Let N be a homomorphically closed class of associative rings. Put $N_1 = N^1 = N$ and, for ordinals $a \geq 2$, define $N_a (N^\alpha)$ to be the class of all associative rings R such that every non-zero homomorphic image of R contains a non-zero ideal (left ideal) in N_β for some $\beta < \alpha$. In this way we obtain a chain $\{N_a\}$, the union of which is equal to the lower radical class IN (lower left strong radical class IsN) determined by N. The chain $\{N_a\}$ is called Kurosh's chain of N. Sulinski, Anderson and Divinsky proved [7] that \(IN = \bigcup_{a=1}^{\infty} N_a\). Heinicke [3] constructed an example of N for which $IN \neq N_k$ for $k = 1, 2, \ldots$. In [1] Beidar solved the main problem in the area showing that for every natural number $n \geq 1$ there exists a class N such that $IN = N_{n+1} = N_n$. Some results concerning the termination of the chain $\{N^\alpha\}$ were obtained in [2, 4]. In this paper we present some classes N with $N_a = N^\alpha$ for all a. Using this and Beidar's example we prove that for every natural number $n \geq 1$ there exists an N such that $N_a = N^\alpha$ for all α and $N_n \neq N_{n+1} = N_{n+2}$. This in particular answers Question 6 of [4].

All rings in the paper are associative and N is a homomorphically closed class of such rings. To denote that I is an ideal (left ideal) of a ring R we write $I < R$ ($I < L$). A subring A of a ring R is called accessible (left accessible) if there is a chain of subrings $A = A_n \subseteq A_{n-1} \subseteq \ldots \subseteq A_0 = R$ such that $A_i < A_{i-1}$ ($A_i < A_{i-1}$) for $i = 1, 2, \ldots, n$.

\mathbb{Z} is used to denote the ring of integers, \mathbb{Q} the field of rational numbers and $\mathbb{Q}(i)$ the field of complex numbers $a + bi$, where $a, b \in \mathbb{Q}$.

The fundamental definitions and properties of radicals may be found in [8] and those of strong radicals in [2]. The following proposition collects some well known properties of classes N_α and N^α.

Proposition 1. (i) $N_\alpha \subseteq N^\alpha$ for every ordinal α;
(ii) classes N_α and N^α are homomorphically closed for all α;
(iii) ([2]) if $0 \neq R \in IsN$ then R contains a non-zero left accessible subring in N;
(iv) ([7]) $R \in IN$ if and only if every non-zero homomorphic image of R contains a non-zero accessible subring in N;
(v) ([2]) if $0 \neq R \in N^{\alpha+1}$, where n is an integer ≥ 1, then there are subrings $0 \neq L_n < \ldots < L_0 = R$ of R such that $L_n \in N$;
(vi) [7] $R \in N_{n+1}$, where n is an integer ≥ 1, if and only if every non-zero homomorphic image R' of R contains subrings $0 \neq I_n < \ldots < I_0 = R'$ such that $I_n \in N$.

Recall that a radical class S is called left stable if for every $L < R$, $S(L) \subseteq S(R)$. An example of a left stable radical class is the generalized nil radical N_g; this is the upper radical determined by the class of reduced rings i.e. rings without non-zero nilpotent elements.

Theorem 1. If S is a left stable radical class containing N_g then for $N = S \cup P$, where P is a homomorphically closed class of commutative rings, $N_\alpha = N^\alpha$ for every ordinal α.

Proof. In view of Proposition 1 it suffices to prove that if $0 = L_n < \ldots < L_0 = R$ and $L_n \in N$ then there are $0 \neq I_n < \ldots < I_0 = R$ with $I_n \in N$. It is so if $S(R) \neq 0$. Hence, since $N_k \subseteq S$ and S is left stable, we can assume that the ring R is reduced and $L_n \in P$. Let k be a minimal number such that L_n is contained in the centre of L_k. Suppose that $k \geq 1$. Then there are $l \in L_n$ and $l' \in L_{k-1}$ such that $ll' - l'l \neq 0$. Now $(ll' - l'l)^2 = (l')^2 - l'2ll - l'2l' + (l'l)^2$. Since $l', (l')^2 \in L_k$ and L_n is contained in the centre of L_k, we have $(l')^2 = l'2l', (l')^2l = (l')^2l$ and $(l')^2 = (l')^2l$. Thus $(ll' - l'l)^2 = 0$ and, since the ring R is reduced, $ll' - l'l = 0$. This contradiction shows that L_n is contained in the centre of R. On the other hand $RL_n \subseteq L_n$. Hence $L_n = L_n + RL_n < L_n + RL_n < \ldots < L_n + RL_n < R$ and the result follows.

Let p be a prime of the form $4m + 3$ and, for $n \geq 0$, let A_n be the subring of $\mathbb{Q}(i)$ generated by p and ip^n. The following properties of the rings A_n were established by Beidar in [1, Lemma 1].

Proposition 2. (i) $A_n \triangleleft A_m$ if and only if $n = m$ or $n = m + 1$;
(ii) proper homomorphic images of A_n are finite;
(iii) the only subring of $\mathbb{Q}(i)$ isomorphic to A_n is the ring A_n itself;
(iv) if B is a subring of $\mathbb{Q}(i)$ and $A_n \triangleleft B$ then $1 \in B$ or $B = A_n$ or $B = A_{n-1}$.

Now we prove the following theorem.

Theorem 2. If $N = N_k \cup T \cup \{A_n\}$, where T is the class of rings whose additive groups are torsion and (A_n) is the class of all isomorphic images of A_n for an $n \geq 1$, then $N_1 = N^1 \not\subseteq N_2 = N^2 \not\subseteq \ldots \not\subseteq N_{n+1} = N^{n+1} = N_{n+2} = N^{n+2}$.

Proof. As an immediate consequence of Theorem 1 and Proposition 2(ii) one obtains that, for every ordinal α, $N_\alpha = N^\alpha$. It follows from Proposition 1 (vi) and Proposition 2 that $A_0 \in N_{n+1}\setminus N_n$. Hence $N_1 \not\subseteq N_2 \not\subseteq \ldots \not\subseteq N_{n+1}$. It remains to prove that $lN = N_{n+1}$ or, equivalently, that every non-zero ring $R \in lN$ contains a non-zero ideal in N_n. Obviously we can assume that R is semiprime and the additive group of R is torsion-free. Then by Propositions 1 (iv) and 2 (ii), R contains an accessible subring isomorphic to A_n. Let t be the minimal integer ≥ 0 such that there are $I_t < I_{t-1} < \ldots < I_0 = R$ with I_t isomorphic to A_k for some $0 < k \leq n$. We claim that $t \leq 1$. For, suppose that $t \geq 2$ and take I the ideal of I_{t-2} generated by I_t. By Andrunakievich's lemma, $I^2 \subseteq I_t$. This, semiprimeness of R and properties of A_n imply that I is a prime ring without 1. Since the additive group of I is torsion-free, we can form the quotient ring $Z^{-1}I$. Now $Z^{-1}I_t \not\subseteq Z^{-1}I$ and $Z^{-1}I_t$, being isomorphic to $Q(i)$, contains 1. However the ring $Z^{-1}I$ is prime, so $Z^{-1}I_t = Z^{-1}I$. Thus I is a ring without 1 isomorphic to a subring of $Q(i)$. By Proposition 2 (iii) and (iv), I is isomorphic to A_n or A_{n-1}. Moreover, if I is isomorphic to A_{n-1} then, since I is a ring without 1, $n - 1 > 0$. This and the fact that the sequence $I < I_{t-2} < I_{t-3} < \ldots < I_0 = R$ is shorter than $I_t < I_{t-1} < \ldots < I_0 = R$ prove the claim. Thus R contains a non-zero ideal isomorphic to A_k for some $0 < k \leq n$. It is clear from Proposition 2 that $A_k \in N_n$. The result follows.

Remark. Let $N = N_k \cup T \cup \{A_{2n}: n = 1, 2, \ldots \}$. One can easily check using Propositions 1 and 2 that for every $0 < i < 2^n$, $n = 1, 2, \ldots$, $A_{2n+i} \in N_{2n+i+1}\setminus N_2n_i$. Hence by Theorem 1, $N_k = N^k \not\subseteq N_{k+1} = N^{k+1}$ for $k = 1, 2, \ldots$ and $lN = lS N = \bigcup_{k=1}^{\infty} N^k$.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 20 Nov 2018 at 18:19:26, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S001708950000906X
In [4] it was proved that if the class \(N \) is hereditary (hereditary and contains nilpotent rings) then \(lsN = N^4 \) (\(lsN = N^3 \)) i.e. in those cases the chain \(\{ N^m \} \) terminates one step further than \(\{ N_a \} \). In [6] Stewart proved that if \(N \) is a class of zero rings then \(lnN = N_3 \). The following theorem shows in particular that in this case \(lsN = lnN = N^3 \). It can also be regarded as a generalization of the fact that the prime radical is strong.

Theorem 3. If \(N \) is a class of zero rings then \(S = lnN \) is a left strong radical class.

Proof. Suppose that \(L < R \) and \(L \in S \). Let \(U = \{ x \in L : Lx = 0 \} \). If \(U = L \) then \(L^2 = 0 \) and it is easy to check that \(LR^1 \in S \), where \(R^1 \) is the ring \(R \) with an unity adjoined. Suppose \(U \neq L \). Then \(0 \neq L/U \in S \), so \(L/U \) contains a non-zero accessible subring \(A/U \in N \). Hence there are subrings \(A_0, \ldots, A_n \) of \(L \) such that \(A < A_n < \ldots < A_0 = L \). Now \(0 \neq LAR^1 \in R \). Since \((LAR^1)^m \subseteq (LA)^mR^1 \) for \(m = 1, 2, \ldots \) and the ideal of \(L \) generated by \(A \) is nilpotent, \(LAR^1 \) is a nilpotent ideal of \(R \). Suppose that \((LAR^1)^{k+1} = 0 \), \((LAR^1)^k \neq 0 \) and take \(t \in (LAR^1)^{k-1} \). Obviously \(LAR^1tR^1 \in R \). For every \(l \in L, x, y \in R^1 \), the map \(f : A \to lAxty \) given by \(f(a) = laxty \) is a ring epimorphism and \(lAxty \in LAR^1tR^1 \). Hence \((LAR^1)^k \in S \). Therefore \(S(R) \neq 0 \) and the result follows.

Let us observe that if \(N \) is a class of \(N \)-nilpotent rings [5] and \(N_0 \) is the class of zero \(lnN \)-radical rings then \(lnN_0 = l(N_0 \cap N) \). Applying [5, Theorem 4] to \(\alpha = lnN \) one obtains that \(R^0 \in N \), where \(R^0 \) is the zero ring on the additive group of a ring \(R \in N \). The same theorem applied to \(\alpha = lnN_0 \) implies \(N \subseteq lnN_0 \). Hence \(lnN = LN_0 \) and Theorem 3 gives

Corollary. If \(N \) is a class of \(M \)-nilpotent rings then \(lnN = lsN = N_3 = N^3 \).

References