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Abstract

The family Fλ of orientation-preserving harmonic functions f = h + g in the unit disc D (normalised in
the standard way) satisfying

h′(z) + g′(z) =
1

(1 + λz)(1 + λz)
, z ∈ D,

for some λ ∈ ∂D, along with their rotations, play an important role among those functions that are
harmonic and orientation-preserving and map the unit disc onto a convex domain. The main theorem
in this paper generalises results in recent literature by showing that convex combinations of functions in
Fλ are convex.
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1. Introduction

A complex-valued harmonic function f in the unit disc D can be represented as
f = h + g, where both h and g are analytic in D. This representation is unique up
to an additive constant which is usually determined by imposing the condition that the
function g fixes the origin. The representation f = h + g is then unique and is called
the canonical representation of f .

It is a consequence of the inverse mapping theorem that if the Jacobian of a C1

mapping from Rn to Rn is different from zero, the function is locally univalent. Lewy
[8] showed that when the function is harmonic, the converse also holds. Hence, a
harmonic mapping f = h + g is locally univalent if and only if its Jacobian J f =

|h′|2 − |g′|2 , 0. Thus, locally univalent harmonic mappings in the unit disc can be
classified as orientation-preserving mappings (if J f > 0 in D) or orientation-reversing
(if J f < 0 in D).
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It is obvious that f is orientation-preserving if and only if f is orientation-reversing.
Note that f = h + g is orientation-preserving if and only if h′ , 0 inD and the dilatation
ω = g′/h′ is an analytic function in the unit disc which maps D into itself.

For a comprehensive treatment of harmonic mappings in the unit disc, we refer the
reader to [4].

1.1. Convex harmonic mappings. Let A denote the class of all analytic functions
ϕ in the unit disc D normalised by the conditions ϕ(0) = ϕ′(0) − 1 = 0. Let H denote
the family of complex-valued harmonic mappings f = h + g in D that preserve the
orientation and are normalised by the conditions h(0) = g(0) = 0 and h′(0) = 1. The
classH0 consists of those functions f ∈ H with g′(0) = 0.

We will consider particular properties of functions f ∈ H0 that map the unit disc
onto a convex domain. The family of such mappings is, as usual, denoted by K0

H .
It is known that every function f ∈ K0

H is univalent in D (see [2, Theorem 5.7] and
[7, Corollary 2.2]).

According to [2, Theorem 5.7], a harmonic mapping f = h + g belongs to K0
H if and

only if, for each θ ∈ (−π/2, π/2], the analytic function ψθ = h + e2iθg belongs toA and
is convex in the direction (θ + π/2), meaning that the intersection of ψθ(D) with any
line parallel to the line through 0 and ieiθ is an interval or the empty set.

It is obvious that ψθ is convex in the (θ + π/2)-direction if and only if the function
ϕθ = e−iθψθ is convex in the direction of the imaginary axis (that is, the π/2-direction).
The following characterisation, due to Royster and Ziegler [10], of analytic functions
in the unit disc that map D onto a domain convex in the vertical direction will be used
later in this paper.

Theorem A. Let ϕ be a locally univalent analytic function in the unit disc. Then ϕ
maps D onto a domain convex in the direction of the imaginary axis if and only if
there are numbers µ ∈ [0, 2π) and ν ∈ [0, π] such that

Re{−ieiµ(1 − 2ze−iµ cos ν + e−2iµz2)ϕ′(z)} ≥ 0, z ∈ D.

1.2. Some special convex harmonic mappings. By applying different transfor-
mations to some of the harmonic mappings considered by Hengartner and Schober
in [6], Dorff [3] showed that if the harmonic function f = h + g ∈ H0 maps the unit
disc onto a vertical strip

Ωα =

{
w ∈ C :

α − π

2 sinα
< Re{w} <

α

2 sinα

}
,

where π/2 ≤ α < π, then

h(z) + g(z) =
1

2i sinα
log

( 1 + eiαz
1 + e−iαz

)
, z ∈ D. (1.1)

Some nice consequences are obtained from this result. Thus, Dorff [3] shows that
if f = h + g ∈ K0

H maps the unit disc onto a half-plane of the form {Re{w} > a}, where
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a is any negative real number, then a = −1/2. Moreover, such a harmonic mapping f
from the unit disc onto the half-plane Ω = {w ∈ C : Re{w} > −1/2} satisfies

h(z) + g(z) =
z

1 − z
, z ∈ D. (1.2)

Note that if a function f = h + g ∈ H0 satisfies either (1.1) or (1.2), then there exists
λ ∈ ∂D such that

h′(z) + g′(z) =
1

(1 + λz)(1 + λz)
. (1.3)

In what follows, given λ ∈ ∂D, we denote by Fλ the family of harmonic mappings
f = h + g ∈ K0

H for which (1.3) holds.

1.3. Rotations. It is obvious that if f = h + g ∈ K0
H and µ ∈ ∂D, then the rotation fµ

defined in the unit disc by the formula

fµ(z) = µ f (µz)

also belongs to K0
H . Moreover, a straightforward calculation shows that the functions

hµ and gµ in the canonical decomposition of fµ = hµ + gµ are, respectively,

hµ(z) = µh(µz) and gµ(z) = µg(µz), z ∈ D.

Therefore, f = h + g ∈ Fλ if and only if for all z ∈ D and λ and µ as above,

h′µ(z) + µ2g′µ(z) =
1

(1 + λµz)(1 + λµz)
.

In other words, we have proved the following result.

Proposition 1.1. A harmonic mapping F = H + G ∈ H0 satisfying

H′(z) + µ2G′(z) =
1

(1 + λµz)(1 + λµz)
(1.4)

for certain λ and µ in ∂D and all |z| < 1 has a rotation f = h + g which satisfies (1.3).

Some particular cases of harmonic functions F = H + G ∈ H0 for which (1.4) holds
have been considered in the literature. For example, harmonic mappings F = H + G
satisfying (1.4) for the particular values λ = µ = i were considered in [5] and [12]. The
functions H and G in the canonical decomposition of such functions F satisfy

H(z) −G(z) =
1
2

log
(1 + z
1 − z

)
, z ∈ D. (1.5)

It was proved in [5] (and independently in [12]) that any normalised harmonic
mapping F = H + G ∈ H0 for which (1.5) holds is convex. It is shown in [13] that the
convex combination of such harmonic mappings is convex in the horizontal direction.
The following stronger result is given in [12]: convex combinations of functions
satisfying (1.5) are convex (see [12, Theorem 4]).
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A related result appears in [11]. Take λ = −1 and an arbitrary µ ∈ ∂D in (1.4).
Following the terminology in [9], these harmonic functions are called slanted half-
plane harmonic mappings with parameter µ. The main result in [11] shows that convex
combinations of slanted half-plane harmonic mappings are convex.

The goal in this paper is to show that there is no need to specialise the parameters λ
and µ in (1.4) to get the results cited from [11] and [12]. More specifically, our main
theorem is as follows.

Theorem 1.2. Let λ and µ be fixed but arbitrary complex numbers in ∂D. Assume that
the harmonic mappings f j ∈ H0, j = 1, 2, . . . , n, satisfy (1.4) for these values of λ and
µ. Then, any convex combination of the f j is a convex harmonic mapping.

2. Two key results

The following lemma was proved in [11]. We include the proof here for the sake of
completeness.

Lemma 2.1. Let ω1 and ω2 be two analytic functions in the unit disc that map D to
itself. Then, for any real number θ and all z ∈ D,

Re
{ 1 − ω1(z)ω2(z)

(1 + e−2iθω1(z))(1 + e2iθω2(z))

}
> 0. (2.1)

Proof. The analytic functions ϕ1(z) = 1/(1 + z) and ϕ2(z) = z/(1 − z) in Dmap the unit
disc onto the half-planes {Re{w} > 1/2} and {Re{w} > −1/2}, respectively. Hence, for
any given ζ with |ζ | = 1, any analytic function ω inD for which the inclusion ω(D) ⊂ D
holds, and all |z| < 1,

Re
{ 1

1 + ζω(z)

}
>

1
2

and Re
{
−ζω(z)

1 + ζω(z)

}
> −

1
2
.

Using the identity

1 − ω1ω2

(1 + e−2iθω1)(1 + e2iθω2)
=

1

1 + e−2iθω2

−
e−2iθω1

1 + e−2iθω1
,

we obtain (2.1). This ends the proof. �

A modification of the arguments used in [1] gives the following fundamental result,
which will be used to prove Theorem 1.2.

Theorem 2.2. Let f = h + g belong to Fλ for some λ ∈ ∂D. Then f is convex.

Proof. If f = h + g ∈ Fλ, we can write

h′(z) + g′(z) =
1

(1 + λz)(1 + λz)
=

1
1 + 2z cosα + z2 , (2.2)

where α ∈ [0, π] is such that cosα = Re{λ}. Also, since the dilatation ω = g′/h′ of f
maps the unit disc to itself, the function (h′ − g′)/(h′ + g′) has a positive real part.
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As explained in the introduction, according to both [2, Theorem 5.7] and
Theorem A, in order to check that f is convex we need to show that for all values of
θ ∈ (−π/2, π/2] there are real numbers µ and ν with 0 ≤ µ < 2π and ν ∈ [0, π], possibly
depending on θ, such that for all z ∈ D,

Re{−ieiµ(1 − 2 ze−iµ cos ν + e−2iµz2)ϕ′θ(z)} ≥ 0, (2.3)

where ϕθ = e−iθ(h + e2iθg).
Assume first that θ ∈ (−π/2, 0] and set µ = 0 and ν = π − α (so that cos ν = −cosα).

From (2.2), for z ∈ D, the function that appears in (2.3) satisfies

Re{−i(1 + 2z cosα + z2)(e−iθh′(z) + eiθ g′(z))}

= Im{(1 + 2z cosα + z2)(e−iθh′(z) + eiθ g′(z))}

= Im{(1 + 2z cosα + z2)[cos θ(h′(z) + g′(z)) − i sin θ(h′(z) − g′(z))]}

= Im
{
cos θ − i sin θ

(h′(z) − g′(z)
h′(z) + g′(z)

)}
= −sin θRe

{h′(z) − g′(z)
h′(z) + g′(z)

}
≥ 0.

For the remaining case when θ ∈ (0, π/2], we set µ = π and ν = α and proceed in exactly
the same way. �

3. Proof of Theorem 1.2

By Proposition 1.1, if f j = h j + g j, j = 1, 2, . . . , n, satisfy (1.4), we can consider
appropriate rotations (denoted again by f j) such that f j ∈ Fλ. If we can show that

f =

n∑
j=1

t j f j ∈ Fλ,

where t1, t2, . . . , tn are nonnegative real numbers with
∑n

j=1 t j = 1, then by Theorem 2.2
f is convex and we will be done.

Clearly, the function f is harmonic in the unit disc and its canonical decomposition
is given by f = h + g, where

h(z) =

n∑
j=1

t jh j(z) and g(z) =

n∑
j=1

t jg j(z), z ∈ D.

Therefore, h(0) = g(0) = 0 and h′(0) − 1 = g′(0) = 0. Moreover, since f j = h j + g j

belongs to Fλ for j = 1, 2, . . . , n,

h′(z) + g′(z) =
1

(1 + λz)(1 + λz)
.

The only remaining step required to show that f ∈ Fλ is that f preserves the
orientation.
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Let ω j denote the dilatation of f j, so that g′j = ω j h′j. Since f j ∈ Fλ, for all z in the
unit disc,

h′j(z) =
1

(1 + λz)(1 + λz)(1 + ω j(z))
.

This gives

h′(z) =
1

(1 + λz)(1 + λz)

n∑
j=1

t j

1 + ω j(z)
.

On the other hand,

g′(z) =

n∑
j=1

t jg′j(z) =

n∑
j=1

t jω j(z)h′j(z) =
1

(1 + λz)(1 + λz)

n∑
j=1

t jω j(z)
1 + ω j(z)

.

Consider the function

Φ(z) =

∣∣∣∣∣ n∑
j=1

t j

1 + ω j(z)

∣∣∣∣∣2 − ∣∣∣∣∣ n∑
j=1

t jω j(z)
1 + ω j(z)

∣∣∣∣∣2, z ∈ D.

Since

J f (z) =
Φ(z)

|(1 + λz)(1 + λz)|2
,

it is obvious that f preserves the orientation if Φ > 0 in the unit disc. Now, a
straightforward calculation shows that

Φ =

( n∑
j=1

t j

1 + ω j

)( n∑
j=1

t j

1 + ω j

)
−

( n∑
j=1

t jω j

1 + ω j

)( n∑
j=1

t jω j

1 + ω j

)
=

n∑
j=1

n∑
k=1

t jtk
(1 + ω j)(1 + ωk)

−

n∑
j=1

n∑
k=1

t jtkω jωk

(1 + ω j)(1 + ωk)

=

n∑
j=1

n∑
k=1

t jtk(1 − ω jωk)
(1 + ω j)(1 + ωk)

= 2
n∑

j=1

n∑
k< j

Re
{ t jtk(1 − ω jωk)

(1 + ω j)(1 + ωk)

}
+

n∑
j=1

t2
j (1 − |ω j|

2)

|1 + ω j|
2 .

Since ω j are analytic and ω j(D) ⊂ D for all j = 1, 2, . . . , n, we see by Lemma 2.1 that
Φ > 0 in D. This completes the proof of Theorem 1.2.

Acknowledgement

We would like to thank the referee for careful reading of the manuscript and useful
comments.

https://doi.org/10.1017/S0004972717000685 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000685


262 A. Ferrada-Salas, R. Hernández and M. J. Martı́n [7]

References
[1] Z. Boyd, M. Dorff, M. Nowak, M. Romney and M. Wołoszkiewicz, ‘Univalency of convolutions

of harmonic mappings’, Appl. Math. Comput. 234 (2014), 326–332.
[2] J. Clunie and T. Sheil-Small, ‘Harmonic univalent functions’, Ann. Acad. Sci. Fenn. Ser. A. I Math.

9 (1984), 3–25.
[3] M. J. Dorff, ‘Harmonic univalent mappings onto asymmetric vertical strips’, in: Computational

Methods and Function Theory 1997 (eds. N. Papamichael, S. Ruscheweyh and E. B. Saff) (World
Science Publishing, River Edge, NJ, 1999), 171–175.

[4] P. Duren, Harmonic Mappings in the Plane (Cambridge University Press, Cambridge, 2004).
[5] A. Ferrada-Salas, ‘Affine and linearly invariant families, generalized harmonic Koebe functions,

and analytic and geometric properties of convex harmonic mappings (Spanish)’, PhD Thesis,
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