

m
0
1
1

0
0
1

1
3
9
1
4
6

Re

.0(-09)

.6(-12)

.9(-15)

.6(—12)

.8(-15)

.6(-16)

By using (2.2) and the presented methods we have calculated the integral

*' e1'
J=l —^==dt = 10.8118661043980...,_ /•• e2'

Jo V F ^
for some n,a,m. In Table 4.5 the relative errors Re of these calculations are given.

5. An application—Moment-preserving spline approximation
with variable defects on finite intervals

Let z'+ be z\ if z > 0, and 0, if z < 0.
In this section we discuss the case of approximating a function / = / (t) on some

given finite interval / = [a, b], which can be standardized to [a, b] = [0, 1], by a
spline function of degree m > 2 and defects dv (1 < dv < m, v = 1,... ,n), with n
knots. Under suitable assumptions on / anddv = 2sv + l, v = 1 , . . . , n, we shall show
that our problem has a unique solution if and only if certain generalized Chakalov-
Popoviciu quadrature formulae of Radau and Lobatto type exist corresponding to
measures depending on / . Existence, uniqueness and pointwise convergence are
assured if/ is completely monotonic on [0, 1].

Spline approximation on [0, 1]. A spline function of degree m > 2 and defects dv,
v — \,... ,n, with n (distinct) knots TJ, . . . , rn in the interior of [0, 1], can be written
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in terms of truncated powers in the form

v=l i—m—dv + l

where aiv are real numbers and pm(t) is a polynomial of degree < m.
Similarly as in [5] we shall consider two related problems.

PROBLEM I. Determine sn,m in (5.1) such that

/

i / . I "

tjsn,m(t)dt= tjf(t)dt, ; = 0 , l V i + B + m. (5.2)
PROBLEM I*. Determine sn,m in (5.1) such that

^ a ) = p i , * ) ( l ) = / ( * ) ( D , k = 0,...,m, (5.3)

and such that (5.2) holds for; = 0, 1, . . . , £" = I dv + n - 1.

In this section we shall reduce our problems to CT-orthogonality and generalized
Chakalov-Popoviciu quadratures by restricting the class of functions / .

In order to reduce our problems (5.2) and (5.3) to a-orthogonality, we have to put
dv = 2sv -f 1, v = 1 , . . . , n, that is, the defects of the spline function (5.1) should be
odd.

Let

ml
(5.4)

Applying m + 1 integration by parts to the integrals in the moment equation (5.2) we
obtain (see [5])

' J , = ,
t=0 v=\ t=m-2.iv

C_nm+' rx

[]f; ^J (5.5)

where; = 0, 1 , . . . , 2 ( £ " = 1 sv + n) +m.
For the second sum in (5.5) we may observe that

n m

u = l i=m—2$w v=l i=m—2sv
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Changing indices (k = m — i), the second sum on the right becomes

hence defining the measure

C _ n +
di,(t)=K—t—f(m+l\t)dt on [0,1]. (5.7)

ml
Equation (5.5) may be rewritten

*=o u=i *=o

t=o

+ i + 7 ] , ( : ; t > + /

where; = 0, 1,.. . , 2( £"=1 ^ + n) + m.
Now we can state the main result for Problem I.

THEOREM 5.1. Letf e Cm+l[0, 1]. There exists a unique spline function (5.1) on
[0, 1], with dv = 2sv + 1, v = 1 , . . . , n, satisfying (5.2) if and only if the measure
dijf(t) in (5.7) admits a generalized Chakalov-Popoviciu quadrature ofLobatto type

/ '
Jo

k=0

^ . S " 1 ^ ' + Rt«te df), (5.9)
D=l 1=0

where

with distinct real zeros rj"', v = 1 , . . . , n, all contained in the open interval (0, 1).
The spline function in (5.1) is given by

ml

'• = '•"'• 0 - ' " = < ^ « 7 < - ; - ' " • * = ° 2 s - ( 5">

where r^ are the interior nodes of the generalized Chakalov-Popoviciu quadrature
formula ofLobatto type and A^v are the corresponding weights, while the polynomial
pm{t) is given by

p™(X) =/(*>(l) + (-l)*m!/3m_t, k = 0, 1 m, (5.12)

where fim_k is the coefficient ofg(m-k){\) in (5.9).
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PROOF. Putting g(t) = tm+lp(t), p e ^2(I : := | ,„+„,+„, in (5.9) and noting (5.10)

yields, for every p e &2CE'ml sv+n)+m,

m n 2sv

EM<m+v«)E, + E E ^ [ < m

k=0 v=l /=0

which is identical to (5.8), if we identify

bm_k - <pm_k = pk, * = 0,

m\

(tn K).
= 0,..., 2sv.

REMARK A. The case st = • • • = sn = 0 of Theorem 5.1 has been obtained in [5],
and generalized in [6] to the case S\ = ••• = sn = s,s e N.

I f / is completely monotonic on [0,1] then d\j/(t) in (5.7) is a positive measure
for every m, and then by virtue of the assumptions in Theorem 5.1 the generalized
Chakalov-Popoviciu quadrature formula of Lobatto type exists uniquely, with n dis-
tinct real nodes rw

(n) in (0, 1).
The solution of Problem I* can be given in a similar way.

THEOREM 5.2. Letf e Cm+l[0, 1]. There exists a unique spline function on [0,1],

n m

E < X " ' ) + ' 0 < r ; < l , (5.13)
i i=m-2sv x* jL z* for v £ ix,

satisfying (5.3) and (5.2), for j = 0, 1 2( £ " = 1 sv + n) - 1, if and only if the
measure dty (t) in (5.7) admits a generalized Chakalov-Popoviciu quadrature ofRadau

type

/

m n 2sv

g(t)dir(t) = 2>ty»(0) + E E > 1 W * ) + RL(8' df), (5.14)
k=0 w=l i=0

= 0 / o r ^ e £*2(E-,*.+»>+*.

w/f/i distinct real zeros rw
(n)*, v = 1,. ..,n, all contained in the open interval (0, 1).

77ie /biota r* /« (5.13) are then precisely these zeros,

r ; = r""*, v = l,...,n, (5.15)
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and

m\
< 'K** v = l,...,n,k = 0,...,2sv, (5.16)m-K'v (m-Jfc)! *•"'

while the polynomial p*m(/) is given by

t=o

REMARK B. Therefore, by using our methods from [13,15], the results from Sec-
tion 3, and the formulae (5.11) and (5.12), or (5.15)—(5.17), we can easily determine
the spline approximation sn_m(t), or s*m(t), respectively.

Error analysis. Similarly as in [5], following [7], we can prove the following
statement regarding the error of spline approximations.

THEOREM 5.3. Define rx(t) = (t - x)™, 0 < t < 1. Under the conditions of
Theorems 5.1 and 5.2, we have

f(x)-sn,m(x) = Rj;m(rx;di,), 0 < x < 1, (5.18)

and

/(•*) - C O O = RR
n,m{rx;dt), 0 < x < 1, (5.19)

respectively, where Rf;m(g;dijf) and R%m(g;dxjr) are the remainder terms in the
corresponding Chakalov-Popoviciu formulae ofLobatto and Radau type.

PROOF. We shall prove (5.18). As in [5] we have

f - D * + /" rx(t)dxlr(t). (5.20)
Jo

By (5.11)
tn fi.\ / •* \ n fn *

k=0 ' v=l i=m-2sv
 l'

and changing indices (k = m — i), the third sum on the right becomes

m , 2sv . 2sv

E HLAL (T -XY - V m' AL (T - x\m~k - Y^ AL

, m 2 J ' • * 0 ( m K)- * 0

Equation (5.21) may be rewritten as

* = 0

- Dk + E E At ^(r . ) . (5.22)
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Subtracting (5.22) from (5.20) gives

fix) -sn,m(x) - / rx(t)d^it) + 2^ — (f w(l)- p\
Jo k=o k-

n 2s.

v-\ k=0

which, by virtue of (5.12) and (5.4), yields

/

I m . n 2sv

rx(t)d\[r(t) — Yj —^m-t(l — x)k — 2_. y^.^kvrxk)irv)-
t=0 k- u= l Jt=O

But
r f ) ( 0 ) = 0 , r f ) ( l ) = — — — ( l - * ) m - * , Jk = O , . . . , m ,

(m - A;)!
so that

/

I m n 24'y

rx(t)dij/{t) — y^/Jm-*ri'"~t)Q) — V V A ^ r f f r , )
k=O v=\ k=0

as claimed in (5.18).
The proof of (5.19) is entirely analogous to the proof of (5.18) and it shall be

omitted.

6. O n a n a n a l y t i c f o r m u l a for the coef f ic ients A i v in (1 .4)

L e t

cov(t) =
{t - Tv)

On the basis of Hermite's interpolation (see [1, pp. 163-173]) we obtained the weights
A, u in the generalized Chakalov-Popoviciu quadrature formula (1.4) (see [15])

2s"~'

where

Q(t) = (t- r,)2il+l(r - r2)2*+l • • • (t - rn)2j"+l = f\(t - T,)2SI+\

i=\

and i = 0, I , . . . , 2s,,, v = I , . . . , n.
In the following statement we shall obtain an alternative expression.
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LEMMA 6.1. The coefficients Aiv in (1.4) can be expressed in the form

445

1 r i fui.
'•" ~ i\(2sv-i)\ [toM) JR

) ^

Ji-r.

w/iere / = 0, 1, . . . , 2su, u = 1 , . . . , « .

PROOF. If we put k = 2sv — i — m in (6.1), then we have

A - -

^ (2*,,-/-m)! LnL.c-

Therefore
2s,-i

that is,

!| + 1

(6.3)

F o r p =0, ... ,k, k = 0, ...,2sv — i, i =0,... ,2sv, v = 1,

i(p)
4 ^ -

r n

, n, we have

P = 0 ,

; p > 0.

If/? > 0, then by using the Leibniz formula we have

n«-
/=!

m=0
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(=1

0; p > 0.

For the integral in (6.3) we have

dX(x)

; = i (=1

/=i /=i

I
(p)

dX(x)

A L J,=r,
Now (6.3) becomes

i V2-5"-'-

that is, (6.2) holds.

REMARK C. The formula (6.1) has been used for numerical calculation of the
coefficients AitV in (1.4) (see [15]). The expression (6.2) may be of interest for
theoretical considerations. For example, the term

L x - t
• dk(x)

is similar to the associated polynomials of the second kind (or the numerator polyno-
mials) corresponding to the ordinary orthogonal polynomials (see [4, p. 86]). (In the
case of 5j = s2 = • • • = sn = 0 it is precisely that.)
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