KUROSH'S CHAINS OF ASSOCIATIVE RINGS

by R. R. ANDRUSZKIEWICZ and E. R. PUCZYŁOWSKI

(Received 1 October, 1988)

Let N be a homomorphically closed class of associative rings. Put $N_{1}=N^{1}=N$ and, for ordinals $\alpha \geqslant 2$, define $N_{\alpha}\left(N^{\alpha}\right)$ to be the class of all associative rings R such that every non-zero homomorphic image of R contains a non-zero ideal (left ideal) in N_{β} for some $\beta<\alpha$. In this way we obtain a chain $\left\{N_{\alpha}\right\}\left(\left\{N^{\alpha}\right\}\right)$, the union of which is equal to the lower radical class $l N$ (lower left strong radical class $l s N$) determined by N. The chain $\left\{N_{\alpha}\right\}$ is called Kurosh's chain of N. Suliński, Anderson and Divinsky proved [7] that $l N=\bigcup_{i=1}^{\infty} N_{i}$. Heinicke [3] constructed an example of N for which $l N \neq N_{k}$ for $k=1,2, \ldots$ In [1] Beidar solved the main problem in the area showing that for every natural number $n \geqslant 1$ there exists a class N such that $l N=N_{n+1} \neq N_{n}$. Some results concerning the termination of the chain $\left\{N^{\alpha}\right\}$ were obtained in $[2,4]$. In this paper we present some classes N with $N_{\alpha}=N^{\alpha}$ for all α. Using this and Beidar's example we prove that for every natural number $n \geqslant 1$ there exists an N such that $N_{\alpha}=N^{\alpha}$ for all α and $N_{n} \neq N_{n+1}=N_{n+2}$. This in particular answers Question 6 of [4].

All rings in the paper are associative and N is a homomorphically closed class of such rings. To denote that I is an ideal (left ideal) of a ring R we write $I \triangleleft R(I<R)$. A subring A of a ring R is called accessible (left accessible) if there is a chain of subrings $A=A_{n} \subseteq A_{n-1} \subseteq \ldots \subseteq A_{0}=R$ such that $A_{i} \triangleleft A_{i-1}\left(A_{i}<A_{i-1}\right)$ for $i=1,2, \ldots, n$.
\mathbb{Z} is used to denote the ring of integers, \mathbb{Q} the field of rational numbers and $\mathbb{Q}(i)$ the field of complex numbers $a+b i$, where $a, b \in \mathbb{Q}$.

The fundamental definitions and properties of radicals may be found in [8] and those of strong radicals in [2]. The following proposition collects some well known properties of classes N_{α} and N^{α}.

Proposition 1. (i) $N_{\alpha} \subseteq N^{\alpha}$ for every ordinal α;
(ii) classes N_{α} and N^{α} are homomorphically closed for all α;
(iii) ([2]) if $0 \neq R \in L S N$ then R contains a non-zero left accessible subring in N;
(iv) ([7]) $R \in l N$ if and only if every non-zero homomorphic image of R contains a non-zero accessible subring in N;
(v) ([2]) if $0 \neq R \in N^{n+1}$, where n is an integer $\geqslant 1$, then there are subrings $0 \neq L_{n}<\ldots<L_{0}=R$ of R such that $L_{n} \in N$;
(vi) [7] $R \in N_{n+1}$, where n is an integer $\geqslant 1$, if and only if every non-zero homomorphic image R^{\prime} of R contains subrings $0 \neq I_{n} \triangleleft \ldots \triangleleft I_{0}=R^{\prime}$ such that $I_{n} \in N$.

Recall that a radical class S is called left stable if for every $L<R, S(L) \subseteq S(R)$. An example of a left stable radical class is the generalized nil radical N_{g}; this is the upper radical determined by the class of reduced rings i.e. rings without non-zero nilpotent elements.

Theorem 1. If S is a left stable radical class containing N_{g} then for $N=S \cup P$, where P is a homomorphically closed class of commutative rings, $N_{\alpha}=N^{\alpha}$ for every ordinal α.

Glasgow Math. J. 32 (1990) 67-69.

Proof. In view of Proposition 1 it suffices to prove that if $0 \neq L_{n}<\ldots<L_{0}=R$ and $L_{n} \in N$ then there are $0 \neq I_{n} \triangleleft \ldots \triangleleft I_{0}=R$ with $I_{n} \in N$. It is so if $S(R) \neq 0$. Hence, since $N_{g} \subseteq S$ and S is left stable, we can assume that the ring R is reduced and $L_{n} \in P$. Let k be a minimal number such that L_{n} is contained in the centre of L_{k}. Suppose that $k \geqslant 1$. Then there are $l \in L_{n}$ and $l^{\prime} \in L_{k-1}$ such that $l l^{\prime}-l^{\prime} l \neq 0$. Now $\left(l l^{\prime}-l^{\prime} l\right)^{2}=\left(l l^{\prime}\right)^{2}-l\left(l^{\prime}\right)^{2} l-$ $l^{\prime} l^{2} l^{\prime}+\left(l^{\prime} l\right)^{2}$. Since $l^{\prime} l,\left(l^{\prime}\right)^{2} l \in L_{k}$ and L_{n} is contained in the centre of L_{k}, we have $\left(l l^{\prime}\right)^{2}=l^{\prime} l^{2} l^{\prime}, l\left(l^{\prime}\right)^{2} l=\left(l^{\prime}\right)^{2} l^{2}$ and $\left(l^{\prime} l\right)^{2}=\left(l^{\prime}\right)^{2} l^{2}$. Thus $\left(l l^{\prime}-l^{\prime} l\right)^{2}=0$ and, since the ring R is reduced, $l l^{\prime}-l^{\prime} l=0$. This contradiction shows that L_{n} is contained in the centre of R. On the other hand $R L_{n}^{n} \subseteq L_{n}$. Hence $L_{n}=L_{n}+R L_{n}^{n} \triangleleft L_{n}+R L_{n}^{n-1} \triangleleft \ldots \triangleleft L_{n}+R L_{n} \triangleleft R$ and the result follows.

Let p be a prime of the form $4 m+3$ and, for $n \geqslant 0$, let A_{n} be the subring of $\mathbb{Q}(i)$ generated by p and $i p^{n}$. The following properties of the rings A_{n} were established by Beidar in [1, Lemma 1].

Proposition 2. (i) $A_{n} \triangleleft A_{m}$ if and only if $n=m$ or $n=m+1$;
(ii) proper homomorphic images of A_{n} are finite;
(iii) the only subring of $\mathbb{Q}(\mathrm{i})$ isomorphic to A_{n} is the ring A_{n} itself;
(iv) if B is a subring of $\mathbb{Q}(i)$ and $A_{n} \triangleleft B$ then $1 \in B$ or $B=A_{n}$ or $B=A_{n-1}$.

Now we prove the following theorem.
Theorem 2. If $N=N_{g} \cup T \cup\left\{A_{n}\right\}$, where T is the class of rings whose additive groups are torsion and $\left\{A_{n}\right\}$ is the class of all isomorphic images of A_{n} for an $n \geqslant 1$, then $N_{1}=N^{1} \subsetneq N_{2}=N^{2} \subsetneq \ldots \subsetneq N_{n+1}=N^{n+1}=N_{n+2}=N^{n+2}$.

Proof. As an immediate consequence of Theorem 1 and Proposition 2(ii) one obtains that, for every ordinal $\alpha, N_{\alpha}=N^{\alpha}$. It follows from Proposition 1 (vi) and Proposition 2 that $A_{0} \in N_{n+1} \backslash N_{n}$. Hence $N_{1} \subsetneq N_{2} \subsetneq \ldots \subsetneq N_{n+1}$. It remains to prove that $l N=N_{n+1}$ or, equivalently, that every non-zero ring $R \in l N$ contains a non-zero ideal in N_{n}. Obviously we can assume that R is semiprime and the additive group of R is torsion-free. Then by Propositions 1 (iv) and 2 (ii), R contains an accessible subring isomorphic to A_{n}. Let t be the minimal integer $\geqslant 0$ such that there are $I_{t} \triangleleft I_{t-1} \triangleleft \ldots \triangleleft I_{0}=R$ with I_{t} isomorphic to A_{k} for some $0<k \leqslant n$. We claim that $t \leqslant 1$. For, suppose that $t \geqslant 2$ and take I the ideal of I_{t-2} generated by I_{t}. By Andrunakievich's lemma, $I^{3} \subseteq I_{t}$. This, semiprimeness of R and properties of A_{n} imply that I is a prime ring without 1 . Since the additive group of I is torsion-free, we can form the quotient ring $\mathbb{Z}^{-1} I$. Now $\mathbb{Z}^{-1} I_{t} \triangleleft \mathbb{Z}^{-1} I$ and $\mathbb{Z}^{-1} I_{t}$, being isomorphic to $\mathbb{Q}(\mathrm{i})$, contains 1 . However the ring $\mathbb{Z}^{-1} I$ is prime, so $\mathbb{Z}^{-1} I_{t}=\mathbb{Z}^{-1} I$. Thus I is a ring without 1 isomorphic to a subring of $\mathbb{Q}(\mathrm{i})$. By Proposition 2 (iii) and (iv), I is isomorphic to A_{n} or A_{n-1}. Moreover, if I is isomorphic to A_{n-1} then, since I is a ring without $1, n-1>0$. This and the fact that the sequence $I \triangleleft I_{t-2} \triangleleft I_{t-3} \triangleleft \ldots \triangleleft I_{0}=R$ is shorter than $I_{t} \triangleleft I_{t-1} \triangleleft \ldots \triangleleft I_{0}=R$ prove the claim. Thus R contains a non-zero ideal isomorphic to A_{k} for some $0<k \leqslant n$. It is clear from Proposition 2 that $A_{k} \in N_{n}$. The result follows.

Remark. Let $N=N_{g} \cup T \cup\left\{A_{2} n: n=1,2, \ldots\right\}$. One can easily check using Propositions 1 and 2 that for every $0<i<2^{n}, n=1,2, \ldots, A_{2} n_{+i} \in N_{2} n_{-i+1} \backslash N_{2} n_{-i}$. Hence by Theorem $1, N_{k}=N^{k} \subsetneq N_{k+1}=N^{k+1}$ for $k=1,2, \ldots$ and $l N=l s N=\bigcup_{k=1}^{\infty} N^{k}$.

In [4] it was proved that if the class N is hereditary (hereditary and contains nilpotent rings) then $l s N=N^{4}\left(l s N=N^{3}\right)$ i.e. in those cases the chain $\left\{N^{\alpha}\right\}$ terminates one step further than $\left\{N_{\alpha}\right\}$. In [6] Stewart proved that if N is a class of zero rings then $l N=N_{3}$. The following theorem shows in particular that in this case $l s N=l N=N^{3}$. It can also be regarded as a generalization of the fact that the prime radical is strong.

Theorem 3. If N is a class of zero rings then $S=l N$ is a left strong radical class.
Proof. Suppose that $L<R$ and $L \in S$. Let $U=\{x \in L: L x=0\}$. If $U=L$ then $L^{2}=0$ and it is easy to check that $L R^{1} \in S$, where R^{1} is the ring R with an unity adjoined. Suppose $U \neq L$. Then $0 \neq L / U \in S$, so L / U contains a non-zero accessible subring $A / U \in N$. Hence there are subrings A_{0}, \ldots, A_{n} of L such that $A \triangleleft A_{n} \triangleleft \ldots \triangleleft A_{0}=L$. Now $0 \neq \mathrm{LAR}^{1} \triangleleft R$. Since $\left(\mathrm{LAR}^{1}\right)^{m} \subseteq(\mathrm{LA})^{m} R^{1}$ for $m=1,2, \ldots$ and the ideal of L generated by A is nilpotent, LAR ${ }^{1}$ is a nilpotent ideal of R. Suppose that $\left(\operatorname{LAR}^{1}\right)^{k+1}=0$, $\left(\operatorname{LAR}^{1}\right)^{k} \neq 0$ and take $t \in\left(\operatorname{LAR}^{1}\right)^{k-1}$. Obviously $\operatorname{LAR}^{1} t R^{1} \triangleleft R$. For every $l \in L, x, y \in R^{1}$, the map $f: A \rightarrow$ lAxty given by $f(a)=$ laxty is a ring epimorphism and $l A x t y \triangleleft L A R^{1} t R^{1}$. Hence $\left(\mathrm{LAR}^{1}\right)^{k} \in S$. Therefore $S(R) \neq 0$ and the result follows.

Let us observe that if N is a class of N-nilpotent rings [5] and N_{0} is the class of zero $l N$-radical rings then $l N_{0}=l\left(N_{0} \cap N\right)$. Applying [5, Theorem 4] to $\alpha=l N$ one obtains that $R^{0} \in N$, where R^{0} is the zero ring on the additive group of a ring $R \in N$. The same theorem applied to $\alpha=l N_{0}$ implies $N \subseteq l N_{0}$. Hence $l N=L N_{0}$ and Theorem 3 gives

Corollary. If N is a class of M-nilpotent rings then $l N=l s N=N_{3}=N^{3}$.

REFERENCES

1. K. I. Beidar, A chain of Kurosh may have an arbitrary finite length, Czech. Math. J. 32 (1982), 418-422.
2. N. Divinsky, J. Krempa and A. Suliński, Strong radical properties of alternative and associative rings, J. Algebra 17 (1971), 369-381.
3. A. Heinicke, A note on lower radical constructions for associative rings, Canad. Math. Bull. 11 (1968), 23-30.
4. E. R. Puczyłowski, On questions concerning strong radicals of associative rings, Quaestiones Math. 10 (1987), 321-338.
5. A. D. Sands, On M-nilpotent rings, Proc. Royal Soc. Edinburgh Sect. A 93 (1982), 63-70.
6. P. N. Stewart, On the lower radical construction, Acta Math. Acad. Sci. Hungar. 25 (1974), 31-32.
7. A. Suliński, T. Anderson and N. Divinsky, Lower radical properties for associative and alternative rings, J. London Math. Soc 41 (1966), 417-424.
8. R. Wiegandt, Radical and semisimple classes of rings, Queen's University, Kingston, Ontario, 1974.

Institute of Mathematics
University of Warsaw, Bialystok Division
Akademicka 2, 15-267 Bialystok
Poland

Institute of Mathematics
University of Warsaw
Pkin, 00-901 Warsaw
Poland

