ON CONVEX COMBINATIONS OF CONVEX HARMONIC MAPPINGS

ÁLVARO FERRADA-SALAS, RODRIGO HERNÁNDEZ and MARÍA J. MARTÍN ${ }^{\boxtimes}$

(Received 30 November 2016; accepted 1 June 2017; first published online 7 August 2017)

Abstract

The family \mathcal{F}_{λ} of orientation-preserving harmonic functions $f=h+\bar{g}$ in the unit disc \mathbb{D} (normalised in the standard way) satisfying $$
h^{\prime}(z)+g^{\prime}(z)=\frac{1}{(1+\lambda z)(1+\bar{\lambda} z)}, \quad z \in \mathbb{D}
$$ for some $\lambda \in \partial \mathbb{D}$, along with their rotations, play an important role among those functions that are harmonic and orientation-preserving and map the unit disc onto a convex domain. The main theorem in this paper generalises results in recent literature by showing that convex combinations of functions in \mathcal{F}_{λ} are convex.

2010 Mathematics subject classification: primary 31A05; secondary 30C45.
Keywords and phrases: convex harmonic mappings, convex combinations.

1. Introduction

A complex-valued harmonic function f in the unit disc \mathbb{D} can be represented as $f=h+\bar{g}$, where both h and g are analytic in \mathbb{D}. This representation is unique up to an additive constant which is usually determined by imposing the condition that the function g fixes the origin. The representation $f=h+\bar{g}$ is then unique and is called the canonical representation of f.

It is a consequence of the inverse mapping theorem that if the Jacobian of a C^{1} mapping from \mathbb{R}^{n} to \mathbb{R}^{n} is different from zero, the function is locally univalent. Lewy [8] showed that when the function is harmonic, the converse also holds. Hence, a harmonic mapping $f=h+\bar{g}$ is locally univalent if and only if its Jacobian $J_{f}=$ $\left|h^{\prime}\right|^{2}-\left|g^{\prime}\right|^{2} \neq 0$. Thus, locally univalent harmonic mappings in the unit disc can be classified as orientation-preserving mappings (if $J_{f}>0$ in \mathbb{D}) or orientation-reversing (if $J_{f}<0$ in \mathbb{D}).

[^0](C) 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

It is obvious that f is orientation-preserving if and only if \bar{f} is orientation-reversing. Note that $f=h+\bar{g}$ is orientation-preserving if and only if $h^{\prime} \neq 0$ in \mathbb{D} and the dilatation $\omega=g^{\prime} / h^{\prime}$ is an analytic function in the unit disc which maps \mathbb{D} into itself.

For a comprehensive treatment of harmonic mappings in the unit disc, we refer the reader to [4].
1.1. Convex harmonic mappings. Let \mathcal{A} denote the class of all analytic functions φ in the unit disc \mathbb{D} normalised by the conditions $\varphi(0)=\varphi^{\prime}(0)-1=0$. Let \mathcal{H} denote the family of complex-valued harmonic mappings $f=h+\bar{g}$ in \mathbb{D} that preserve the orientation and are normalised by the conditions $h(0)=g(0)=0$ and $h^{\prime}(0)=1$. The class \mathcal{H}_{0} consists of those functions $f \in \mathcal{H}$ with $g^{\prime}(0)=0$.

We will consider particular properties of functions $f \in \mathcal{H}_{0}$ that map the unit disc onto a convex domain. The family of such mappings is, as usual, denoted by K_{H}^{0}. It is known that every function $f \in K_{H}^{0}$ is univalent in \mathbb{D} (see [2, Theorem 5.7] and [7, Corollary 2.2]).

According to [2, Theorem 5.7], a harmonic mapping $f=h+\bar{g}$ belongs to K_{H}^{0} if and only if, for each $\theta \in(-\pi / 2, \pi / 2]$, the analytic function $\psi_{\theta}=h+e^{2 i \theta} g$ belongs to \mathcal{A} and is convex in the direction $(\theta+\pi / 2)$, meaning that the intersection of $\psi_{\theta}(\mathbb{D})$ with any line parallel to the line through 0 and $i e^{i \theta}$ is an interval or the empty set.

It is obvious that ψ_{θ} is convex in the $(\theta+\pi / 2)$-direction if and only if the function $\varphi_{\theta}=e^{-i \theta} \psi_{\theta}$ is convex in the direction of the imaginary axis (that is, the $\pi / 2$-direction). The following characterisation, due to Royster and Ziegler [10], of analytic functions in the unit disc that map \mathbb{D} onto a domain convex in the vertical direction will be used later in this paper.

Theorem A. Let φ be a locally univalent analytic function in the unit disc. Then φ maps \mathbb{D} onto a domain convex in the direction of the imaginary axis if and only if there are numbers $\mu \in[0,2 \pi)$ and $v \in[0, \pi]$ such that

$$
\operatorname{Re}\left\{-i e^{i \mu}\left(1-2 z e^{-i \mu} \cos v+e^{-2 i \mu} z^{2}\right) \varphi^{\prime}(z)\right\} \geq 0, \quad z \in \mathbb{D}
$$

1.2. Some special convex harmonic mappings. By applying different transformations to some of the harmonic mappings considered by Hengartner and Schober in [6], Dorff [3] showed that if the harmonic function $f=h+\bar{g} \in \mathcal{H}_{0}$ maps the unit disc onto a vertical strip

$$
\Omega_{\alpha}=\left\{w \in \mathbb{C}: \frac{\alpha-\pi}{2 \sin \alpha}<\operatorname{Re}\{w\}<\frac{\alpha}{2 \sin \alpha}\right\}
$$

where $\pi / 2 \leq \alpha<\pi$, then

$$
\begin{equation*}
h(z)+g(z)=\frac{1}{2 i \sin \alpha} \log \left(\frac{1+e^{i \alpha} z}{1+e^{-i \alpha} z}\right), \quad z \in \mathbb{D} . \tag{1.1}
\end{equation*}
$$

Some nice consequences are obtained from this result. Thus, Dorff [3] shows that if $f=h+\bar{g} \in K_{H}^{0}$ maps the unit disc onto a half-plane of the form $\{\operatorname{Re}\{w\}>a\}$, where
a is any negative real number, then $a=-1 / 2$. Moreover, such a harmonic mapping f from the unit disc onto the half-plane $\Omega=\{w \in \mathbb{C}: \operatorname{Re}\{w\}>-1 / 2\}$ satisfies

$$
\begin{equation*}
h(z)+g(z)=\frac{z}{1-z}, \quad z \in \mathbb{D} \tag{1.2}
\end{equation*}
$$

Note that if a function $f=h+\bar{g} \in \mathcal{H}_{0}$ satisfies either (1.1) or (1.2), then there exists $\lambda \in \partial \mathbb{D}$ such that

$$
\begin{equation*}
h^{\prime}(z)+g^{\prime}(z)=\frac{1}{(1+\lambda z)(1+\bar{\lambda} z)} \tag{1.3}
\end{equation*}
$$

In what follows, given $\lambda \in \partial \mathbb{D}$, we denote by \mathcal{F}_{λ} the family of harmonic mappings $f=h+\bar{g} \in K_{H}^{0}$ for which (1.3) holds.
1.3. Rotations. It is obvious that if $f=h+\bar{g} \in K_{H}^{0}$ and $\mu \in \partial \mathbb{D}$, then the rotation f_{μ} defined in the unit disc by the formula

$$
f_{\mu}(z)=\bar{\mu} f(\mu z)
$$

also belongs to K_{H}^{0}. Moreover, a straightforward calculation shows that the functions h_{μ} and g_{μ} in the canonical decomposition of $f_{\mu}=h_{\mu}+\overline{g_{\mu}}$ are, respectively,

$$
h_{\mu}(z)=\bar{\mu} h(\mu z) \quad \text { and } \quad g_{\mu}(z)=\mu g(\mu z), \quad z \in \mathbb{D} .
$$

Therefore, $f=h+\bar{g} \in \mathcal{F}_{\lambda}$ if and only if for all $z \in \mathbb{D}$ and λ and μ as above,

$$
h_{\mu}^{\prime}(z)+\overline{\mu^{2}} g_{\mu}^{\prime}(z)=\frac{1}{(1+\lambda \mu z)(1+\bar{\lambda} \mu z)} .
$$

In other words, we have proved the following result.
Proposition 1.1. A harmonic mapping $F=H+\bar{G} \in \mathcal{H}_{0}$ satisfying

$$
\begin{equation*}
H^{\prime}(z)+\overline{\mu^{2}} G^{\prime}(z)=\frac{1}{(1+\lambda \mu z)(1+\bar{\lambda} \mu z)} \tag{1.4}
\end{equation*}
$$

for certain λ and μ in $\partial \mathbb{D}$ and all $|z|<1$ has a rotation $f=h+\bar{g}$ which satisfies (1.3).
Some particular cases of harmonic functions $F=H+\bar{G} \in \mathcal{H}_{0}$ for which (1.4) holds have been considered in the literature. For example, harmonic mappings $F=H+\bar{G}$ satisfying (1.4) for the particular values $\lambda=\mu=i$ were considered in [5] and [12]. The functions H and G in the canonical decomposition of such functions F satisfy

$$
\begin{equation*}
H(z)-G(z)=\frac{1}{2} \log \left(\frac{1+z}{1-z}\right), \quad z \in \mathbb{D} . \tag{1.5}
\end{equation*}
$$

It was proved in [5] (and independently in [12]) that any normalised harmonic mapping $F=H+\bar{G} \in \mathcal{H}_{0}$ for which (1.5) holds is convex. It is shown in [13] that the convex combination of such harmonic mappings is convex in the horizontal direction. The following stronger result is given in [12]: convex combinations of functions satisfying (1.5) are convex (see [12, Theorem 4]).

A related result appears in [11]. Take $\lambda=-1$ and an arbitrary $\mu \in \partial \mathbb{D}$ in (1.4). Following the terminology in [9], these harmonic functions are called slanted halfplane harmonic mappings with parameter $\bar{\mu}$. The main result in [11] shows that convex combinations of slanted half-plane harmonic mappings are convex.

The goal in this paper is to show that there is no need to specialise the parameters λ and μ in (1.4) to get the results cited from [11] and [12]. More specifically, our main theorem is as follows.

Theorem 1.2. Let λ and μ be fixed but arbitrary complex numbers in $\partial \mathbb{D}$. Assume that the harmonic mappings $f_{j} \in \mathcal{H}_{0}, j=1,2, \ldots, n$, satisfy (1.4) for these values of λ and μ. Then, any convex combination of the f_{j} is a convex harmonic mapping.

2. Two key results

The following lemma was proved in [11]. We include the proof here for the sake of completeness.

Lemma 2.1. Let ω_{1} and ω_{2} be two analytic functions in the unit disc that map \mathbb{D} to itself. Then, for any real number θ and all $z \in \mathbb{D}$,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{1-\omega_{1}(z) \overline{\omega_{2}(z)}}{\left(1+e^{-2 i \theta} \omega_{1}(z)\right)\left(1+e^{2 i \theta} \overline{\omega_{2}(z)}\right)}\right\}>0 . \tag{2.1}
\end{equation*}
$$

Proof. The analytic functions $\varphi_{1}(z)=1 /(1+z)$ and $\varphi_{2}(z)=z /(1-z)$ in \mathbb{D} map the unit disc onto the half-planes $\{\operatorname{Re}\{w\}>1 / 2\}$ and $\{\operatorname{Re}\{w\}>-1 / 2\}$, respectively. Hence, for any given ζ with $|\zeta|=1$, any analytic function ω in \mathbb{D} for which the inclusion $\omega(\mathbb{D}) \subset \mathbb{D}$ holds, and all $|z|<1$,

$$
\operatorname{Re}\left\{\frac{1}{1+\overline{\zeta \omega(z)}}\right\}>\frac{1}{2} \quad \text { and } \quad \operatorname{Re}\left\{\frac{-\zeta \omega(z)}{1+\zeta \omega(z)}\right\}>-\frac{1}{2} .
$$

Using the identity

$$
\frac{1-\omega_{1} \overline{\omega_{2}}}{\left(1+e^{-2 i \theta} \omega_{1}\right)\left(1+e^{2 i \theta} \overline{\omega_{2}}\right)}=\frac{1}{1+\overline{e^{-2 i \theta} \omega_{2}}}-\frac{e^{-2 i \theta} \omega_{1}}{1+e^{-2 i \theta} \omega_{1}},
$$

we obtain (2.1). This ends the proof.
A modification of the arguments used in [1] gives the following fundamental result, which will be used to prove Theorem 1.2.

Theorem 2.2. Let $f=h+\bar{g}$ belong to \mathcal{F}_{λ} for some $\lambda \in \partial \mathbb{D}$. Then f is convex.
Proof. If $f=h+\bar{g} \in \mathcal{F}_{\lambda}$, we can write

$$
\begin{equation*}
h^{\prime}(z)+g^{\prime}(z)=\frac{1}{(1+\lambda z)(1+\bar{\lambda} z)}=\frac{1}{1+2 z \cos \alpha+z^{2}}, \tag{2.2}
\end{equation*}
$$

where $\alpha \in[0, \pi]$ is such that $\cos \alpha=\operatorname{Re}\{\lambda\}$. Also, since the dilatation $\omega=g^{\prime} / h^{\prime}$ of f maps the unit disc to itself, the function $\left(h^{\prime}-g^{\prime}\right) /\left(h^{\prime}+g^{\prime}\right)$ has a positive real part.

As explained in the introduction, according to both [2, Theorem 5.7] and Theorem A, in order to check that f is convex we need to show that for all values of $\theta \in(-\pi / 2, \pi / 2]$ there are real numbers μ and v with $0 \leq \mu<2 \pi$ and $v \in[0, \pi]$, possibly depending on θ, such that for all $z \in \mathbb{D}$,

$$
\begin{equation*}
\operatorname{Re}\left\{-i e^{i \mu}\left(1-2 z e^{-i \mu} \cos v+e^{-2 i \mu} z^{2}\right) \varphi_{\theta}^{\prime}(z)\right\} \geq 0 \tag{2.3}
\end{equation*}
$$

where $\varphi_{\theta}=e^{-i \theta}\left(h+e^{2 i \theta} g\right)$.
Assume first that $\theta \in(-\pi / 2,0]$ and set $\mu=0$ and $v=\pi-\alpha$ (so that $\cos v=-\cos \alpha$). From (2.2), for $z \in \mathbb{D}$, the function that appears in (2.3) satisfies

$$
\begin{aligned}
\operatorname{Re} & \left\{-i\left(1+2 z \cos \alpha+z^{2}\right)\left(e^{-i \theta} h^{\prime}(z)+e^{i \theta} g^{\prime}(z)\right)\right\} \\
& =\operatorname{Im}\left\{\left(1+2 z \cos \alpha+z^{2}\right)\left(e^{-i \theta} h^{\prime}(z)+e^{i \theta} g^{\prime}(z)\right)\right\} \\
& =\operatorname{Im}\left\{\left(1+2 z \cos \alpha+z^{2}\right)\left[\cos \theta\left(h^{\prime}(z)+g^{\prime}(z)\right)-i \sin \theta\left(h^{\prime}(z)-g^{\prime}(z)\right)\right]\right\} \\
& =\operatorname{Im}\left\{\cos \theta-i \sin \theta\left(\frac{h^{\prime}(z)-g^{\prime}(z)}{h^{\prime}(z)+g^{\prime}(z)}\right)\right\} \\
& =-\sin \theta \operatorname{Re}\left\{\frac{h^{\prime}(z)-g^{\prime}(z)}{h^{\prime}(z)+g^{\prime}(z)}\right\} \geq 0 .
\end{aligned}
$$

For the remaining case when $\theta \in(0, \pi / 2]$, we set $\mu=\pi$ and $v=\alpha$ and proceed in exactly the same way.

3. Proof of Theorem 1.2

By Proposition 1.1, if $f_{j}=h_{j}+\overline{g_{j}}, j=1,2, \ldots, n$, satisfy (1.4), we can consider appropriate rotations (denoted again by f_{j}) such that $f_{j} \in \mathcal{F}_{\lambda}$. If we can show that

$$
f=\sum_{j=1}^{n} t_{j} f_{j} \in \mathcal{F}_{\lambda},
$$

where $t_{1}, t_{2}, \ldots, t_{n}$ are nonnegative real numbers with $\sum_{j=1}^{n} t_{j}=1$, then by Theorem 2.2 f is convex and we will be done.

Clearly, the function f is harmonic in the unit disc and its canonical decomposition is given by $f=h+\bar{g}$, where

$$
h(z)=\sum_{j=1}^{n} t_{j} h_{j}(z) \quad \text { and } \quad g(z)=\sum_{j=1}^{n} t_{j} g_{j}(z), \quad z \in \mathbb{D} .
$$

Therefore, $h(0)=g(0)=0$ and $h^{\prime}(0)-1=g^{\prime}(0)=0$. Moreover, since $f_{j}=h_{j}+\overline{g_{j}}$ belongs to \mathcal{F}_{λ} for $j=1,2, \ldots, n$,

$$
h^{\prime}(z)+g^{\prime}(z)=\frac{1}{(1+\lambda z)(1+\bar{\lambda} z)}
$$

The only remaining step required to show that $f \in \mathcal{F}_{\lambda}$ is that f preserves the orientation.

Let ω_{j} denote the dilatation of f_{j}, so that $g_{j}^{\prime}=\omega_{j} h_{j}^{\prime}$. Since $f_{j} \in \mathcal{F}_{\lambda}$, for all z in the unit disc,

$$
h_{j}^{\prime}(z)=\frac{1}{(1+\lambda z)(1+\bar{\lambda} z)\left(1+\omega_{j}(z)\right)}
$$

This gives

$$
h^{\prime}(z)=\frac{1}{(1+\lambda z)(1+\bar{\lambda} z)} \sum_{j=1}^{n} \frac{t_{j}}{1+\omega_{j}(z)} .
$$

On the other hand,

$$
g^{\prime}(z)=\sum_{j=1}^{n} t_{j} g_{j}^{\prime}(z)=\sum_{j=1}^{n} t_{j} \omega_{j}(z) h_{j}^{\prime}(z)=\frac{1}{(1+\lambda z)(1+\bar{\lambda} z)} \sum_{j=1}^{n} \frac{t_{j} \omega_{j}(z)}{1+\omega_{j}(z)} .
$$

Consider the function

$$
\Phi(z)=\left|\sum_{j=1}^{n} \frac{t_{j}}{1+\omega_{j}(z)}\right|^{2}-\left|\sum_{j=1}^{n} \frac{t_{j} \omega_{j}(z)}{1+\omega_{j}(z)}\right|^{2}, \quad z \in \mathbb{D} .
$$

Since

$$
J_{f}(z)=\frac{\Phi(z)}{|(1+\lambda z)(1+\bar{\lambda} z)|^{2}},
$$

it is obvious that f preserves the orientation if $\Phi>0$ in the unit disc. Now, a straightforward calculation shows that

$$
\begin{aligned}
\Phi & =\left(\sum_{j=1}^{n} \frac{t_{j}}{1+\omega_{j}}\right)\left(\sum_{j=1}^{n} \frac{t_{j}}{1+\overline{\omega_{j}}}\right)-\left(\sum_{j=1}^{n} \frac{t_{j} \omega_{j}}{1+\omega_{j}}\right)\left(\sum_{j=1}^{n} \frac{t_{j} \overline{\omega_{j}}}{1+\overline{\omega_{j}}}\right) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{t_{j} t_{k}}{\left(1+\omega_{j}\right)\left(1+\overline{\omega_{k}}\right)}-\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{t_{j} t_{k} \omega_{j} \overline{\omega_{k}}}{\left(1+\omega_{j}\right)\left(1+\overline{\omega_{k}}\right)} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{t_{j} t_{k}\left(1-\omega_{j} \overline{\omega_{k}}\right)}{\left(1+\omega_{j}\right)\left(1+\overline{\omega_{k}}\right)} \\
& =2 \sum_{j=1}^{n} \sum_{k<j}^{n} \operatorname{Re}\left\{\frac{t_{j} t_{k}\left(1-\omega_{j} \overline{\omega_{k}}\right)}{\left(1+\omega_{j}\right)\left(1+\overline{\omega_{k}}\right)}\right\}+\sum_{j=1}^{n} \frac{t_{j}^{2}\left(1-\left|\omega_{j}\right|^{2}\right)}{\left|1+\omega_{j}\right|^{2}} .
\end{aligned}
$$

Since ω_{j} are analytic and $\omega_{j}(\mathbb{D}) \subset \mathbb{D}$ for all $j=1,2, \ldots, n$, we see by Lemma 2.1 that $\Phi>0$ in \mathbb{D}. This completes the proof of Theorem 1.2.

Acknowledgement

We would like to thank the referee for careful reading of the manuscript and useful comments.

References

[1] Z. Boyd, M. Dorff, M. Nowak, M. Romney and M. Wołoszkiewicz, ‘Univalency of convolutions of harmonic mappings', Appl. Math. Comput. 234 (2014), 326-332.
[2] J. Clunie and T. Sheil-Small, 'Harmonic univalent functions', Ann. Acad. Sci. Fenn. Ser. A. I Math. 9 (1984), 3-25.
[3] M. J. Dorff, 'Harmonic univalent mappings onto asymmetric vertical strips', in: Computational Methods and Function Theory 1997 (eds. N. Papamichael, S. Ruscheweyh and E. B. Saff) (World Science Publishing, River Edge, NJ, 1999), 171-175.
[4] P. Duren, Harmonic Mappings in the Plane (Cambridge University Press, Cambridge, 2004).
[5] A. Ferrada-Salas, 'Affine and linearly invariant families, generalized harmonic Koebe functions, and analytic and geometric properties of convex harmonic mappings (Spanish)', PhD Thesis, Pontificia Universidad Católica de Chile, Santiago, Chile, 2015.
[6] W. Hengartner and G. Schober, 'Univalent harmonic functions', Trans. Amer. Math. Soc. 299 (1987), 1-31.
[7] R. Hernández and M. J. Martín, 'Stable geometric properties of analytic and harmonic functions', Math. Proc. Cambridge Philos. Soc. 155 (2013), 343-359.
[8] H. Lewy, 'On the non-vanishing of the Jacobian in certain one-to-one mappings', Bull. Amer. Math. Soc. 42 (1936), 689-692.
[9] L.-L. Li and S. Ponnusamy, 'Convolutions of slanted half-plane harmonic mappings', Analysis (Munich) 33 (2013), 159-176.
[10] W. C. Royster and M. Ziegler, 'Univalent functions convex in one direction', Publ. Math. Debrecen 23 (1976), 339-345.
[11] Y. Sun, Y.-P. Jiang and Z.-G. Wang, 'On the convex combinations of slanted half-plane harmonic mappings', J. Math. Anal. 6 (2015), 46-50.
[12] Y. Sun, A. Rasila and T.-P. Jiang, 'Linear combinations of harmonic quasiconformal mappings convex in one direction', Kodai Math. J. 39 (2016), 366-377.
[13] Z.-G. Wang, Z.-H. Liu and Y.-C. Li, 'On the linear combinations of harmonic univalent mappings', J. Math. Anal. Appl. 400 (2013), 452-459.

> ÁLVARO FERRADA-SALAS, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile
> e-mail: alferrada@mat.puc.cl

RODRIGO HERNÁNDEZ, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750,
Viña del Mar, Chile
e-mail: rodrigo.hernandez@uai.cl
MARÍA J. MARTÍN, Department of Physics and Mathematics, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland
e-mail: maria.martin@uef.fi

[^0]: The second and third authors are supported by Fondecyt, Chile, grant 1150284. The third author is also partially supported by grant MTM2015-65792-P from MINECO/FEDER, the Thematic Research Network MTM2015-69323-REDT, MINECO, Spain, and the Academy of Finland, grant 268009.

