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Let N be a homomorphically closed class of associative rings. Put N{ = Nl = N and,
for ordinals a 5= 2, define Na (Na) to be the class of all associative rings R such that every
non-zero homomorphic image of R contains a non-zero ideal (left ideal) in A^ for some
/3 < a. In this way we obtain a chain {Na} ({Na}), the union of which is equal to the
lower radical class IN (lower left strong radical class isN) determined by N. The chain
{Na} is called Kurosh's chain of N. Sulinski, Anderson and Divinsky proved [7] that
IN = {J°°=lNj. Heinicke [3] constructed an example of N for which lN¥=Nk for
k = 1, 2, . . . . In [1] Beidar solved the main problem in the area showing that for every
natural number n ^ l there exists a class N such that IN = Nn+l¥= Nn. Some results
concerning the termination of the chain {Na} were obtained in [2,4]. In this paper we
present some classes N with Na = N" for all a. Using this and Beidar's example we prove
that for every natural number n 3= 1 there exists an N such that Na = Na for all a and
Nn^Nn+i = Nn+2. This in particular answers Question 6 of [4].

All rings in the paper are associative and N is a homomorphically closed class of such
rings. To denote that / is an ideal (left ideal) of a ring R we write / < i ? (/</?). A
subring A of a ring R is called accessible (left accessible) if there is a chain of subrings
A = > l n c / l n _ 1 c . . . c / l o = /? such that Ai<Ai_l ( ,4,<A-i) for / = 1, 2, . . . , n.

Z is used to denote the ring of integers, Q the field of rational numbers and Q(i) the
field of complex numbers a + bi, where a, b e Q.

The fundamental definitions and properties of radicals may be found in [8] and those
of strong radicals in [2]. The following proposition collects some well known properties of
classes A^ and N".

PROPOSITION 1. (i) A .̂ c N" for every ordinal a;
(ii) classes Na and Na are homomorphically closed for all a;
(iii) ([2]) ifO^Re IsN then R contains a non-zero left accessible subring in N;
(iv) ([7]) R e IN if and only if every non-zero homomorphic image of R contains a

non-zero accessible subring in N;
(v) ([2]) if 0¥^R e Nn+1, where n is an integer 3*1, then there are subrings

0 # Ln <. . . < Lo = R of R such that Ln e N;
(vi) [7] ReNn+u where n is an integer 5*1, if and only if every non-zero

homomorphic image R' of R contains subrings 0 =£ /„ < . . . < 70 = R' such that /„ e N.

Recall that a radical class 5 is called left stable if for every L<R, S(L) c S(R). An
example of a left stable radical class is the generalized nil radical A^; this is the upper
radical determined by the class of reduced rings i.e. rings without non-zero nilpotent
elements.

THEOREM 1. If S is a left stable radical class containing Ng then for N — 5 U P, where P
is a homomorphically closed class of commutative rings, Na = N" for every ordinal a.
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Proof. In view of Proposition 1 it suffices to prove that if 0 =£ Ln <. . . < Lo = R and
LneN then there are 0 + / „ < . . . < /0 = R with /„ e N. It is so if S(R) ¥= 0. Hence, since
NgcS and S is left stable, we can assume that the ring R is reduced and Ln e P. Let k be
a minimal number such that Ln is contained in the centre of Lk. Suppose that k^l. Then
there are leLn and /' e Lk_, such that ll'-l'l^O. Now (//' - / 7 ) 2 = (//')2 -l(l')2l-
VlH' + (I'l)2. Since /'/, (/')2' e £fc and Lw is contained in the centre of Lk, we have
(//')2 = /72/', /(/')2/ = (/')2'2 and (I'l)2 = (Z')2/2. Thus (//' - /7)2 = 0 and, since the ring R is
reduced, W - I'1 = 0. This contradiction shows that Ln is contained in the centre of R. On
the other hand RLn

ncLn. Hence Ln = Ln +RLn
n<Ln +RLn

n~
x <. . . <Ln +RLn<R

and the result follows.

Let p be a prime of the form 4m + 3 and, for n 3= 0, let >4n be the subring of Q(i)
generated by p and ip". The following properties of the rings An were established by
Beidar in [1, Lemma 1].

PROPOSITION 2. (i) An < Am if and only if n = m or n = m + 1;
(ii) proper homomorphic images of An are finite;
(iii) f/ie o/j/y subring of Q(i) isomorphic to An is the ring An itself;
(iv) if B is a subring of Q(i) and An<B then leB or B =Anor B = An_x.

Now we prove the following theorem.

THEOREM 2. / / N = NgD TU {An}, where T is the class of rings whose additive
groups are torsion and {An} is the class of all isomorphic images of An for an n^l, then
N, = Nx £ N2 = N2

 9 . . . p Nn+i = N"+1 = Nn+2 = Nn+2.

Proof. As an immediate consequence of Theorem 1 and Proposition 2(ii) one
obtains that, for every ordinal a, Na = Na. It follows from Proposition 1 (vi) and
Proposition 2 that AoeNn+l\Nn. Hence Wj^A^^ . . . ̂ Nn+i. It remains to prove that
IN = Nn+1 or, equivalently, that every non-zero ring R elN contains a non-zero ideal in
Nn. Obviously we can assume that R is semiprime and the additive group of R is
torsion-free. Then by Propositions 1 (iv) and 2 (ii), R contains an accessible subring
isomorphic to An. Let t be the minimal integer 2=0 such that there are
/ , < / , _ ! < ] . . . < /0 = R with /, isomorphic to Ak for some 0 < k «s n. We claim that f =£ 1.
For, suppose that 12* 2 and take / the ideal of /,_2 generated by /,. By Andrunakievich's
lemma, I3 c /,. This, semiprimeness of R and properties of An imply that / is a prime ring
without 1. Since the additive group of / is torsion-free, we can form the quotient ring
Z"1/. Now Z"1/,<\T~lI and Z"1/,, being isomorphic to Q(i), contains 1. However the
ring Z"1/ is prime, so Z"1/, = Z"1/. Thus / is a ring without 1 isomorphic to a subring of
Q(i). By Proposition 2 (iii) and (iv), / is isomorphic to An or An-V Moreover, if / is
isomorphic to An_x then, since / is a ring without 1, n - 1 >0. This and the fact that the
sequence / < /,_2 < /,_3 <3 . . . < /0 = R is shorter than / ,<]/ ,_,< . . . < /„ = R prove the
claim. Thus R contains a non-zero ideal isomorphic to Ak for some 0<k^n. It is clear
from Proposition 2 that Ak eNn. The result follows.

REMARK. Let N = NgUTU {A2n:n = 1,2,...}. One can easily check using
Propositions 1 and 2 that for every 0 < / < 2", n = 1, 2 , . . . , A2n+,. e N2n_,+1W2n_,-.
Hence by Theorem 1, Nk = Nk£ Nk+l = Nk+i for k = 1, 2 , . . . and lN = lsN = U*=i #*•
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In [4] it was proved that if the class N is hereditary (hereditary and contains nilpotent
rings) then IsN = A'4 (bN = N3) i.e. in those cases the chain {Na} terminates one step
further than {A^}. In [6] Stewart proved that if A7 is a class of zero rings then IN = N3.
The following theorem shows in particular that in this case IsN = IN = N3. It can also be
regarded as a generalization of the fact that the prime radical is strong.

THEOREM 3. If N is a class of zero rings then S = IN is a left strong radical class.

Proof. Suppose that L < R and L e 5. Let U = {x e L: Lx = 0}. If U = L then L2 = 0
and it is easy to check that LR1eS, where /?' is the ring R with an unity adjoined.
Suppose U^L. Then O ^ L / t / e S , so L/U contains a non-zero accessible subring
A/U e N. Hence there are subrings Ao, . . . , An of L such that A < An < . . . < Ao = L.
Now 0±LARl<R. Since (LAR')m <= (LA)"1/?1 for m = 1, 2, . . . and the ideal of L
generated by A is nilpotent, LAR1 is a nilpotent ideal of R. Suppose that (LAR1)*"1"1 = 0,
(LAR1)* * 0 and take t e (LAR1)*"1. Obviously LAR1^1 < R. For every leL.x.yeR1,
the map f: A-*lAxty given by f(a) = loxty is a ring epimorphism and lAxty < LARltR\
Hence (LAR1)* e S. Therefore S(R) ^=0 and the result follows.

Let us observe that if Af is a class of Af-nilpotent rings [5] and A^ is the class of zero
W-radical rings then INO = l(N0 D N). Applying [5, Theorem 4] to a = IN one obtains that
R° e N, where R° is the zero ring on the additive group of a ring R eN. The same
theorem applied to a = INO implies N c INO. Hence IN = LN0 and Theorem 3 gives

COROLLARY. If N is a class of M-nilpotent rings then IN = IsN = N3 = N3.
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