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1.

The Rademacher functions are defined by

= <f>0{x), <f>n(x) = 4>0{Znx), (n = 1, 2., 3, • • •)•

The Walsh functions are then given by

y>0(x) = 1, ipn(x) = <j>ni{x) • <f>r,2{x) • • • <j>nr{x)

for n = 2"i + 2"2-(-2'!3-|- • • • +2"' , where the integers ni are uniquely
determined by ni+1 < ni.

Let f{x) be an integrable function in the sense of Lebesgue in [0, 1]
and be periodic with period 1. Let the Walsh-Fourier series of f(x) be
Z£Li«»V«fa), where

a" =

We shall now enumerate important properties and results concerning
Walsh-Functions which have been obtained by Fine [3] and which have
played a significant role in the theory of Walsh-Fourier series.

The dyadic group G may be defined as the countable direct product of
the groups with elements 0 and 1, in which the group operation is addition
modulo 2. Thus the dyadic group G is the set of all 0, 1 sequences in which
the group operation, which we shall denote by -f-. is addition modulo 2 for
each element.

Let x be an element of G, x = {x1, x2, • • •}, xn = 0, 1. We define the
function

(1.1) *(*) = ! 2-*sB.

The function X, which maps G onto the closed interval [0, 1], does not have
a single-valued inverse on the dyadic rationals. We shall agree to take the
finite expansion in that case. Thus for all real x, if we write the inverse
as [i,

385

https://doi.org/10.1017/S1446788700007631 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007631


386 A. H. Siddiqi [2]

(1.2) k(p(x)) = X-[X].

If x = {xn} and y = {yn} are elements of G, we have

(1-3)

We shall abbreviate A (/*(&) -f-/*(y)) as #+2/ for any real a; and y.
Then, if

x=f2-»xn, y = 2,2-"yn,
n=l n=l

xn and «/„ = 0, 1, we have by (1.2) and (1.3)

(1-4) " x+y = % 2-n\xn-yn\.n=l

For any real number x and h, we have

(1.5) \(x+h)-(x-[z])\^h-[h].

In particular i f O ^ a ; < l , O ^ A < l , then we have

(1.6) \{x+h)-x\ <,h.

For each fixed x and for almost all t, the equation

(1.7) V.(*+0 = V»(*)V.(O holds.

Also for each fixed x

(1.8)

and

(1.9) flf{t)y>n(x+t)dt = Jlf(x+t)Vn(t)dt.

Let

JM =jv
on(Wt, * = o , i , 2 , . . - ,

7? (2/) = */*(?)•
For * ^ 1, we write k = 2n+k', where 0 <L k' < 2", n = 0, 1, 2, • • •. We
have also

(1.10) Jk(y) = 2-<"+

It is easy to see that

(1.11) 2»+V*(y) = 0, for 2/= 0,1

and

(1.12) | 7 J^ ) | ^ M for all y and *.
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Let Bk(x) denote the sequence {kakfk{x)}, where ak is Walsh-Fourier
coefficient of a function of bounded variation.

Let A = (amk) be an infinite matrix of real or complex numbers and
{sk} be any sequence of real numbers. With every sequence {sk} we associate
a sequence {an} given by

(1.13) *« = 2 «„.*«*.
k=0

provided the series on the right converges for all m. The sequence {am} is
called the ^4-transform of {sk}.

If am -> s as m -> oo, we say that the sequence {sk} is ^4-summable to s.
The matrix A is called regular if it satisfies the following conditions:

(i) lim amk == 0 for k = 0, 1, 2, 3, • • •
m-> oo

oo

(ii) suP2l«m,*l ^M,
TO fc=0

00

(iii) lim 2>m>j! = 1.
m-*oo k=0

The matrix A is called triangular, if amk = 0 for k > m.
We say that a bounded sequence {sk} is almost convergent [4] to the

sum I if

(1.14) lim i J sn+ft = /
p->oo P k=0

uniformly in n. Every almost convergent sequence is summable (C, a),
a > 0 [4] and the limits are equal.

A sequence {sk} is said to be almost A -summable [2] to s if the A-
transform of {sk} is almost convergent to s and the matrix A is said to be
almost regular if sk -> s implies that {an} is almost convergent to s. The
necessary and sufficient conditions for the matrix A to be almost regular
[2] axe:

(a) supf \amJ<M1,m = +l, +2, +3, • • •
m i=0

where M± is a positive constant.
1 n+p-l

(b) lim — ^ ai,k = 0 uniformly in n, k = 0, 1, 2, • • •
P-.00 p i=n

2 n+p—l oo

(c) lim — 2 ^, ai,k — 1. uniformly in n.
P-KX> P j=n *=0

A sequence {sk} is said to be FA -summable [4] to the limit s if
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oo
sis ^~*

am,k = Z- am,qSq+k
8=0

tends to s a s r a - > oo, uniformly in k.
It is known [4] that every F^4-summable sequence is almost convergent

if A is a regular matrix.
A sequence {sk} will be said to be .4 B-summable to the limit s if its

A -transform is .FB-summable to the limit s where B = (6roi.) is an infinite
matrix.

It is easy to see that every ^4B-summable sequence is almost A-
summable provided the second matrix B is regular.

2.

In 1947, Fine [3] proved the following theorems concerning Walsh-
Fourier coefficients of function of bounded variation and absolutely con-
tinuous function.

THEOREM A. If f(x) is of bounded variation, and V is its total variation
over (0, 1), then

\uk\ ^ Vjk, for k > 0.

THEOREM B. The only absolutely continuous functions whose Fourier
coefficients satisfy ak = 0(l/&) are the constants.

This result shows a marked difference in the behaviour of Walsh-
Fourier series and ordinary Fourier series of absolutely continuous functions.
Morgenthaler [5] proved a theorem which shows that 'on the average' the
coefficients behave as they do in the classical system.

His result is as follows:

THEOREM C. Let f(x) be real valued, periodic, and of mean value zero on
[0, 1]. / / ,x

F(x) = \ f{t)dt and F{x)~Zbky>k{x),
Jo k=0

then the arithmetic means of the sequence k\bk\ tend to zero.
In the present paper we shall obtain necessary and sufficient conditions

in order that the sequence {Bk(x)} be (A), almost A, FA and A.B-summable.
We shall also deduce an interesting corollary concerning Walsh-

Fourier coefficients of functions of bounded variation.

3.

In what follows we shall prove the following theorems:

THEOREM 1. If (A) is regular, then for every f e BV[0, 1] and for every
x e [0, 1]
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m
lim J, amikBk(z) = 0

m-»oo fc=0

if and only if
m

(3-1) lim 2«»* /? (0 = 0
m—>oo fc=0

0 < 5 < £ ^ 1, where [A) is a triangular matrix and 6 is small.

THEOREM 2. / / A be almost regular, then for every f e BV[O, 1] and for
every x e [0, 1]

J 3>— 1 oo

lim - 2 I «m+r. *£»(*) = 0
P-.00 ? r=0 ifc=0

uniformly in m, if and only if

(3-2) lim "f f «m+r,A/r(0 = O,
3>->oo r = 0 J;=0

uniformly in m for every 0 < (5 r=S £ ;£ 1, d is small.

THEOREM 3. If A = (amk) is regular, then for every f e BV[0, 1] aw^ for
every x e [0, 1], the sequence {Bk(x)} is FA-summable to the limit zero if and
only if

(3-3) lim | « m , , _ l k / ; ( 0 = 0,
m -> oo v=fc

uniformly in k in the interval 0 < (5 5j t 5̂  1 wAere 5 is small.

THEOREM 4. / / (amk) and {bmk) be two infinite matrices satisfying the
condition:

(3-4)
j=0

uniformly in k, then for every f e BV[0, 1] and for every x e [0, 1] the sequence
{Bk(x)} is AB-summable to the limit zero, if and only if

771—>-OO j=k

uniformly in k' in every interval 0<d^t^l,dis small.

4.

PROOF OF THEOREM 1. We have by virtue of (1.7) and (1.9)
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* = 0

Let

k=0

k=0

= Z«»,** f(t)v>*(t)n(*)
i-=0 Jo

TO ^ 1

= Z«».** f(t)fk(x+t)dt
*=0 JO

m /•!

fc=O Jo

* = 0

[*1 m
= 0 - IamykJ*(t)df(x+t).

JO fc=O

J 0

*=o

We have to show that if (3.1) holds, then for every / e BV[0, 1] and for
every x e [0, 1],

(4.1) lim \lKm(t)d<Px(t) = 0, where <&,(/)=/
m-*oo J 0

and conversely.
Condition (4.1) is equivalent to following condition

(4.2) lim \1Km(t)d0.(t) = 0

for every / e BV[0, 1] and for every x e [0, 1] and for 0 < d < 1.
For if / e BF[0, 1] and a; e [0, 1], given any e > 0, there exists a d > 0

such that

(4.3) J <
By virtue of the regularity condition we have

m m

\Km(t)\ ^ x K*IL7**(')I ^ M 2 |«ra,,| ^(4.4)

so that
*=o

CKm(t)d0x(t)~ f[K
Jo J s

f Km(t)d0,
Jo

(t)\

Thus conditions (4.1) and (4.2) are equivalent.
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By a theorem on Weak convergence [1, p. 134] of sequences in the
Banach space of all continuous functions defined in a finite closed interval
it follows that (4.2) holds if and only if

(i)' \Km{t)\ £ M for all m and t in [5, 1] and
(ii)' (3.1) holds.

Since (i)' always holds by virtue of (4.4), it follows that (4.2) holds if and
only if (3.1) holds.

This completes the proof of Theorem 1.

5.

PROOF OF THEOREM 2. We have as in the proof of the previous theorem,

1 V—1 oo

~T" 2* 2* ™
P r=0 k=0

j>—1 o o1 J>-1 oo / • !

= -r 2 2 am+r<kk f{t+x)y>k{t)dt
P r=0 fc=0 Jo

r=0 4=0

- 7 ? i «„..*.* r #(*+*)/
P r=0 k=0 JO
7
P

= 11—1%, say .

Since 7X = 0, it is sufficient to show that
(5.1)

uniformly in m, where

(5-2) Km, ,(t) = x ? I «m+r,Jt

By virtue of the condition (a) and (1.12) we have

uniformly in m and therefore we can show, as in the proof of theorem 1 that
condition (5.1) is equivalent to the following condition:

(5.3)

uniformly in m.
Following the lines of Banach [1, p. 134] it can be easily verified that a
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sequence of continuous functions {x^(t)} converges weakly (uniformly in k)
to a continuous function x{t) that is

lim Fa£(t)dg(t)= Fx(t)dg(t)
n—>oo J o vO

uniformly in k for every g e BV, if and only if

(i) a%(t) is bounded uniformly in k, n = 1, 2, • • •.
(ii) lim a%(t) = x(t) uniformly in k = 0, 1, • • • for every t e [0, 1].

n-* co

Applying this theorem and the fact that \KmtV{t)\ 5S M2 for all m,p
and t e [d, 1], the theorem follows.

6.

PROOF OF THEOREM 3. We have by virtue of (1.7) and (1.9)

v=0

i=k

i=k

= 2 « » , ^ / f(x+t)Vi(t)dt
3=k J 0

OO (*1

- 2 ««.*-*
j=k J 0

= Lx—L2, say

Zx = 0 uniformly in ^.
In order to prove the theorem we have to show that if (3.3) holds,

then for every / e BV[0, 1] and for every x e [0, 1]
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(6.1) lim FKZwk(t)df(x+t) = 0
m -*• oo J 0

uniformly in k, where

and conversely.
Proceeding on the lines of the proof of theorem 2 we can show that

condition (6.1) is equivalent to

(6.2) lim FKlk(t)d(f(x+t) = 0
m—>oo J 0

uniformly in k, for every / e BV[0, 1], for every x e [0, 1] and for 0 < d < 1.
Thus it follows as shown in Theorem 2, that (6.2) holds, if and only if

(a') \KZ,k(t)\ ^ M, m = 1, 2, • • • and t e [d, 1] for <5 > 0 and uni-
formly in k.

(b') (3.3) holds.

Since (a)' always holds, it follows that (6.2) holds if and only if (3.3)
holds.

This completes the proof of Theorem 3.

7.

PROOF OF THEOREM 4. We have

0

so that
oo

am, h' = X, "m, v av+k'

,•=*'

0

= N1—N2, say.

But Nx = 0.
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Proceeding on the lines of the proof of Theorem 3 we can show that
JV2 = 0, as m -> oo, uniformly in k' if and only if

m->oo i=k'

uniformly in k' in the interval 0 < 8 ^ t ^ 1.
This completes the proof of the theorem 4.

8.

If we take x = 0, k = 0, an v = — , v < n
n

= 0 v ^ n,

we get the following corollary of theorem 3 which bridges the gap between
theorems A and C.

COROLLARY. If f e BV[0, 1], then {kak} is summable (C, 1) to zero if
and only if

\ m-l

- 2/?(') = o

The author would like to express his thanks to Prof. J. A. Siddiqi
for his encouragement in the preparation of this paper.
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