Let N be a homomorphically closed class of associative rings. Put $N_1 = N = N$ and, for ordinals $\alpha \geq 2$, define N_α (N^α) to be the class of all associative rings R such that every non-zero homomorphic image of R contains a non-zero ideal (left ideal) in N_β for some $\beta < \alpha$. In this way we obtain a chain $\{N_\alpha\}$ ($\{N^\alpha\}$), the union of which is equal to the lower radical class lN (lower left strong radical class lsN) determined by N. The chain $\{N_\alpha\}$ is called Kurosh's chain of N. Sulinski, Anderson and Divinsky proved [7] that $lN = \bigcup_{n=1}^{\infty} N_n$. Heinicke [3] constructed an example of N for which $lN \neq N_k$ for $k = 1, 2, \ldots$. In [1] Beidar solved the main problem in the area showing that for every natural number $n \geq 1$ there exists a class N such that $lN = N_{n+1} \neq N_n$. Some results concerning the termination of the chain $\{N^\alpha\}$ were obtained in [2, 4]. In this paper we present some classes N with $N_\alpha = N^\alpha$ for all α. Using this and Beidar's example we prove that for every natural number $n \geq 1$ there exists an N such that $N_\alpha = N^\alpha$ for all α and $N_n \neq N_{n+1} = N_{n+2}$. This in particular answers Question 6 of [4].

All rings in the paper are associative and N is a homomorphically closed class of such rings. To denote that I is an ideal (left ideal) of a ring R we write $I \triangleleft R$ ($I < R$). A subring A of a ring R is called accessible (left accessible) if there is a chain of subrings $A = A_n \subseteq A_{n-1} \subseteq \ldots \subseteq A_0 = R$ such that $A_i \triangleleft A_{i-1}$ ($A_i < A_{i-1}$) for $i = 1, 2, \ldots, n$.

\mathbb{Z} is used to denote the ring of integers, \mathbb{Q} the field of rational numbers and $\mathbb{Q}(i)$ the field of complex numbers $a + bi$, where $a, b \in \mathbb{Q}$.

The fundamental definitions and properties of radicals may be found in [8] and those of strong radicals in [2]. The following proposition collects some well known properties of classes N_α and N^α.

Proposition 1. (i) $N_\alpha \subseteq N^\alpha$ for every ordinal α;
(ii) classes N_α and N^α are homomorphically closed for all α;
(iii) ([2]) if $0 \neq R \in lsN$ then R contains a non-zero left accessible subring in N;
(iv) ([7]) $R \in lN$ if and only if every non-zero homomorphic image of R contains a non-zero accessible subring in N;
(v) ([2]) if $0 \neq R \in N^{n+1}$, where n is an integer ≥ 1, then there are subrings $0 \neq L_n < \ldots < L_0 = R$ of R such that $L_n \in N$;
(vi) ([7]) $R \in N_{n+1}$, where n is an integer ≥ 1, if and only if every non-zero homomorphic image R' of R contains subrings $0 \neq I_n < \ldots < I_0 = R'$ such that $I_n \in N$.

Recall that a radical class S is called left stable if for every $L < R$, $S(L) \subseteq S(R)$. An example of a left stable radical class is the generalized nil radical N_g; this is the upper radical determined by the class of reduced rings i.e. rings without non-zero nilpotent elements.

Theorem 1. If S is a left stable radical class containing N_g then for $N = S \cup P$, where P is a homomorphically closed class of commutative rings, $N_\alpha = N^\alpha$ for every ordinal α.
Proof. In view of Proposition 1 it suffices to prove that if $0 \neq L_n < \ldots < L_0 = R$ and $L_n \in N$ then there are $0 \neq L_n < \ldots < L_0 = R$ with $L_n \in N$. It is so if $S(R) \neq 0$. Hence, since $N_n \subseteq S$ and S is left stable, we can assume that the ring R is reduced and $L_n \in P$. Let k be a minimal number such that L_n is contained in the centre of L_k. Suppose that $k \geq 1$. Then there are $l \in L_n$ and $l' \in L_{n-1}$ such that $ll' - l'l \neq 0$. Now $(ll' - l'l)^2 = (l')^2 - l(l')^2l - l'l^2l' + (l')^2l^2$. Since $l'l$, $(l')^2l \in L_k$ and L_n is contained in the centre of L_k, we have $(ll')^2 = l'l^2l'$, $(l')^2l = (l')^2l^2$ and $(l')^2 = (l')^2l^2$. Thus $(ll' - l'l)^2 = 0$ and, since the ring R is reduced, $ll' - l'l = 0$. This contradiction shows that L_n is contained in the centre of R. On the other hand $RL_n \subseteq L_n$. Hence $L_n = L_n + RL_n < L_n + RL_{n-1} < \ldots < L_n + RL_n \subseteq R$ and the result follows.

Let p be a prime of the form $4m + 3$ and, for $n \geq 0$, let A_n be the subring of $\mathbb{Q}(i)$ generated by p and ip^n. The following properties of the rings A_n were established by Beidar in [1, Lemma 1].

Proposition 2. (i) $A_n \triangleleft A_m$ if and only if $n = m$ or $n = m + 1$;
(ii) proper homomorphic images of A_n are finite;
(iii) the only subring of $\mathbb{Q}(i)$ isomorphic to A_n is the ring A_n itself;
(iv) if B is a subring of $\mathbb{Q}(i)$ and $A_n \triangleleft B$ then $1 \in B$ or $B = A_n$ or $B = A_{n-1}$.

Now we prove the following theorem.

Theorem 2. If $N = N_k \cup T \cup \{A_n\}$, where T is the class of rings whose additive groups are torsion and (A_n) is the class of all isomorphic images of A_n for an $n \geq 1$, then $N_1 = N \not\subseteq N_2 = N^2 \not\subseteq \ldots \not\subseteq N_{n+1} = N^{n+1} = N_{n+2} = N^{n+2}$.

Proof. As an immediate consequence of Theorem 1 and Proposition 2(ii) one obtains that, for every ordinal α, $N_\alpha = N^\alpha$. It follows from Proposition 1 (vi) and Proposition 2 that $A_0 \in N_{n+1} \setminus N_n$. Hence $N_1 \not\subseteq N_2 \not\subseteq \ldots \not\subseteq N_{n+1}$. It remains to prove that $lN = N_{n+1}$ or, equivalently, that every non-zero ring $R \in lN$ contains a non-zero ideal in N_n. Obviously we can assume that R is semiprime and the additive group of R is torsion-free. Then by Propositions 1 (iv) and 2 (ii), R contains an accessible subring isomorphic to A_n. Let t be the minimal integer $t = 0$ such that there are $l < l_{t-1} < \ldots < l_0 = R$ with l_t isomorphic to Ak for some $0 < k \leq n$. We claim that $t \leq 1$. For, suppose that $t > 2$ and take I the ideal of l_{t-2} generated by l_t. By Andrunakievich's lemma, $I^2 \subseteq I$. This, semiprimes of R and properties of A_n imply that I is a prime ring without 1. Since the additive group of I is torsion-free, we can form the quotient ring $Z^{-1}I$. Now $Z^{-1}l_t \triangleleft Z^{-1}I$ and $Z^{-1}I_t$, being isomorphic to $Q(i)$, contains 1. However the ring $Z^{-1}I$ is prime, so $Z^{-1}l_t = Z^{-1}I$. Thus I is a ring without 1 isomorphic to a subring of $Q(i)$. By Proposition 2 (iii) and (iv), I is isomorphic to A_n or A_{n-1}. Moreover, if I is isomorphic to A_{n-1} then, since I is a ring without 1, $n - 1 > 0$. This and the fact that the sequence $I < l_{t-1} < l_{t-3} < \ldots < l_0 = R$ is shorter than $I < l_{t-1} < \ldots < l_0 = R$ prove the claim. Thus R contains a non-zero ideal isomorphic to A_k for some $0 < k \leq n$. It is clear from Proposition 2 that $A_k \in N_n$. The result follows.

Remark. Let $N = N_k \cup T \cup \{A_{2n} : n = 1, 2, \ldots\}$. One can easily check using Propositions 1 and 2 that for every $0 < i < 2^n$, $n = 1, 2, \ldots, A_{2n+i} \in N_{2n+i+1} \setminus N_{2n+i}$. Hence by Theorem 1, $N_k = N^k \not\subseteq N_{k+1} = N^{k+1}$ for $k = 1, 2, \ldots$ and $lN = lS N = \bigcup_{k=1}^\infty N^k$.

In [4] it was proved that if the class N is hereditary (hereditary and contains nilpotent rings) then $lsN = N^4$ ($lsN = N^3$) i.e. in those cases the chain $\{N^a\}$ terminates one step further than $\{N_a\}$. In [6] Stewart proved that if N is a class of zero rings then $lN = N_3$. The following theorem shows in particular that in this case $lsN = lN = N_3$. It can also be regarded as a generalization of the fact that the prime radical is strong.

THEOREM 3. If N is a class of zero rings then $S = lN$ is a left strong radical class.

Proof. Suppose that $L < R$ and $L \in S$. Let $U = \{x \in L : Lx = 0\}$. If $U = L$ then $L^2 = 0$ and it is easy to check that $LR^1 \in S$, where R^1 is the ring R with an unity adjoined. Suppose $U \neq L$. Then $0 \neq L/U \in S$, so L/U contains a non-zero accessible subring $A/U \in N$. Hence there are subrings A_0, \ldots, A_n of L such that $A < A_n < \ldots < A_0 = L$. Now $0 \neq LAR^1 \triangleleft R$. Since $(LAR^1)^m \subseteq (LA)^mR^1$ for $m = 1, 2, \ldots$ and the ideal of L generated by A is nilpotent, LAR^1 is a nilpotent ideal of R. Suppose that $(LAR^1)^{k+1} = 0$, $(LAR^1)^{k} \neq 0$ and take $t \in (LAR^1)^{k-1}$. Obviously $LAR^1tR^1 \triangleleft R$. For every $l \in L$, $x, y \in R^1$, the map $f : A \rightarrow lAxty$ given by $f(a) = laxty$ is a ring epimorphism and $lAxty \triangleleft LAR^1tR^1$. Hence $(LAR^1)^k \in S$. Therefore $S(R) \neq 0$ and the result follows.

Let us observe that if N is a class of N-nilpotent rings [5] and N_0 is the class of zero lN-radical rings then $lN_0 = l(N_0 \cap N)$. Applying [5, Theorem 4] to $\alpha = lN$ one obtains that $R^0 \in N$, where R^0 is the zero ring on the additive group of a ring $R \in N$. The same theorem applied to $\alpha = lN_0$ implies $N \subseteq lN_0$. Hence $lN = lN_0$ and Theorem 3 gives

COROLLARY. If N is a class of M-nilpotent rings then $lN = lsN = N_3 = N^3$.

REFERENCES