KUROSH'S CHAINS OF ASSOCIATIVE RINGS

by R. R. ANDRUSZKIEWICZ and E. R. PUCZYŁOWSKI

(Received 1 October, 1988)

Let N be a homomorphically closed class of associative rings. Put $N_1 = N^1 = N$ and, for ordinals $\alpha \ge 2$, define N_{α} (N^{α}) to be the class of all associative rings R such that every non-zero homomorphic image of R contains a non-zero ideal (left ideal) in N_{β} for some $\beta < \alpha$. In this way we obtain a chain $\{N_{\alpha}\}$ ($\{N^{\alpha}\}$), the union of which is equal to the lower radical class lN (lower left strong radical class lsN) determined by N. The chain $\{N_{\alpha}\}$ is called Kurosh's chain of N. Suliński, Anderson and Divinsky proved [7] that $lN = \bigcup_{i=1}^{\infty} N_i$. Heinicke [3] constructed an example of N for which $lN \neq N_k$ for $k = 1, 2, \ldots$. In [1] Beidar solved the main problem in the area showing that for every natural number $n \ge 1$ there exists a class N such that $lN = N_{n+1} \neq N_n$. Some results concerning the termination of the chain $\{N^{\alpha}\}$ were obtained in [2, 4]. In this paper we present some classes N with $N_{\alpha} = N^{\alpha}$ for all α . Using this and Beidar's example we prove that for every natural number $n \ge 1$ there exists an N such that $N_{\alpha} = N^{\alpha}$ for all α and $N_n \neq N_{n+1} = N_{n+2}$. This in particular answers Question 6 of [4].

All rings in the paper are associative and N is a homomorphically closed class of such rings. To denote that I is an ideal (left ideal) of a ring R we write $I \triangleleft R$ (I < R). A subring A of a ring R is called *accessible* (*left accessible*) if there is a chain of subrings $A = A_n \subseteq A_{n-1} \subseteq \ldots \subseteq A_0 = R$ such that $A_i \triangleleft A_{i-1}$ ($A_i < A_{i-1}$) for i = 1, 2, ..., n.

 \mathbb{Z} is used to denote the ring of integers, \mathbb{Q} the field of rational numbers and $\mathbb{Q}(i)$ the field of complex numbers a + bi, where $a, b \in \mathbb{Q}$.

The fundamental definitions and properties of radicals may be found in [8] and those of strong radicals in [2]. The following proposition collects some well known properties of classes N_{α} and N^{α} .

PROPOSITION 1. (i) $N_{\alpha} \subseteq N^{\alpha}$ for every ordinal α ;

(ii) classes N_{α} and N^{α} are homomorphically closed for all α ;

(iii) ([2]) if $0 \neq R \in lsN$ then R contains a non-zero left accessible subring in N;

(iv) ([7]) $R \in IN$ if and only if every non-zero homomorphic image of R contains a non-zero accessible subring in N;

(v) ([2]) if $0 \neq R \in N^{n+1}$, where n is an integer ≥ 1 , then there are subrings $0 \neq L_n < \ldots < L_0 = R$ of R such that $L_n \in N$;

(vi) [7] $R \in N_{n+1}$, where n is an integer ≥ 1 , if and only if every non-zero homomorphic image R' of R contains subrings $0 \ne I_n \lhd \ldots \lhd I_0 = R'$ such that $I_n \in N$.

Recall that a radical class S is called *left stable* if for every L < R, $S(L) \subseteq S(R)$. An example of a left stable radical class is the generalized nil radical N_g ; this is the upper radical determined by the class of reduced rings i.e. rings without non-zero nilpotent elements.

THEOREM 1. If S is a left stable radical class containing N_g then for $N = S \cup P$, where P is a homomorphically closed class of commutative rings, $N_{\alpha} = N^{\alpha}$ for every ordinal α .

Glasgow Math. J. 32 (1990) 67-69.

R. R. ANDRUSZKIEWICZ AND E. R. PUCZYŁOWSKI

Proof. In view of Proposition 1 it suffices to prove that if $0 \neq L_n < ... < L_0 = R$ and $L_n \in N$ then there are $0 \neq I_n \triangleleft ... \triangleleft I_0 = R$ with $I_n \in N$. It is so if $S(R) \neq 0$. Hence, since $N_g \subseteq S$ and S is left stable, we can assume that the ring R is reduced and $L_n \in P$. Let k be a minimal number such that L_n is contained in the centre of L_k . Suppose that $k \ge 1$. Then there are $l \in L_n$ and $l' \in L_{k-1}$ such that $ll' - l'l \neq 0$. Now $(ll' - l'l)^2 = (ll')^2 - l(l')^2 l - l'l^2 l' + (l'l)^2$. Since l'l, $(l')^2 l \in L_k$ and L_n is contained in the centre of L_k , we have $(ll')^2 = l'l^2 l', l(l')^2 l = (l')^2 l^2$ and $(l'l)^2 = (l')^2 l^2$. Thus $(ll' - l'l)^2 = 0$ and, since the ring R is reduced, ll' - l'l = 0. This contradiction shows that L_n is contained in the centre of R. On the other hand $RL_n^n \subseteq L_n$. Hence $L_n = L_n + RL_n^n \triangleleft L_n + RL_n^{n-1} \triangleleft ... \triangleleft L_n + RL_n \triangleleft R$ and the result follows.

Let p be a prime of the form 4m + 3 and, for $n \ge 0$, let A_n be the subring of $\mathbb{Q}(i)$ generated by p and ip^n . The following properties of the rings A_n were established by Beidar in [1, Lemma 1].

PROPOSITION 2. (i) $A_n \triangleleft A_m$ if and only if n = m or n = m + 1;

- (ii) proper homomorphic images of A_n are finite;
- (iii) the only subring of $\mathbb{Q}(i)$ isomorphic to A_n is the ring A_n itself;
- (iv) if B is a subring of $\mathbb{Q}(i)$ and $A_n \triangleleft B$ then $1 \in B$ or $B = A_n$ or $B = A_{n-1}$.

Now we prove the following theorem.

THEOREM 2. If $N = N_g \cup T \cup \{A_n\}$, where T is the class of rings whose additive groups are torsion and $\{A_n\}$ is the class of all isomorphic images of A_n for an $n \ge 1$, then $N_1 = N^1 \subsetneq N_2 = N^2 \subsetneq \ldots \subsetneq N_{n+1} = N^{n+1} = N_{n+2} = N^{n+2}$.

Proof. As an immediate consequence of Theorem 1 and Proposition 2(ii) one obtains that, for every ordinal α , $N_{\alpha} = N^{\alpha}$. It follows from Proposition 1 (vi) and Proposition 2 that $A_0 \in N_{n+1} \setminus N_n$. Hence $N_1 \subseteq N_2 \subseteq \ldots \subseteq N_{n+1}$. It remains to prove that $lN = N_{n+1}$ or, equivalently, that every non-zero ring $R \in lN$ contains a non-zero ideal in N_n . Obviously we can assume that R is semiprime and the additive group of R is torsion-free. Then by Propositions 1 (iv) and 2 (ii), R contains an accessible subring isomorphic to A_n . Let t be the minimal integer ≥ 0 such that there are $I_t \triangleleft I_{t-1} \triangleleft \ldots \triangleleft I_0 = R$ with I_t isomorphic to A_k for some $0 < k \le n$. We claim that $t \le 1$. For, suppose that $t \ge 2$ and take I the ideal of I_{t-2} generated by I_t . By Andrunakievich's lemma, $I^3 \subseteq I_t$. This, semiprimeness of R and properties of A_n imply that I is a prime ring without 1. Since the additive group of I is torsion-free, we can form the quotient ring $\mathbb{Z}^{-1}I$. Now $\mathbb{Z}^{-1}I_t \triangleleft \mathbb{Z}^{-1}I$ and $\mathbb{Z}^{-1}I_t$, being isomorphic to $\mathbb{Q}(i)$, contains 1. However the ring $\mathbb{Z}^{-1}I$ is prime, so $\mathbb{Z}^{-1}I_t = \mathbb{Z}^{-1}I$. Thus I is a ring without 1 isomorphic to a subring of $\mathbb{Q}(i)$. By Proposition 2 (iii) and (iv), I is isomorphic to A_n or A_{n-1} . Moreover, if I is isomorphic to A_{n-1} then, since I is a ring without 1, n-1>0. This and the fact that the sequence $I \triangleleft I_{t-2} \triangleleft I_{t-3} \triangleleft \ldots \triangleleft I_0 = R$ is shorter than $I_t \triangleleft I_{t-1} \triangleleft \ldots \triangleleft I_0 = R$ prove the claim. Thus R contains a non-zero ideal isomorphic to A_k for some $0 < k \le n$. It is clear from Proposition 2 that $A_k \in N_n$. The result follows.

REMARK. Let $N = N_g \cup T \cup \{A_2n : n = 1, 2, ...\}$. One can easily check using Propositions 1 and 2 that for every $0 < i < 2^n$, $n = 1, 2, ..., A_2n_{+i} \in N_2n_{-i+1} \setminus N_2n_{-i}$. Hence by Theorem 1, $N_k = N^k \subseteq N_{k+1} = N^{k+1}$ for k = 1, 2, ... and $lN = l_sN = \bigcup_{k=1}^{\infty} N^k$. In [4] it was proved that if the class N is hereditary (hereditary and contains nilpotent rings) then $l_s N = N^4$ ($l_s N = N^3$) i.e. in those cases the chain $\{N^{\alpha}\}$ terminates one step further than $\{N_{\alpha}\}$. In [6] Stewart proved that if N is a class of zero rings then $lN = N_3$. The following theorem shows in particular that in this case $l_s N = lN = N^3$. It can also be regarded as a generalization of the fact that the prime radical is strong.

THEOREM 3. If N is a class of zero rings then S = IN is a left strong radical class.

Proof. Suppose that L < R and $L \in S$. Let $U = \{x \in L : Lx = 0\}$. If U = L then $L^2 = 0$ and it is easy to check that $LR^1 \in S$, where R^1 is the ring R with an unity adjoined. Suppose $U \neq L$. Then $0 \neq L/U \in S$, so L/U contains a non-zero accessible subring $A/U \in N$. Hence there are subrings A_0, \ldots, A_n of L such that $A \triangleleft A_n \triangleleft \ldots \triangleleft A_0 = L$. Now $0 \neq LAR^1 \triangleleft R$. Since $(LAR^1)^m \subseteq (LA)^m R^1$ for $m = 1, 2, \ldots$ and the ideal of Lgenerated by A is nilpotent, LAR^1 is a nilpotent ideal of R. Suppose that $(LAR^1)^{k+1} = 0$, $(LAR^1)^k \neq 0$ and take $t \in (LAR^1)^{k-1}$. Obviously $LAR^1tR^1 \triangleleft R$. For every $l \in L$, $x, y \in R^1$, the map $f : A \rightarrow lAxty$ given by f(a) = laxty is a ring epimorphism and $lAxty \triangleleft LAR^1tR^1$. Hence $(LAR^1)^k \in S$. Therefore $S(R) \neq 0$ and the result follows.

Let us observe that if N is a class of N-nilpotent rings [5] and N_0 is the class of zero lN-radical rings then $lN_0 = l(N_0 \cap N)$. Applying [5, Theorem 4] to $\alpha = lN$ one obtains that $R^0 \in N$, where R^0 is the zero ring on the additive group of a ring $R \in N$. The same theorem applied to $\alpha = lN_0$ implies $N \subseteq lN_0$. Hence $lN = LN_0$ and Theorem 3 gives

COROLLARY. If N is a class of M-nilpotent rings then $lN = l_s N = N_3 = N^3$.

REFERENCES

1. K. I. Beidar, A chain of Kurosh may have an arbitrary finite length, *Czech. Math. J.* 32 (1982), 418-422.

2. N. Divinsky, J. Krempa and A. Suliński, Strong radical properties of alternative and associative rings, J. Algebra 17 (1971), 369–381.

3. A. Heinicke, A note on lower radical constructions for associative rings, Canad. Math. Bull. 11 (1968), 23-30.

4. E. R. Puczyłowski, On questions concerning strong radicals of associative rings, *Quaestiones Math.* 10 (1987), 321-338.

5. A. D. Sands, On M-nilpotent rings, Proc. Royal Soc. Edinburgh Sect. A 93 (1982), 63-70.

6. P. N. Stewart, On the lower radical construction, Acta Math. Acad. Sci. Hungar. 25 (1974), 31-32.

7. A. Suliński, T. Anderson and N. Divinsky, Lower radical properties for associative and alternative rings, J. London Math. Soc 41 (1966), 417-424.

8. R. Wiegandt, Radical and semisimple classes of rings, Queen's University, Kingston, Ontario, 1974.

Institute of Mathematics University of Warsaw, Białystok Division Akademicka 2, 15-267 Białystok Poland Institute of Mathematics University of Warsaw Pkin, 00-901 Warsaw Poland